Table 3.
Simple logistic regression analysis on outcome IE. | |||||||
Parameter | Cut-off | Sens. | Spec. | 80% Sens. | 80% Spec. | AUC | p Value |
WBC (1/nL) | 8.75 | 0.67 | 0.73 | 7.34 | 11.55 | 0.680 | 0.024 |
CRP (mg/L) | 66.10 | 0.57 | 0.73 | 28.72 | 93.67 | 0.589 | 0.272 |
PCT (ng/mL) | 0.50 | 0.60 | 0.64 | 0.41 | 1.22 | 0.681 | 0.057 |
Vegetation size (mm) | 11.50 | 0.69 | 0.86 | 9.49 | 11.50 | 0.800 | <0.001 |
log(NT-proBNP) | 3.37 | 0.68 | 0.83 | 3.06 | 3.37 | 0.691 | 0.114 |
Multivariate logistic regression analysis on outcome IE. | |||||||
Parameter | OR (95%-CI) | p Value | C Index | ||||
WBC (1/nL) | 1.37 (0.98, 2.16) | 0.110 | |||||
CRP (mg/L) | 1.00 (0.98, 1.03) | 0.707 | 0.909 | ||||
Vegetation size (mm) | 1.58 (1.12, 2.64) | 0.037 | |||||
log(NT-proBNP) | 1.91 (0.41–12.83) | 0.449 |
Analysis of PCT was omitted in the multivariate analysis because of collinearity. AUC = area under the curve; CI = confidence interval; Sens. = sensitivity; Spec. = specificity; other abbreviations as in Table 1. Bold font highlights the quantitative parameter and the respective test result, if significant.