Skip to main content
. 2022 Dec 16;15(24):9022. doi: 10.3390/ma15249022

Table 4.

Details of transfer functions used in multilayer perceptron.

Acronym Long Term Equations
Elliotsig Elliot sigmoid f(x) = elliotsig(x) = (x)/1+|x|
Hardlim Positive hard limit f(x) = hardlim(x) = 1, if x ≥ 0;
=0, otherwise.
Hardlims Symmetric hard limit f(x) = hardlim(x) = 1, if x ≥ 0;
=−1, otherwise.
Logsig Logarithmic sigmoid f(x) = logsig(x) = 1/(1 + exp(−x))
Netinv Inverse f(x) = netinv (x) = 1/x
Poslin Positive linear f(x) = poslin(x) = x, if x 0;
=0, if x ≤ 0.
Purelin Linear f(x) = purelin(x) = x
Radbas Radial basis f(x) = radbas(x) = exp (−x2)
Radbasn Radial basis normalized f(x) = radbasn(x) = exp (−x2)/sum(exp(−x2))
Satlin Positive saturating linear f(x) = satlin(x) = 0, if x ≤ 0;
=x, if 0 ≤ x ≤ 1;
=1, if 1 ≤ x.
Satlins Symmetric saturating linear f(x) = satlins(x) = −1, if x ≤ −1;
=x, if −1 ≤ x ≤ 1;
=1, if 1 ≤ x.
Softmax Soft max f(x) = softmax(x) = exp(x)/sum(exp(x))
Tansig Symmetric sigmoid f(x) = tansig(x) = 2/(1+exp (−2 x)) − 1
Tribas Triangular basis f(x) = tribas(x) = 1 − abs(x), if −1 ≤ x ≤ 1;
=0, otherwise.

Where x is the weighted sum of w, i, b, and y of Equation (2).