
1.  Introduction
Deep convection is the main transport pathway connecting planetary boundary layer (BL) and the upper tropo-
sphere in tropics. The deep convective clouds also redistribute gaseous and particulate matter within the tropical 
troposphere. This influences atmospheric chemistry as well as background concentrations of aerosol particles 
(e.g., Barth et al., 2015, 2016; C. Wang et al., 1995; Chatfield & Crutzen, 1984; Cooper et al., 2006; Dickerson 
et al., 1987; Twohy et al., 2002, and others). Twohy et al. (2002) pointed out that deep convective clouds can 
rapidly inject a gas from the BL into the upper troposphere (UT) where subsequent chemical and physical 
processing can lead to in-situ new particle formation (NPF). Indeed, numerous flight campaigns have observed 
high abundances of small aerosol particles in the UT in the vicinity of tropical deep convection (e.g., Andreae 
et al., 2018; Clarke et al., 1999; Krejci et al., 2003; Twohy et al., 2002; Weigel et al., 2011).

It is well known that oxidized volatile organic compounds (VOCs) can enhance NPF in the presence of sulfate 
(Riccobono et al., 2012). Potentially, the oxidized VOCs can also trigger NPF on their own, in particular in the 
UT where temperatures are relatively cold (Frege et al., 2018). The Amazon region is of particular interest in this 
context due to the high abundance of biogenic organic compounds in the BL that could survive transport to the 
cloud outlfow region (Bardakov et al., 2021) and eventually play an important role for NPF (Bianchi et al., 2016). 
Once nucleated and grown by coagulation and condensation, the newly formed particles can be transported 
back to the BL through large-scale subsidence, for example, in the outer parts of Hadley cell, and influence 
low-level clouds, radiation, and climate (Clarke et al., 1999; Williamson et al., 2019). Recently, a transport pattern 
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connecting the tropical free troposphere with the BL through cloud-scale downdrafts was also identified over the 
Amazon (J. Wang et al., 2016; Machado et al., 2021), underlining that it is not only the updrafts that are important 
for the vertical redistribution of gases and aerosols within deep convective clouds. Furthermore, detrainment and 
entrainment of air along the boundaries of a deep convective cloud may under certain conditions be a source of 
gases and aerosols from the BL to the mid-troposphere (Bourgeois et al., 2016; Engström et al., 2008) or result in 
transport of aerosols from the mid-troposphere to the UT (Fridlind et al., 2004).

The complex patterns of redistribution of air along with the accompanying cloud microphysics must be captured 
when modeling convective gas transport in order to estimate sources and sinks of the gases correctly. This is 
usually achieved by performing simulations with high-resolution cloud-resolving models (CRMs) (see e.g., Barth 
et al., 2007; Bela et al., 2018; Ekman et al., 2008; Murphy et al., 2015). However, only a limited number of chem-
ical spieces can typically be modeled with this approach due to high computational cost. Bardakov et al. (2020) 
developed a computationally efficient framework to estimate the transport of trace gases from the boundary 
layer into the upper troposphere through an individual cloud. The framework makes use of high-resolution air 
parcel trajectory output from a CRM simulation. Bardakov et al. (2020) modeled the vertical transport of trace 
gases with different volatilities based on two deep convective cloud cases (one idealized and one from the Deep 
Convective Clouds and Chemistry (DC3) field campaign (Barth et  al.,  2016)). While the focus of Bardakov 
et al. (2020) was to understand the impact of the molecular properties of the gases driving their transport, the 
general trends over a large number of possible trajectories as well as the potential impact of downdrafts were not 
explored. Therefore, we here expand on the analysis of Bardakov et al. (2020), and use the same CRM to simulate 
a large ensemble of air parcel trajectories for a number of deep convective clouds over the Amazon. We calculate 
the statistical likelihood for an air parcel originating in one part of the troposphere to reach other parts during a 
convective event. From the ensemble, we derive a novel data set describing two mean air parcel trajectories repre-
senting average convective up- and downdrafts in the Amazon. These average trajactories are then used together 
with the box model described in Bardakov et al.  (2020) to calculate the up- and downward transport of three 
idealized non-reactive trace gases of different volatility, as well as to estimate the role of the gas condensation 
sink and turbulent mixing during the transport.

2.  Methods
The air parcel trajectories were extracted from simulations using the MIT-MISU Cloud Aerosol model (MIMICA). 
MIMICA is a CRM that solves the anelastic, nonhydrostatic governing equations in three dimensions (Savre 
et al., 2014). The microphysics scheme used in the current version of MIMICA predicts the mass mixing ratio of 
cloud precipitation and condensate particles, which in turn are divided into water and ice hydrometeors depend-
ing on the modeled temperature (Grabowski, 1998). Both water droplets and ice particles are assumed to have a 
simple spherical shape. Cloud condensate particles have a monodisperse size distribution and follow the flow of 
air without precipitating, while precipitating particles follow a Marshall-Palmer distribution. The mean terminal 
velocity of the latter particles is estimated from the size distribution and the particle mass mixing ratio within the 
grid box. Turbulence is parameterized following a Smagorinski-Lilly approach (Lilly, 1962; Smagorinsky, 1963).

Atmospheric soundings from the University of Wyoming sounding data archive (http://weather.uwyo.edu/uppe-
rair/sounding.html) were used to initialize the MIMICA simulations. The soundings were retrieved over Manaus 
(Latitude: −3.1, Longitude: −60.0) during the wet season from April 1 until 14 April 2020 at 00 and 12 UTC 
(excluding one unavailable sounding from April 3 at 00 UTC, i.e., in total 27 soundings). The simulations were 
performed for 2 hr over a domain covering 200 × 200 × 20 km 3, with 512 × 512 grid points in the horizontal 
direction and 200 grid points in the vertical (this gives a horizontal and vertical resolution of 390 and 100 m, 
respectively). To mimic deep convective clouds that have a high potential of transporting chemical species into 
the upper troposphere, the simulations were initiated by a warm bubble perturbation with a maximum temper-
ature difference of 5 K that was set in the middle of the bubble and then varied as a cosine squared toward the 
edge. The center of the bubble was situated at x = 100 km, y = 100 km and z = 0 km. The radius of the bubble 
was 2 km in the vertical direction and 20 km in the horizontal directions.

The initial air parcel positions were set to the following altitudes: 0.5, 1.5, 2.5, 3.5, 5, 7, 9, and 11 km, respec-
tively, with 400 air parcels released in each layer, that is, every cloud case generated 3,200 air parcel trajecto-
ries. The initial parcel positions were distributed uniformly in the horizontal direction within a rectangular area 
defined by the radius of the perturbation bubble (i.e., each side of the rectangle is twice the horizontal radius 
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of the bubble). When analyzing the output, the simulated air parcel trajectories were divided into three height 
bins: 0–3, 3–10, and >10 km. These layers roughly represent the lower troposphere (or the BL), the middle trop-
osphere, and the UT (including the deep convective cloud outflow), respectively. A distinct mixing layer could 
not always be identified in the sounding profiles, most likely due to the time of the day when the soundings were 
retrieved. Therefore, following Zimmerman et al. (1988), we assume that the layer below 3 km roughly represents 
a well-mixed lower troposphere (including the surface mixing layer and a shallow convective cloud layer), and 
hereafter refer to this part of the troposphere as the BL. Since the deep convective cloud anvil typically reaches 
higher altitudes than 10 km (Takahashi et al., 2017) we define the cloud outflow region in the UT to be above 
10 km. In other words, trajectories with initial positions at 0.5, 1.5, and 2.5 km represent the BL, those starting at 
3.5, 5, 7, and 9 km represent the middle troposphere and those starting at 11 km the UT.

We focused our analysis on cloud cases that triggered deep convection and that injected a non-negligible amount 
of air into the UT. More specifically, we only selected cases where at least 1% of the simulated BL parcels reached 
an altitude of 10 km or more. We grouped air parcels that reached a certain altitude bin (BL, middle troposphere 
or UT) at the end of the simulation and calculated key characteristics such as the mean and standard deviation of 
altitude, temperature, reversed turbulent mixing time scale, vapor, and condensate and precipitation concentra-
tions at each time step. The reversed turbulent mixing scale was defined as the ratio between the sub-grid turbu-
lent diffusion coefficient and the squared length scale of the simulation grid, see also Equation 22 in Bardakov 
et al. (2020)). In addition to the main analysis of the air parcels for the deep convective clouds in the Amazon, 
a sensitivity test for the parcels originating at the four lower altitudes (i.e., at 0.5, 1.5, 2.5, and 3.5 km) with a 
maximum bubble perturbation of 3 K (as compared with the 5 K perturbation in the base case) was performed.

To study the convective transport of non-reactive trace gases within the simulated deep convective clouds, we 
used the box model described in detail in Bardakov et al. (2020). The model solves a set of linear equations that 
describe and assess the change in the gas concentration due to cloud processes, including condensation and evap-
oration to/from hydrometeors, removal by precipitation, and turbulent mixing. We assumed that any gas is fully 
retained in a droplet upon freezing. We examined three hypothetical trace gases that differ by their volatility: low, 
intermediate and high. The volatilities were defined using the effective gas saturation vapor pressure, 𝐴𝐴 𝐴𝐴 𝜃𝜃

𝑒𝑒𝑒𝑒𝑒𝑒
 , with 

values 5 ⋅ 10 7, 5 ⋅ 10 5 and 5 ⋅ 10 1 Pa, respectively, and enthalpy of vapourization, ΔH, with values 25, 55, and 
85 kJ mol −1, respectively, according to Bardakov et al. (2020). According to the given definitions and neglecting 
chemical reactions, our high volatile gas could be associated with, for example, n-butane, the intermediate vola-
tile gas with methyl hydrogen peroxide and the low volatile gas with nitric acid.

3.  Results
3.1.  General Behavior of the Simulated Air Parcels

From the CRM simulations, deep convection (according to the criterion defined in Section 2) was produced from 
16 thermodynamic profiles out of 27. Based on the air parcel trajectories of the triggered cloud cases we infer that 
the air parcels from the lowest level of the BL (i.e., 0.5 km) usually reach the UT within 1 hr of simulation. The 
cloud anvil is formed within the next hour. Figures 1a–1p shows the trajectories for air parcels that initially were 
situated at 0.5 km height for each of the 16 deep convective cloud cases after 2 hr of simulation. An analysis of 
the final air parcel altitudes shows that in all of the cloud cases, at least 50% of the air parcels starting at 0.5 km 
do not leave the BL and stay below 3 km altitude. Instead, they remain around the initial altitude or sink toward 
the surface. Up to 20% of the parcels end up between 3 and 10 km height in the middle troposphere and up to 33% 
of the parcels reach the UT at 10 km or above. In other words, the transport of air parcels from the surface to the 
UT is in general more efficient than the transport to the middle troposphere.

The transport efficiency to the UT region is, however, sensitive to the magnitude of the initial warm bubble 
perturbation. When the maximum initial bubble perturbation is lowered from 5 to 3 K, the convection becomes 
weaker and only around 7% of the air parcels originating from 0.5 km height reach the UT. In some cases, convec-
tion is not even triggered (see Figures S1 and S2 in Supporting Information S1).

Figures 2a–2h shows the mean vertical velocities as a function of altitude for all the parcels initially located in the 
middle and upper troposphere at 5, 7, 9, and 11 km altitude after 1 and 2 hr of simulation (upper and lower panel, 
respectively). After 1 hr of simulation most parcels stay around their original level as the result of small mean 
vertical velocity and small deviation of the air parcel velocity from the mean (the positions are indicated by gray 
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horizontal bars in Figure 2). This result shows that downward (as well as upward) motion from the middle trop-
osphere is uncommon at the early stages of deep convective cloud evolution. At t = 2 hr, however, a much larger 
number of parcels (see gray horizontal bars in Figure 2) have negative vertical velocities. Parcels initially located 
between 5 and 9 km show a distinct tendency to propagate toward the BL at this later stage of deep convective 
cloud development. In contrast, only a small number of parcels initially located in the UT (at 11 km height) have 
a negative vertical velocity (see Figures 2d and 2h). Nevertheless, our simulations indicate that up to 10% of the 
air parcels still can be transported from the UT to the middle troposphere during the 2 hr of simulation.

Figures 3a–3c shows the fraction of parcels that end up within the BL (0–3 km), middle troposphere (3–10 km) or 
UT (>10 km) bins as a function of the initial parcel altitude after 2 hr of simulation for all deep convective cloud 
cases. A majority of the parcels do not leave their original altitude bin and their transport is driven mainly by 
horizontal advection. A small, but still substantial, fraction of air parcels undergo distinct vertical transport across 
altitude bins. On average, 17% of the parcels originating at 0.5 km height reach the cloud outflow and 12% end up 
in the middle troposphere. A substantially lower fraction of BL air reach the middle and upper troposphere from 
1.5 to 2.5 km altitude (∼5% and ∼1%, respectively). Thus, our simulations indicate that it is the air from the lowest 
part of the BL, that is, the mixing layer above the rain forest, that is most efficiently transported into the upper 
troposphere over the Amazon region. However, this result may be sensitive to the location of the initial buoyancy 
perturbation, which here was set to be largest at the surface. Parcels originating just above the BL, that is, at 3.5 
and 5 km, mainly stay at their initial altitude or move downwards. Approximately 11%–19% of the air parcels 
from the lower free troposphere end up in the BL after 2 hr of simulation, showing that free troposheric air can 
be transported to the boundary layer by convectively-driven downdrafts. Only 4% and 6% of the parcels initially 
located at 7 and 9 km, respectively, reach the UT above 10 km. The vast majority of the parcels (87%–94%) stay in 
the middle troposphere, with a tendency to sink to the lower altitudes but without reaching the BL within 2 hr of 
simulation time. A similar behavior is observed for parcels starting in the UT. These parcels mainly stay in the UT 
(90%) and only a small fraction (10%) of the air parcels sink to the middle troposphere, while no parcel reaches 
the BL within the simulation time. An example of the trajectory distribution for one of the cases (9 April 2020, 12 

Figure 1.  Trajectories for air parcels initially located at 0.5 km altitude for all cases where deep convection was triggered. 
Top, middle and bottom numbers in each subfigure show percentages of parcels that reached the >10, 3–10, and 0–3 km 
height bins, respectively. Simulation time is 2 hr.
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UTC) is depicted in three dimensions in Figures S3–S9 in Supporting Information S1 to give an idea of how air 
parcels from different initial altitudes are redistributed in space after 2 hr of simulation. In general the simulated 
trajectories closely replicate well-known dynamical patterns of deep convection, such as convective-scale up- and 
downdrafts as described for example, by Houze Jr. and Betts (1981).

3.1.1.  Mean Up- and Downdraft Trajectories

The mean trajectories of the air parcels that start at 0.5 km altitude and then reach the cloud outflow above 10 km 
(convective updraft) as well as the ones that start in the middle troposphere at 5 km and then are transported 
downwards to the BL (convective downdraft) represent large displacements of air within a deep convective cloud 
and are further analyzed and shown in Figure 4. The extent of the horizontal propagation of the downdraft before 
it reaches the BL is ∼40 km.

Figure  5 shows the mean and standard deviation of the altitude, temperature, reverse timescale of turbulent 
mixing, water vapor content, cloud condensate content and cloud precipitation content as a function of time for 
the mean convective updraft (trajectory A in Figure 4). The parcels in the updraft experience highly dynamic 
changes in temperature, pressure, water vapor concentration, and hydrometeor mass and phase. They are also 
exposed to different levels of turbulence during the transport. The most drastic changes occur within ∼1.5 hr of 

Figure 2.  Vertical distribution of mean vertical velocity for all parcels initially located at z0 = 5, 7, 9, and 11 km height for 
all deep convective cloud cases (blue line) at 1 h (upper panel) and 2 h (lower panel) of simulation. Shaded light blue area 
shows the standard deviation of the velocities. The gray horizontal bars show cumulative amount of air parcels in the bins 
corresponding to the mean vertical velocity. Black dashed line indicates initial parcel location.
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simulation when the air is advected to the cloud outflow. Afterward, all parameters reach a quasi-stationary state 
displaying only small changes. The mean altitude reached by the parcels in the outflow after 2 hr of simulation 
is 12.8 ± 1.7 km and the corresponding temperature is 219 ± 14.7 K. Turbulent mixing is relatively high at the 
beginning of the simulation, when the parcels reside within the BL. It then decreases when the parcels reach the 
mid-troposphere and reach a second maximum when the parcels approach the outflow. The maximum value for 
the reverse timescale of turbulent mixing, showing the maximum influence of turbulence, is reached at 2,400 s 
around 7 km altitude and is 0.0002 ± 0.0004 s −1. The values are close to zero after ∼5,000 s meaning that the air 
in the outflow is advected under low turbulence conditions. The maximum total hydrometeor mass concentration 
reached is 1 ± 1 g m −3 for condensate and 5 ± 5 g m −3 for precipitation particles at around ∼2,000 s of simula-

tion. The mean hydrometeor and water vapor concentrations approach zero 
after ∼1.5 hr and by that time the cloud updrafts generally start to dissipate. 
In the DC3 case simulated in Bardakov et al. (2020) with the same model, 
the development of the cloud occurred faster with high amounts of precipita-
tion observed already around t = 1,000 s of simulation. The average altitude 
reached by the parcels was around 11 km and the temperature around 225 K. 
The magnitudes of other variables were similar to those of the mean upward 
trajectory described above.

The opposite behavior is to some extent observed for the air parcels that 
move downward during convection. Figure 6 shows the same time-dependent 
parameters as in Figure 5 but for the mean convective downdraft (trajectory 
B in Figure 4). The downward motion starts after approximately 1 hr of cloud 
evolution and is associated with a simultaneous weakening of the updraft. As 
the average altitude decreases, there is a corresponding increase in the average 
temperature from ∼274 K to ∼290 ± 5 K and water vapor content from ∼6 to 
∼12 ± 4 g m −3. The parcels generally experience less turbulence when they 
propagate downward compared to when they move upward; the reverse time 
scale of turbulent mixing is usually more than one order of magnitude higher 
within the updraft compared to within the downdraft. Since the parcels sink 

Figure 3.  Fractions of parcels that end up within a specific height bin (BL: 0–3 km, middle troposphere: 3–10 km and UT: 
>10 km, which represents the convective cloud outflow) after 2 hr of simulations as a function of the initial parcel altitude.

Figure 4.  Mean trajectories of the parcels starting at 0.5 km altitude and 
finishing at >10 km that represent the updraft (A, red) and those starting at 
5 km altitude and finishing <3 km that represent the downdraft (B, blue). 
Percentages indicate the corresponding fractions of parcels contributing to the 
up- or downdraft. Gray trajectories indicate individual up- and downdraft air 
parcels used for averaging. Simulation time is 2 hr.
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from 5 km where the temperature is above 273 K, no ice is present in the system and only water droplets exist. 
The amount of condensate water peaks in the downdraft around approximately 2,000 s, while precipitation water 
is the highest (∼2 ± 1 g m −3) at later stages of convection due to the dissipating updrafts and in-situ condensation.

3.2.  Gas Transport Within the Mean Up- and Downdraft

The average air parcel properties presented in Section 3.1.1 allow us to calculate the condensation sink (CS), the 
mixing time scale, and the fraction of a non-reactive trace gas that can be transported on average from the BL into 
the UT (using the same methodology as in Bardakov et al., 2020). Figure 7 shows the time evolution of a hypo-
thetical low-, intermediate- and high volatile gas along the mean outflow trajectory presented in Figure 5. The 
initial gas concentration is assumed to be 1 ppbv. The CS for the low volatile gas reaches ∼0.16 s −1 at t = 2,000 s 
which leads to a complete removal of the gas. The quick condensational removal is caused by the high effective 
saturation vapor pressure of 5 ⋅ 10 7 Pa in combination with the decrease in temperature along the air parcel trajec-
tory. Under these conditions, nearly all the gas is taken up by the available hydrometeors in order to reach the 
equilibrium between the gaseous and condensed states. The CS for the gas with intermediate volatility reaches 
values of ∼0.01 s −1 and the gas is only partially removed. About 0.3 ppbv of the gas is transported into the UT, 
where an equilibrium between the gas in the vapor phase and the CS is reached. The transport of the intermediate 
volatility gas is sensitive to the specific value of the saturation vapor pressure, the enthalpy of vapourization and 
the temperature within the system. The CS for the high volatile gas is small compared to the other two gases and 
reaches a maximum value of ∼0.00005 s −1. In this case, it is mainly the turbulent mixing (shown by the turbulent 
mixing time scale which peaks at ∼0.0002 s −1) that causes a noticeable decrease in the gas concentration which 
reaches ∼0.6 ppbv in the UT, assuming zero concentration of the gas in the background. Bardakov et al. (2020) 
reported similar modeling results for convective transport of some common chemical compounds from the BL 
into the UT based on a convective case from the DC3 field campaign. They showed that during the transport, 

Figure 5.  Mean and standard deviation of the altitude, temperature, reversed timescale of turbulent mixing, water vapor 
content, cloud condensate content and cloud precipitation content as a function of time for the updraft (A in Figure 4).

Figure 6.  Same as in Figure 5 but for the downdraft (B in Figure 4).
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low-volatile hydrogen peroxide (H2O2) is completely scavenged, intermediate-volatile methyl hydrogen peroxide 
(CH3OOH) undergoes partial scavenging of up to 60% from its BL concentration and the high-volatile n-butane 
is efficiently transported without any scavenging with the concentration reduced by 40% only due to mixing with 
the out-of-cloud air.

Figure 8 shows the time evolution of a hypothetical low-, intermediate- and high volatile gas along the mean 
trajectory of air parcels propagating from 5 km down to below 3 km (presented in Figure 6). The CS for the low 
volatile gas reaches a maximum of ∼0.02 s −1 at t = 2,000 s and then decreases until the end of the simulation, 
eventually leading to a near-complete removal of the gas before it reaches the BL. The CS for the intermedi-
ate volatility gas reaches a maximum of ∼0.00017 s −1. This sink is not large enough to lead to any significant 
concentration decrease during the transport toward the BL. The CS and the turbulent mixing time scale are small 
for the high volatile gas, ∼0.00001 s −1 or less, and there is no substantial change in the gas concentration along 
the  trajectory.

4.  Summary and Conclusions
We have used the CRM MIMICA and the framework of Bardakov et al. (2020) to simulate a set of deep convec-
tive clouds in the Amazon, to describe the redistribution of air parcels within the deep convective clouds, and to 
calculate the fraction of a non-reactive trace gas species that can be transported from the BL to the UT and from 
the middle troposphere down to the BL.

We found that air parcels located in the lowest layers of the BL had the highest probability of reaching the UT. 
Around 17% of all parcels initially located at 0.5 km height ended up at altitudes of 10 km or higher during 
the 2 hr of simulation. Air parcels starting in the upper layers of the BL (1.5 and 2.5 km) had a substantially 
lower probability of reaching the UT (about 1%). This result suggests that deep convective inflow of trace 
gases or particles can generally be well-characterized with observational data from low altitudes in the BL 
provided that the maximum temperature perturbation occurs near the surface. We also analyzed the down-
drafts within the simulated deep convective clouds. Approximately 19% and 11% of the air parcels located in 
the lower middle troposphere at 3.5 and 5 km height, respectively, reached the BL as a result of coherent and 

Figure 7.  (a) Concentration of a low, (b) intermediate and (c) high volatile non-reactive gas as a function of time along the mean updraft trajectory. Gray shaded 
area shows the condensation sink, red shaded area shows the turbulent mixing sink. Dashed and dotted lines denote condensation sink attributed to water and ice 
hydrometeors, respectively.

Figure 8.  Same as in Figure 7 but along the mean downdraft trajectory.
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persistent convective downdrafts. This result is well in line with that of J. Wang et al. (2016) who suggested 
that convective downdrafts can be responsible for transporting air and Aitken mode aerosol particles from 
the free troposphere to the BL. This result underlines the importance of understanding transport of gases and 
aerosols not only within the updrafts but also within the deep convective downdrafts since these gases and 
aerosols may affect boundary layer chemistry, the availability of cloud condensation nuclei, and low-level 
cloud formation. Air parcels located at 7–11 km height showed a tendency to move downward during the 
convective event, but the downward motion was weak and the parcels did not reach the BL within the 2 hr of 
simulation. We acknowledge, however, that larger-scale compensating subsidence motions associated with 
deep convection (as discussed in e.g., Yanai et al., 1973) can lead to additional transport from the UT to lower 
altitudes on longer timescales (relatively to those considered in the current study). Future studies should 
examine how the local-scale transport compares to the transport on a larger scale as well as the sensitivity of 
the transport to the vertical location of the initial buoyancy perturbation. It would also be useful to examine 
if and how other cloud microphysics schemes and related parametrizations affect the vertical redistribution 
of air.

Using derived typical upward and downward transport pattern from our simulations, we modeled the transport of 
trace gases with different volatility. The relative role of gas condensation and turbulent mixing during the trans-
port was also evaluated. In the convective updraft, we found that turbulent mixing had the highest influence on the 
high-volatility gas, reducing its concentration by 40%. Condensation was the most important sink for the low and 
intermediate volatility compounds. It led to a complete and quick removal of the low volatile gas from the system 
and to reduction of the intermediate volatile gas concentration by ∼75%. In the convective downdraft, similar to 
the updraft, the low-volatility gas was almost completely removed by condensational uptake onto cloud hydro-
meteors, while the gases with intermediate and high volatility could be transported from the middle troposphere 
to the BL without substantial losses. Turbulent mixing had a negligible effect on all gases in the downdrafts. The 
modeled behaviour agrees well with our general understanding of gas interaction with clouds under different 
thermodynamic conditions (Seinfeld & Pandis, 1998) and the results presented earlier by (Bardakov et al., 2020).

The gas system used in this study is idealized, but convective transport of a more complex multi-component gas 
and particle mixture can be modeled in the future using the derived cloud trajectory output. Such an approach will 
give us an improved picture of the interplay between cloud dynamics and gas chemistry and physics. It will also 
allow us to estimate the transport of specific atmospheric compounds to high altitudes and evaluate their signif-
icance for example, the recently discovered NPF mechanisms in the upper troposphere (M. Wang et al., 2022).

Data Availability Statement
Air parcel trajectories data generated by the modified MIMICA version 5 model code is available online 
(Bardakov, Krejci, et al., 2022). The trajectory framework code (Bardakov, Riipinen, et al., 2022) and MIMICA 
code (Bardakov, Savre, & Ekman, 2022) are available online.
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