Skip to main content
. 2022 Dec 19;9(12):467. doi: 10.3390/jcdd9120467

Table 3.

Characterization of quantitative parameters for IE.

Simple logistic regression analysis on outcome IE.
Parameter Cut-off Sens. Spec. 80% Sens. 80% Spec. AUC p Value
WBC (1/nL) 8.75 0.67 0.73 7.34 11.55 0.680 0.024
CRP (mg/L) 66.10 0.57 0.73 28.72 93.67 0.589 0.272
PCT (ng/mL) 0.50 0.60 0.64 0.41 1.22 0.681 0.057
Vegetation size (mm) 11.50 0.69 0.86 9.49 11.50 0.800 <0.001
log(NT-proBNP) 3.37 0.68 0.83 3.06 3.37 0.691 0.114
Multivariate logistic regression analysis on outcome IE.
Parameter OR (95%-CI) p Value C Index
WBC (1/nL) 1.37 (0.98, 2.16) 0.110
CRP (mg/L) 1.00 (0.98, 1.03) 0.707 0.909
Vegetation size (mm) 1.58 (1.12, 2.64) 0.037
log(NT-proBNP) 1.91 (0.41–12.83) 0.449

Analysis of PCT was omitted in the multivariate analysis because of collinearity. AUC = area under the curve; CI = confidence interval; Sens. = sensitivity; Spec. = specificity; other abbreviations as in Table 1. Bold font highlights the quantitative parameter and the respective test result, if significant.