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Abstract

Ceftazidime/avibactam (CAZ/AVI), a combination of ceftazidime and a novel
B-lactamase inhibitor (avibactam) that has been approved by the U.S. Food
and Drug Administration, the European Union, and the National Regulatory
Administration in China. CAZ/AVI is used mainly to treat complicated uri-
nary tract infections and complicated intra-abdominal infections in adults, as
well as to treat patients infected with Carbapenem-resistant Enterobacteriaceae
(CRE) susceptible to CAZ/AVI. However, increased clinical application of
CAZ/AVI has resulted in the development of resistant strains. Mechanisms of
resistance in most of these strains have been attributed to blaxpc mutations,
which lead to amino acid substitutions in p-lactamase and changes in gene
expression. Resistance to CAZ/AVI is also associated with reduced expression
and loss of outer membrane proteins or overexpression of efflux pumps. In this
review, the prevalence of CAZ/AVI-resistance bacteria, resistance mecha-
nisms, and selection of detection methods of CAZ/AVI are demonstrated,
aiming to provide scientific evidence for the clinical prevention and treatment
of CAZ/AVI resistant strains, and provide guidance for the development of

new drugs.
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Infections of patients with multidrug-resistant Gram-negative bacteria (MDRGNB) have become increasingly common.
These bacteria have been associated with high morbidity and mortality rates, posing a serious threat to public health
worldwide (Orsi et al., 2011). Carbapenems are considered one of the most powerful classes of therapeutic drugs for the
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treatment of MDRGNB infections; however, their use is limited by the emergence of carbapenemase-producing bacteria
(Daikos & Markogiannakis, 2011). The main carbapenemases produced by bacteria include Klebsiella pneumoniae
carbapenemase (KPC), metallo-p-lactamase (MBL), and oxacillinase (OXA; Guh et al., 2015; Tamma et al., 2017).
Carbapenemase-resistant bacterial infections, however, may be susceptible to combination of B-lactam and p-lactamase
inhibitors (BLI) with carbapenemase-inhibiting activity (Bebrone et al., 2010).

Common classical BLIs in clinical use include clavulanic acid, sulbactam, and tazobactam, all of which have
B-lactam structures. BLIs bind stably and irreversibly to f-lactamases, initially forming an intermediate (E-I), which
undergoes an additional reaction to form free enzyme (E) and hydrolyzed clavulanic acid (I*), which is known as a “sui-
cide enzyme inhibitor”. These classical BLIs are active against many class A p-lactamases but do not interact with
class B, C, and D p-lactamases. With the emergence of other carbapenemases, some new non-p-lactam inhibitors have
been recently approved for clinical use (Drawz et al., 2014). Relebactam is combined with imipenem to treat infections
caused by CRE and Pseudomonas aeruginosa, including strains that produce KPC and class C p-lactamases (Hirsch
et al., 2012; Lapuebla et al., 2015; Livermore et al., 2013). Nacubactam, a diazabicyclooctane (DBO) inhibitor combined
with meropenem for development, inhibits class A and C serine f-lactamases (Morinaka et al., 2015). Zidebactam is
another DBO inhibitor, combined with cefepime against enterobacteriaceae species and P. aeruginosa that express
ESBLs, AmpC, KPC, and OXA-48 p-lactamases (D. M. Livermore, Mushtagq, et al., 2017). Vaborbactam, the first boronic
acid BLI, is designed specifically to inhibit KPC carbapenemases. And it also has activity against other class A and class
C p-lactamases (Hecker et al., 2015). Meropenem-vaborbactam has shown good in vitro activity against Enterobacter
spp., Klebsiella spp., and Citrobacter spp. that produce KPC enzymes (Castanheira et al., 2016; Lomovskaya et al., 2017).
Avibactam (AVI) is a novel bridging DBO non-f-lactam BLI with weak antibacterial activity (Bonnefoy et al., 2004;
Ehmann et al., 2012). However, AVI binds covalently and reversibly to A, C, and some D class serine f-lactamases to
form covalent compounds that inhibit the activity of these enzymes. The active enzyme and AVI can later be
regenerated by reversible deacylation and recycling (Bush & Bradford, 2019). However, because the rate of AVI ring
opening is much greater than the rate of cyclization, resulting in the maintenance of f-lactamase inhibition, AVI has a
long-lasting enzyme inhibitory effect (Figure 1; Tooke et al., 2019). Unlike classical BLIs, AVI-enzyme inhibitor com-
plexes do not generally undergo hydrolysis; AVI undergoes a reaction with KPC-2 similar to those of clavulanic acid
and tazobactam with KPC-2, with the complexes formed during the reaction between AVI and KPC-2 able to undergo
hydrolysis (Tooke et al., 2019).

Ceftazidime/Avibactam (CAZ/AV]) is the first drug approved by the U.S. Food and Drug Administration for the
treatment of CRE. Although CAZ is easily hydrolyzed by p-lactamase when used alone (Figure 2), this combination,
which is administered intravenously in a 4:1 ratio by weight (2.0 g CAZ/0.5 g AVI), has good antibacterial activity
against carbapenemase-producing Gram-negative bacteria (Shirley, 2018). In October 2015, a KPC-3-producing strain of
K. pneumoniae isolated from a blood culture of a 62-year-old woman not treated with CAZ/AVI was found to be resis-
tant to CAZ/AVI by antimicrobial susceptibility testing, making this the first reported case of CAZ/AVI resistance
(Humpbhries et al., 2015). Since then, many reports have described bacterial strains resistant to CAZ/AVI (Giddins
et al., 2018; Winkler, Papp-Wallace, & Bonomo, 2015). This review summarized the prevalence, resistant mechanism,
and detection methods of CAZ/AVI-resistant Enterobacteriaceae, P. aeruginosa, and A. baumannii, especially the influ-
ence of p-lactamase variation on MIC values of CAZ/AVI, aiming at establishing the scientific and reasonable diagnosis
and treatment plan, according to corresponding molecular mechanisms. It provides a theoretical basis for the rational
use of CAZ/AVT in the treatment of bacterial infectious diseases in clinical practice.
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FIGURE 1 Schematic representation of the acylation, recyclization, and hydrolysis reactions between a serine f-lactamase and
avibactam
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FIGURE 2 Example of an irreversible reaction between a p-lactam and a nucleophilic serine enzyme. The figure shows the reaction of a
penicillin with a penicillin binding protein (transpeptidase) to yield a stable acyl-enzyme complex, which subsequently undergoes slow
hydrolysis.

2 | PREVALENCE OF CAZ/AVI-RESISTANT BACTERIA
2.1 | Global resistance surveillance

According to the 2012-2016 ATLAS (Antimicrobial Testing Leadership and Surveillance), Global Resistance Surveil-
lance reported that the overall resistance rate of Gram-negative bacteria to CAZ/AVI was low (0.2%-8.1%). The resis-
tance rate of Enterobacteriaceae to CAZ/AVI was less than 2.2%, with 0.2% for Escherichia coli, 1.2% for K. pneumoniae,
and 2.2% for Enterobacter cloacae. While among CRE, the resistance rate of Carbapenem-resistant K. pneumoniae
(CRKP), Carbapenem-resistant E. coli (CREC) and Carbapenem-resistant E. cloacae were 14.4%, 27.7%, and 57.7%,
respectively. The overall resistance rate of P. aeruginosa to CAZ/AVI was significantly higher than that of
Enterobacteriaceae at 8.1%; Carbapenem-resistant P. aeruginosa (CRPA) showed 25.5% resistance to CAZ/AVL. In addi-
tion, the resistance rate of CAZ/AVI varied greatly among Enterobacteriaceae and P. aeruginosa producing different
carbapenemases: among Enterobacteriaceae, KPC-producing strains were resistant to CAZ/AVI at 1.5%, and NDM-
producing strains at 99.6%, while among P. aeruginosa, KPC-producing strains were resistant to CAZ/AVI at 35.7% and
NDM-producing strains at 97% (Table 1; Kiratisin et al., 2021; H. Zhang, Xu, et al., 2020).

2.2 | Regional resistance surveillance of Enterobacteriaceae

The 2012-2015 INFORM (the International Network for Optimal Resistance Monitoring, INFORM) resistance mon-
itoring system showed that the overall resistance rate of Enterobacteriaceae to CAZ/AVI was low in different regions
of the world, with resistance rates in Latin America and Europe is only 0.3%, while the resistance rate in the Asia
Pacific is relatively higher, at 1.0% (Karlowsky et al., 2018, 2019; K. M. Kazmierczak, de Jonge, et al., 2018a). By
2015-2017, the resistance rate of Enterobacteriaceae to CAZ/AVI in the Asia-Pacific region increased to 1.9%, and
further investigation of the resistance rate of carbapenem nonsusceptible Enterobacteriaceae to CAZ/AVI in differ-
ent regions showed that Oceania had the highest CAZ/AVI resistance rate of 88.9%, followed by Asia (51.7%),
Africa-Middle East (49.2%), Europe (23.2%), and the lowest resistance rate was found in Latin America (12.5%;
Spiliopoulou et al., 2020). By 2017-2019, carbapenem nonsusceptible Enterobacteriaceae bacteria in Latin America
increased their resistance rate to CAZ/AVI nearly 1-fold to 25.3% (Karlowsky et al., 2021). In addition, global resis-
tance surveillance by the ATLAS project from 2012 to 2016 showed that carbapenem-resistant Enterobacteriaceae
had a resistance rate of 57.7% to CAZ/AVI, followed by CREC with a resistance rate of 27.7% to CAZ/AVI
(H. Zhang, Xu, et al., 2020). The distribution of resistance rate of CRE to CAZ/AVI in different regions was as fol-
lows: the highest resistance rate to CAZ/AVI was 66.6% in the Asia-Pacific region, followed by Africa-Middle East
(39.5%), Europe (28.0%), and Latin America (18.5%), whose trend was consistent with the 2015-2017 INFORM sur-
veillance system showing the distribution of resistance rates of carbapenem nonsusceptible Enterobacteriaceae to
CAZ/AVI (Table 1). These results suggest that CRE resistance to CAZ/AVI varies by region and that the differences
in CAZ/AVI resistance rates are likely due to the different percentages of MBLs in different regions (Kiratisin
et al., 2021; Spiliopoulou et al., 2020).
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2.3 | Regional resistance surveillance of P. aeruginosa

Pseudomonas aeruginosa has a higher resistance rate to CAZ/AVI compared to Enterobacteriaceae. INFORM resistance
surveillance system in 2012-2015 showed the highest resistance rate to CAZ/AVI in Latin America at 12.6%, followed
by Europe (7.6%) and the Asia Pacific (7.4%; Karlowsky et al., 2018, 2019; K. M. Kazmierczak, de Jonge, et al., 2018b).
In recent years, the resistance rate of P. aeruginosa to CAZ/AVTI has been relatively stable across continents, with 13.1%
in Latin America, 7.7% in Europe, and 7.3% in the Asia Pacific (Karlowsky et al., 2021; K. M. Kazmierczak, de Jonge,
et al., 2018b; Ko & Stone, 2020; Lee et al., 2022). Among carbapenemase-producing P. aeruginosa, the resistance rate to
CAZ/AVI was high in all continents: 92.3% in Africa-Middle East, 90.6% in the Asia Pacific and Europe, and 82.9% in
Latin America (Kiratisin et al., 2021), showing that carbapenemase production correlates strongly with CAZ/AVI resis-
tance (Table 1).

2.4 | Resistance surveillance in China

Evaluation of 10,661 Gram-negative strains collected by the Blood Bacterial Resistant Investigation Collaborative Sys-
tem in China from January 2018 to December 2019 showed that 1% of E. coli strains were resistant to CAZ/AVI
(MIC50, 0.25/4 mg/L; MIC90, 1/4 mg/L), including 60.7% of CREC strains. In addition, 1.6% of K. pneumoniae strains
were resistant to CAZ/AVI (MIC50, 0.5/4 mg/L; MIC90, 4/4 mg/L), including 8.3% of CRKP strains (MIC50, 4/4 mg/L;
MIC90, 8/4 mg/L). Also, 2.8% of P. aeruginosa strains were resistant to CAZ/AVI (MIC50, 4/4 mg/L; MIC90, 8/4 mg/L),
including 11.6% of CRPA strains (MIC50, 4/4 mg/L. MIC90, 16/4 mg/L; T. Xu, Guo, et al., 2021). Furthermore, data
from the China Antimicrobial Surveillance Network (CHINET) show that in 2017, the CAZ/AVI resistance rates of
Enterobacteriaceae and P. aeruginosa were 5.4% (MIC50, <0.25/4 mg/L; MIC90, 2/4 mg/L) and 13.5% (MIC50,
2/4 mg/L; MIC90, 16/4 mg/L), respectively. The CAZ/AVI resistance rate was higher for CRE, at 24.7% (MIC50,
2/4 mg/L; MIC90, >32/4 mg/L), among which the resistance rate of CREC to CAZ/AVI was up to 71.4% (Yin
et al., 2019). Resistance rates to CAZ/AVI were slightly higher in 2018, up to 6.0% (MIC50, 0.25/4 mg/L; MIC90,
2/4 mg/L) for Enterobacteriaceae, 35.7% (MIC50, 8/4 mg/L; MIC90, 64/4 mg/L) for CRPA and 90.9% for CREC (MIC50,
>64/4 mg/L. MIC90, >64/4 mg/L; Yang et al., 2020).

3 | MECHANISMS UNDERLYING RESISTANCE TO CAZ/AVI

Most MBLs have the metal ion Zn*" at their active site; whereas other B-lactamases have a serine (Ser70) at their active
site; the latter are called serine f-lactamases. The most common groups of MBLs are the Verona integrin-encoded MBLs
(VIMs), imipenemases (IMPs), and New Delhi MBLs (NDMs). MBL-producing bacteria are naturally resistant to
CAZ/AVI because their MBLs do not contain a serine at their active site (Centers for Disease Control and Prevention
(CDC), 0). Evaluation of Enterobacteriaceae and P. aeruginosa collected from 42 medical centers in nine countries in
the Asia-Pacific region by the INFORM during the years 2012-2015 showed that 1% (91/9149) and 7.4% (151/2038),
respectively, were resistant to CAZ/AVI, with MBL-positive strains accounting for 80.2% (73/91) and 48.3% (73/151),
respectively, of these CAZ/AVI-resistant strains (Karlowsky et al., 2018). Of the 372 CRE strains collected by CHINET
from more than 30 medical centers in 2017, 92 (24.7%) were resistant to CAZ/AVI, with 66 (71.7%) of these containing
blanpm. Of the 134 CAZ/AVI-resistant strains collected in 2018, 57 (42.5%) contained blaxpy, Whereas of the 30 CAZ/
AVI-resistant CREC, 21 (70%) were positive for NDM (Yang et al., 2020; Yin et al., 2019). Taken together, these findings
indicate that MBL-producing strains account for a high proportion of CAZ/AVI-resistant strains.

By contrast, the main mechanisms underlying resistance to CAZ/AVI in Gram-negative bacteria that do not pro-
duce MBL include: (1) p-lactamase variants; (2) changes in bacterial membrane permeability; (3) increased expression
of efflux pumps; and (4) mutation of PBPs (Shi et al., 2020).

3.1 | p-Lactamase variants

B-Lactamase variants are an important mechanism of bacterial resistance to CAZ/AVI. Alteration of key residues at the
active sites of serine p-lactamases can increase their MIC values for CAZ/AVI significantly (Table 2). Serine
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B-lactamases are dependent on several highly conserved sequences responsible for recognition of, and reactions with,
antibiotics. These sequences include the Q-loop, consisting of amino acids 164-179. Glul66 and Asn170 are involved
in the acylation and deacylation of antibiotics by p-lactamases. The Q-loop acts as a structural domain unit that inter-
acts with antibiotics, forming the binding cavity for B-lactamase-substrate action. This allows the carbonyl on the
B-lactam ring of the antibiotic to polarize, forming an acylated enzyme complex. The amino acid substitution in the
KPC enzyme alters the structure of the binding cavity, thereby reducing resistance to the binding of CAZ and the
active site of the enzyme, thereby increasing p-lactamase binding and hydrolysis of CAZ, an important mechanism of
bacterial resistance to CAZ/AVI. Individual amino acid substitutions, particularly at positions 164, 167, 169, and
179 of the Q-loop, increase the affinity of the p-lactamase to CAZ and increase its hydrolysis (Winkler, Papp-Wal-
lace, & Bonomo, 2015). In addition, amino acid substitutions in the Q-loop can reduce the binding of p-lactamase to
AVI, weakening the inhibitory effect of AVI on p-lactamase and increasing hydrolysis of CAZ (F. Compain
et al.,, 2020a, 2020b). Alterations in f-lactamase expression can also lead to CAZ/AVI resistance (Humphries
et al., 2015).

3.1.1 | Alterations in KPC enzymes

KPC-2 and KPC-3, which are distributed widely worldwide, are not only present in K. pneumoniae, but have also been
detected in other Enterobacteriaceae, including Acinetobacter baumannii and P. aeruginosa (Bush & Bradford, 2019).
The main mechanisms of resistance associated with KPC are mutations in the blaxpc gene and increased blaxpc
expression.

On the one hand, amino acid substitution in KPC caused by blaxpc mutation can lead to CAZ/AVI resistance.
One of the most prevalent amino acid substitutions in KPC-2 and KPC-3 is Asp179Tyr (Giddins et al., 2018; Shields,
Nguyen, et al., 2017b): this amino acid substitution, as well as others in KPC-3, such as Val240Gly, Asp179Tyr/
Alal177Glu, and Aspl179Tyr/Thr243Met, leads to CAZ/AVI resistance (Gaibani et al., 2018; Galani et al., 2019;
Giddins et al., 2018; Haidar et al., 2017; Shields et al., 2018; Shields, Nguyen, et al., 2017a). Moreover, amino acid
substitutions at different sites are associated with varying degrees of increased MIC levels: Asp179Tyr/Thr243Met
(MIC value 256/4 mg/L) > Aspl179Tyr/Alal77Glu (MIC value 128/4-256/4 mg/L) > Aspl79Tyr (MIC value
128/4 mg/L) > Val240Gly (MIC value 32/4 mg/L; Haidar et al., 2017; Shields, Chen, et al., 2017; Shields, Nguyen,
et al.,, 2017a).

Experimentally, mutations have been introduced into blagpc by site-directed mutagenesis, with the plasmids con-
taining mutant blaxpc.; used to transform E. coli DH 5a by heat shock. The MIC value of native blaxpc toward
CAZ/AVI is 0.5/4 mg/L, but is altered by mutation to 16/4 mg/L for Asp179Tyr/Thr243Met, 8/4 mg/L for Asp179Tyr
and Thr243Met, and 4/4 mg/L for the 165-166 Glu-Leu insertion (Haidar et al., 2017). The greater change in MIC value
for the Asp179Tyr mutation than for the 165-166 Glu-Leu insertion or the Thr243Met mutation in CAZ/AVI suggests
that the Q-loop plays a central role in maintaining the stability of the KPC enzymes. The Q-loop is formed by a salt
bridge between Asp at position 179 and Arg at position 164. The less stable Asp179Tyr mutant has increased affinity for
CAZ, and restricted binding to AVI. The 167-168Glu-Leu deletion in the Q-loop of KPC-3 was also found to increase
the MIC value of CAZ/AVI from 1/4 to 16/4 mg/L, resulting in a phenotypic shift from susceptible to resistant
(Antinori et al., 2020).

Similarly, KPC-2 mutants containing Argl64Ala, Argl64Pro, Aspl179Ala, Asp179Gln, and Aspl179Asn amino acid
substitutions are all resistant to CAZ/AVI, with MIC values of 16/4, 64/4, 64/4, 32/4, and 64/4 mg/L, respectively. To
further study the mechanism by which KPC mutants increase MIC values for CAZ/AVI, the f-lactamase kinetics and
the inhibitory activity of AVI were evaluated in the Argl64Ala and Aspl179Asn mutants. Evaluation of their catalytic
activities using nitrocefin kinetic assays showed that the Argl64Ala variant had a 10-fold higher K, for nitrofecin
than wild-type KPC-2. Rapid-mixing stopped-flow kinetic assays of KPC-2 and the Asp179Asn variant on a 1.5 ms
timescale revealed that the Asp179Asn variant revealed a phenomenon called “burst”. This “burst” contributed to the
resistance of the enzyme to CAZ, and its inability to bind to penicillin binding proteins (PBPs). Evaluation of the
K; app and K5/K values of the Argl64Ala and Asp179Asn variants showed that similar concentrations of AVI were
needed to fully inhibit both. These findings suggested that increased affinity for CAZ may prevent the binding of AVI
to enzymes with Q-loop substitutions, thereby increasing MIC values for CAZ/AVI rather than reducing AVI inhibi-
tion (Winkler, Papp-Wallace, & Bonomo, 2015). The Asp179Tyr variant of KPC-2, called KPC-33, which is induced
by selective pressure asserted by CAZ/AVI, showed an increase in the MIC value for CAZ/AVI from 0.125/4 to
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16/4 mg/L, while at the same time restoring susceptibility to carbapenem antibiotics, which is useful for treatment of
infection by CAZ/AVI-resistant strains (P. Zhang, Shi, et al., 2020). A strain containing the Alal72Thr variant of
KPC-3, called KPC-39, was found to have a MIC value for CAZ/AVI of 12/4 mg/L. A study of its molecular structure
showed that the Alal72Thr substitution enlarged the spatial structure of the Q-loop active site, enabling it to better
accommodate CAZ and increase the affinity between CAZ and the variant enzyme, resulting in a resistant phenotype
(Jousset et al., 2021).

In addition to the Q-loop amino acid substitutions, some other substitutions can alter the affinity of the
enzyme for CAZ, leading to CAZ/AVI resistance. The Aspl163Gly substitution adjacent to the Q-loop in KPC-3
increased the MIC of K. pneumoniae clinical isolates for CAZ/AVI from 1/4 to 32/4 mg/L; the 181_182Ser-Ser
insertion increased the MIC from 1/4 to 64/4 mg/L; the 180_181Ser insertion increased the MIC of Enterobacter
cloacae for CAZ/AVI from 0.25/4 to 32/4 mg/L, whereas the 183_184Arg-Ala-Val-Thr-Thr-Ser-Ser-Pro insertion
increased the MIC from 0.5/4 to 128/4 mg/L (Livermore et al., 2015). A novel CAZ/AVI-resistant mutant, KPC-14,
containing a two-amino acid deletion in KPC-2 (242_243Gly-Thr) and isolated from patients in New York in 2020,
has a MIC value for CAZ/AVI of >16/4 mg/L. This enzyme was significantly more efficient than KPC-2 at catalyz-
ing CAZ, but did not affect AVI inhibitory properties, suggesting that CAZ/AVI resistance may be due to an
increase in p-lactamase hydrolysis of CAZ rather than a decrease in its inhibition by AVI (Niu et al., 2020). In
addition, KPC-3 variants from clinical isolates of K. pneumoniae in Switzerland were resistant to CAZ/AVI
(Galani et al., 2019; Gregory et al., 2010; Mueller et al., 2019; Poirel et al., 2020). These included KPC-41, with a
269_270 Pro-Asn-Lys insertion and a MIC >128/4 mg/L; KPC-50, with a 276_277Glu-Ala-Val insertion and a MIC
of 256/4 mg/L; KPC-8, with a Val240Gly substitution and a MIC of 32/4 mg/L; and KPC-23, with a Val240Ala sub-
stitution and a MIC of 16/4 mg/L. In addition, combinations of these alterations, such as KPC-64, a KPC-3 variant
with a Ser181 insertion, and Tyr244Ala substitution had a MIC >256/4 mg/L and were resistant to CAZ/AVI
(Venditti et al., 2021).

Bacterial resistance to CAZ/AVI is due not only to the altered affinity of KPC variants for CAZ, but also to the
altered ability of AVI to inhibit these enzymes. A mutant containing a KPC-2 variant with a Asp179Tyr substitution
(Barnes et al., 2017; Compain & Arthur, 2017; Hemarajata & Humphries, 2019) was found to have a CAZ/AVI MIC of
32/4 mg/L, whereas the CAZ/AVI MIC for wild-type KPC-2 was 1/4 mg/L. The Asp179Tyr substitution reduced the
AVI rate constant for KPC-2 inhibition by approximately 70,000-fold, suggesting that the resistance of this variant to
CAZ/AVI was also partly due to a significant reduction in the ability of AVI to inhibit the enzyme.

Culture of strains susceptible to CAZ/AVI in LB medium containing CAZ/AVI for 50 generations resulted in the
generation of several variants of KPC-2, such as a 165_166 GIn-Leu insertion, a Leul69Pro insertion plus a Ser181 inser-
tion, and a 166_167 Gln-Leu deletion. Introduction of these blaxpc mutations into a wild-type strain susceptible to
CAZ/AVI increased the MIC values for CAZ/AVI from 2/4, 4/4, and 0.25/4 mg/L to 16/4, 128/4, and 32/4 mg/L, respec-
tively, but did not affect MIC values for CAZ significantly, suggesting that these variants mainly affect the inhibitory
activity of AVI (Guo et al., 2021).

On other hand, increased expression of blaxpc can also contribute to CAZ/AVI resistance. The first KPC-
3-producing K. pneumoniae strain resistant to CAZ/AVI did not contain mutations in the blaxpc.3 gene (Humphries
et al., 2015). Real-time quantitative PCR analysis, however, found that expression of the blaxpc 3 gene was 3.8 + 0.2-fold
higher in this resistant strain than in susceptible strains (Humphries & Hemarajata, 2017). Moreover, blaxpc.z gene
expression was found to be 2.5-fold or 1.5-fold higher in resistant strains than in wild-type strains (Gaibani et al., 2020).
A study comparing 12 strains resistant to CAZ/AVI carrying wild-type blaxpc., with five strains susceptible to
CAZ/AVI, also carrying blaxpc.,, found that the number of copies of blaxpc., was 2.5-fold higher, and its expression
2.7-fold higher, in resistant than in susceptible strains (P. Zhang, Shi, et al., 2020). Evaluation of two CAZ/AVI-resistant
strains isolated from a patient who had not been treated with CAZ/AVI showed that both strains carried two copies of
the transposon Tn4401a encoding the KPC-3 enzyme, thereby increasing the number of blaxpc gene copies as well as
its expression in the bacteria (Coppi et al., 2020). Moreover, increased expression of blaxpc resulted in the incorporation
of structural changes in the outer membrane proteins, thereby reducing outer membrane protein pore size and perme-
ability, leading (ultimately) to reduced resistance to CAZ/AVI (Coppi et al., 2020). In addition, the increase in blagpc.3
expression was due to the transposition of the Tn4401 transposon carrying blaxpc.3 onto the plasmid plncX3, thereby
increasing the number of blaxpc 3 copies (Nelson et al., 2017). Taken together, these findings show that increases in the
number of copies and expression of blakxpc are associated with CAZ/AVI resistance, and are most likely caused by an
increase in the number of plasmids carrying blaxpc or an increase in the number of copies of blaxpc on the same
plasmid.
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3.1.2 | blactx-m and blagy mutations lead to CAZ/AVI resistance

CTX-M enzymes and SHV enzymes are not common in strains resistant to CAZ/AVI; however, they deserve attention. For
example, a K. pneumoniae strain carrying wild-type blacx.n.14 had a MIC value for CAZ/AVI of 1/4 mg/L, whereas a K.
pneumoniae strain showing both high expression of blagxa4s and a mutant blactxa14 A170a264 €0coding a CTX-M-14
enzyme with Pro170Ser and Thr264Ile substitutions, showed an increase in the MIC value from 1/4 to 32/4 mg/L. To fur-
ther confirm the role played by blacrxam.14 A1704264, its introduction into E. coli TOP 10 increased the MIC value for
CAZ/AVI by 16-fold, from 0.5/4 to 8/4 mg/L, and increased the MIC value for CAZ by 64-fold, from 4/4 to 256/4 mg/L,
suggesting that resistance of the mutant to CAZ/AVI is likely due to increased hydrolysis of CAZ. An Asp182Tyr substitu-
tion in the CTX-M-15 enzyme is also associated with decreased susceptibility to CAZ/AVI, with a 16-fold increase in its
MIC value for CAZ/AVI (Both et al., 2017; Dulyayangkul et al., 2020; Livermore et al., 2018). In addition, a variant of CTX-
M-15 harboring two amino acid substitutions, GIn169Leu and Gly130Ser, induced resistance to CAZ/AVI in an E. coli
strain susceptible to this combination (Compain et al., 2018). The Km value of WT CTX-M-15 was 10-fold higher than that
of the mutant enzyme, with the mechanism of resistance associated with increased affinity of the mutant enzyme for CAZ.
CTX-M-15 includes several conserved sequences, such as 166_170 Glu-Pro-Thr-Leu-Asn on the 19-residue Q-loop constitut-
ing the floor of active site. In addition, the conserved sequence 130_132 Ser-Asp-Asn is situated on a short loop in the all-
alpha domain, where it forms one side of the catalytic cavity (Compain et al., 2018). The structural features of CTX-M-15
suggest that the Pro170Ser substitution enhances the ability of the mutant enzyme to hydrolyze CAZ by altering the confor-
mation of the Q-loop, thereby enabling CAZ to more easily enter the active site of the mutant enzyme. In addition, the
Gly130Ser substitution may alter the structure of the catalytic cavity, enabling CAZ to more easily enter the catalytic cavity,
as well as increasing the affinity between the variant enzyme and CAZ, leading ultimately to CAZ/AVI resistance.

The Ser130Gly substitution in the SHV-1 enzyme was found to significantly reduce AVI-induced carbamylation of
p-lactamase, with a 1700-fold higher concentration of AVI required to inhibit the mutant than to inhibit wild-type
SHV-1 p-lactamase (Winkler, Papp-Wallace, Taracila, & Bonomo, 2015).

3.1.3 | ampC mutations cause CAZ/AVI resistance

Among the class C p-lactamases, AmpC enzyme variants are the most common. The wild-type AmpC enzyme has a
MIC value for CAZ/AVI of 4/4 mg/L, whereas deletion of amino acid residues from its Q-loop, such as the 245_249
Asp-Ala-Glu-Gly-Tyr and 238_244 Arg-Val-Gly-Pro-Gly-Pro-Leu deletions, increase the MIC values for CAZ/AVI from
4/4 mg/L to 256/4 and 64/4 mg/L, respectively (Lahiri et al., 2015).

The Asn346Tyr amino acid substitution in AmpC (joacae, DHA-1, and PDC-5 affects the ability of AVI to inhibit these
enzymes. In the wild-type enzyme, the carboxamide at Asn346 forms hydrogen bonds with avibactam sulfonate. The
amino acid substitution at this position results in loss of this interaction, which is likely reinforced by steric hindrance
due to the bulky Tyr side chain, resulting in a significant reduction in carbamoylation activity (Compain et al., 2020a,
2020b). In addition, the Gly183Asp amino acid substitution, caused by a nonsynonymous G548A nucleotide mutation in
blappc.s, results in resistance to CAZ/AVI, thereby increasing the MIC of P. aeruginosa against CAZ/AVI from 4/4 to
>32/4 mg/L (MacVane et al., 2017). Moreover, AmpC enzyme variants containing Gly176Arg, Gly176Asp, Argl68Pro,
Asn366Tyr, and Argl68His amino acid substitutions, generated in Enterobacter cloacae by stepwise induction, were resis-
tant to CAZ/AVI, with MIC values ranging from 0.5/4 mg/L in wild-type to 64/4, 16/4, 16/4, and 32/4 mg/L, respectively,
in the mutants. However, the mechanisms of resistance associated with these amino acid substitutions differed. Specifi-
cally, the Argl68Pro substitution reduced the affinity of the AmpC enzyme for AVI, and eliminated the synergy between
CAZ and AVI, whereas the Argl68His and Gly176Arg/Asp substitutions increased the affinity of the enzyme for CAZ
(Lahiri et al., 2014). Because the Asn346 residue is key to AVI binding, the Asn346Tyr substitution reduces the ability of
AVI binding, resulting in resistance to CAZ/AVI (Lahiri et al., 2014). Moreover, CAZ/AVI resistance in ESBL-producing
mutants is associated mostly with changes in the efflux pump, membrane permeability, or p-lactamase expression
(Livermore et al., 2018). Compared with CYM-2, CYM-172 has a 290_292 Lys-Val-Ala deletion and a Asn346lle substitu-
tion. Introduction of this mutant gene into E. coli DH5a through plasmid conjugation increases the MIC value for
CAZ/AVI to 16/4 or 32/4 mg/L. CAZ/AVI resistance may be due to a change in CMY structure caused by the deletion of
amino acids in the R2-loop of the enzyme, which may increase CAZ hydrolysis. Additionally, the Asn346lle substitution
results in steric hindrance between the Ile side chain and the sulfate group of AVI, thereby altering the binding affinity of
the latter for the enzyme and resulting in CAZ/AVI resistance (M. Xu, Zhao, et al., 2021).
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In addition to mutations and increased expression of the ampC gene, AVI induces AmpC enzyme activity. To test
the ability of AVI to induce AmpC enzyme activity, strains of E. cloacae, Citrobacter freundii, and P. aeruginosa were
incubated with 1, 4, and 32 mg/L AVI. At a concentration of 32 mg/L, AVI strongly induced expression of the AmpC
enzyme in two of five E. cloacae and in two of five P. aeruginosa strains, with the enzyme content being thousands-fold
higher than prior to induction. These findings suggest that the affinity of AmpC variants for AVI is reduced, but that
these enzymes can be induced by AVI, resulting in CAZ/AVI resistance (D. M. Livermore, Jamrozy, et al., 2017).

3.1.4 | blapxa mutations lead to CAZ/AVI resistance

The MICs of 265 OXA-48-producing strains (collected by the International Optimal Resistance Monitoring Network
between 2012 and 2015) for CAZ/AVI ranged from 0.03 to >128 mg/L, with 7.5% of these strains being resistant to
CAZ/AVI (K. M. Kazmierczak, Bradford, et al., 2018). The presence of both Pro68Ala and Tyr211Ser amino acid substi-
tutions in OXA-48-producing strains resulted in decreased susceptibility to CAZ/AVI. Enzyme kinetics showed that,
compared with wild-type OXA-48, the variant enzyme had >20-fold higher ability to hydrolyze CAZ, and a >5-fold
reduction in the inhibitory activity of AVI, suggesting that both are responsible for CAZ/AVI resistance. Molecular
modeling showed that the hydrogen bond network mediated by water molecules was altered in the variant enzyme. In
wild-type enzymes, Tyr2110H and Thr2340, and Pro2350 and Met2360, form hydrogen bonds with central water mol-
ecules. In the variant enzyme, however, Ser211 cannot participate in the same H-bond network because of its less-
space-filling properties than Tyr211. The loss of H-bonds could enhance enzyme flexibility, which resulted in increased
hydrolysis of CAZ. Moreover, the loss of aromatic stacking resulting from the Tyr211Ser amino acid substitution
reduced AVI inhibitory activity (Fréhlich et al., 2019). In addition, OXA-539, a variant of OXA-2 with a Asp149 repeat,
was found to be resistant to CAZ/AVI (Fraile-Ribot et al., 2017), as were several Acinetobacter baumannii strains carry-
ing class D B-lactamases, such as OXA-23, OXA-40, OXA-58, and OXA-66. The inability of AVI to penetrate into their
cell membranes prevents AVI from inhibiting these carbapenemases (Yoshizumi et al., 2015).

3.1.5 | CAZ/AVIresistance caused by other -lactamase variants

In October 2019, an outbreak of CAZ/AVI-resistant KPC-2-producing K. pneumoniae was reported in Athens, Greece.
Resistance of the strain was due to a variant of the Vietnamese extended-spectrum p-lactamase-1 (VEB-1). Compared
with VEB-1, which had a MIC value for CAZ/AVI of 0.25/4 mg/L, this variant, VEB-25, with a Lys234Arg amino acid
substitution, had a MIC value of 16/4 mg/L. Resistance to CAZ/AVI was due to interference by Arg of the ability of
AVI to bind to the active site of the enzyme, thereby attenuating the inhibitory effect of AVI (Galani et al., 2020).

3.2 | CAZ/AVlresistance associated with changes in bacterial membrane permeability

The bacterial outer membrane proteins OmpF and OmpC, and their homologous proteins, play a role in CAZ/AVI
resistance, although these proteins do not constitute the main pathway by which AVI passes through the cell walls of
Enterobacteriaceae (Pages et al., 2015).

A study investigating whether mutations in outer membrane proteins affect CAZ/AVI antibacterial activity found
that the IS 5 insertion in ompK36, or the 134_135 Gly-Asp insertion in OmpK36, when combined with ESBL such as
SHV, TEM, and CTX-M, are associated with decreased susceptibility of K. pneumoniae to CAZ/AVI (Shields
et al., 2015). The decreased susceptibility of KPC-producing K. pneumoniae to CAZ/AVI was not only related to high
expression of the blaxpc gene, but also to loss of OmpK35, as confirmed by SDS-PAGE. This indicates that the absence
of OmpK35 contributes to the barrier of CAZ to permeate cells (Pagés et al., 2015). The genetic mechanism underlying
OmpK35 deficiency varies by Sequence Type. For example, OmpK35 deficiency in ST11 strains may be due to early
frameshift mutations and premature termination codons, whereas decreased OmpK35 expression in ST15 strains is
associated with negative regulators of micF and ompR. MicF plays an important role in the transcriptional regulation of
OmpK35 expression, whereas ompR negatively regulates the expression of OmpK35, either directly or through micF
(Delihas & Forst, 2001).
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The increased clinical use of CAZ/AVI has given rise to CAZ/AVI-resistant strains of K. pneumoniae. The first
CAZ/AVI-resistant KPC-3-producing strain of K. pneumoniae, KP1244, was compared with the CAZ/AVI-susceptible
strain KP1245. Whole-gene sequencing showed that both KP1244 and KP1245 have an Argl91Leu substitution in
OmpK36, with KP1244 also having a Thr333Asn substitution in OmpK36. A frameshift mutation in ompK35 results in
a truncated, 42-amino acids OmpK35, resulting in a nonfunctional porin (Humphries & Hemarajata, 2017). Transfer of
wild-type ompK36 to KP1244 resulted in a 2-fold decrease in its MIC value for CAZ/AVI, from 32/4 to 16/4 mg/L,
whereas transfer of wild-type ompK36 to KP1245 did not alter the MIC value. These findings indicate that although
Argl91Leu does not affect CAZ/AVI MIC values, the Thr333Asn substitution alters susceptibility to CAZ/AVI. By con-
trast, transfer of wild-type ompK35 to KP1244 and KP1245 reduces their MIC values for CAZ/AVI by 8-fold, to 4/4 and
0.5 mg/L, respectively. A strain of Klebsiella oxytoca with a CAZ/AVI MIC value of 16/4 mg/L lacks the carbapenemase
gene, whereas its OmpK36 has several amino acid substitutions (Ala192Pro and Asn229Ser) and deletions (Phe268 and
272_277GlyAspSerAspSerlle deletions; Aitken et al.,, 2016). Screening of two CAZ/AVI-resistant strains showed
decreased ompK36 gene expression and a premature stop codon in ompK35, resulting in a truncated porin (Castanheira
et al., 2017). An alteration in the L3 region of OmpK36 in K. pneumoniae results in decreased susceptibility to CAZ/AVI
(Castanheira et al., 2020), indicating that impaired cell membrane permeability is associated with elevated MIC values
to CAZ/AVLI. Resistance of A. baumannii strains to CAZ/AVI is due mainly to the failure of AVI to penetrate the outer
membrane (Mushtaq et al., 2010). In addition to OmpC, OmpF, and their homologous proteins, the introduction of a
wild-type Lamb into resistant strains carrying a variant Lamb with Arg33His and Arg374Leu substitutions results in a
2-fold reduction in the MIC values of these strains for CAZ/AVI, indicating that variant Lamb contributes to resistance
to CAZ/AVI (Guo et al., 2021).

3.3 | CAZ/AVIresistance mechanisms associated with efflux pumps

Overexpression of efflux pumps can reduce intracellular concentration of antibiotics and strain susceptibility to antibi-
otics (Nikaido & Pages, 2012). Addition of the efflux pump inhibitor phenylalanine-arginine f-napthylamide (PapN)
and CAZ/AVI revealed that PaN did not significantly affect the antibacterial activity of CAZ/AVI, showing that
CAZ/AVI enters cells primarily through a passive barrier, with little contribution from active efflux AcrAB-TolC (Pagés
et al., 2015). In contrast to Enterobacteriaceae, the presence of PAPN or the efflux pump inhibitor carbonyl cyanide m-
chlorophenylhydrazone (CCCP) reduces the MIC values of some strains of P. aeruginosa for CAV/AZI, from >32/4 to
<0.06/4 mg/L (M. L. Winkler, Papp-Wallace, Hujer, et al., 2015).

Overexpression of the mexA, mexB, and oprM genes in CAZ/AVI-resistant strains of P. aeruginosa isolated from
patients with cystic fibrosis altered their MIC values to CAV/AZI from 0.5/4 to 2/4 mg/L. Further analysis showed
that the efflux rate of the efflux pump was associated with the MIC value. For example, the MIC values for CAV/AVI
of isolates with very slow and faster efflux rates of the efflux pump were 8/4 and 64/4 mg/L, respectively. The mecha-
nism underlying the resistance of these bacteria to CAV/AVI was is due mainly to increased activity of the MexAB-
OprM efflux system, resulting from overexpression of mexA and overproduction of AmpC (Chalhoub et al., 2018).
These findings suggest that efflux pump-related mutations play a non-negligible role in the mechanism of CAZ/AVI
resistance.

3.4 | CAZ/AVIresistance mechanisms caused by variants of PBPs

The Leul69Pro amino acid substitution in PBP3 results in a significant increase in the MIC value for CAZ/AVI. Intro-
duction of the wild-type fisl gene into the resistant strain reduces the MIC value for CAZ/AVI from 128/4 to 4/4 mg/L
(Guo et al., 2021). Alterations in the PBP-encoding gene ftsI are associated with CAZ/AVI resistance (Castanheira
et al., 2019). A CAZ/AVI MIC of 8/4 pg/ml was reported against one E. coli isolate with an unusual TIPY insertion fol-
lowing Tyr344 in penicillin-binding protein 3 (PBP 3) as the result of gene duplication, which could affect the entry of
CAZ (Zhang et al., 2017). In addition, some studies showed that a strain of K. pneumoniae was continuously cultured in
broth medium with CAZ/AVI concentration of 1/4 mg/L under antibiotic selective pressure. The results showed that
amino acid substitution of Asp354Ala of mdrA gene encoding PBP2 eventually increased MIC of CAZ/AVI from 0.25/4
to 8/4 mg/L (Karlowsky et al., 2021; Livermore et al., 2018).
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4 | METHODS OF DETECTING CAZ/AVI RESISTANCE

Rapid detection of resistance to CAZ/AVI can be beneficial to the early implementation of appropriate thera-
peutic interventions. The rapid colorimetric method-Andrade screening antimicrobial test (ASAT), involving a
3 h incubation with Andrade solution, can rapidly detect bacterial resistance to CAZ/AVI, thereby enabling
timely treatment. The ASAT reagent contains NaCl, peptone, and Andrade indicator, with a pH adjusted to
7.4 + 0.2. Each reaction contains 175 pl of ASAT reagent and a certain concentration of CAZ/AVI, to which is
added 25 pl of bacterial suspension, followed by incubation at 37°C for 3 h. Gram-negative bacteria are
detected by fermentation of glucose medium. The presence of a purple-red color indicates a CAZ/AVI-resistant
strain, whereas a light pink color indicates a CAZ/AVI-susceptible strain. A selective medium called Super-
CAZ/AVI has also been developed to screen for CAZ/AVI-resistant Gram-negative bacteria. This assay was
based on findings showing that the resistance breakpoints of Enterobacteriaceae and P. aeruginosa to CAZ/AVI
are 8/4 mg/L, with the medium optimized to a final CAZ/AVI concentration of 6/4 mg/L. A diluted suspension
of bacteria is layered onto culture medium containing CAZ/AVI, and bacterial growth is evaluated after 18 h.
SuperCAZ/AVI medium can be used to screen patients for the presence of potentially CAZ/AVI-resistant
strains, allowing the implementation of targeted measures to quickly limit the transmission of infection (Sadek
et al., 2020). This culture medium can also be used in epidemiological investigations to assess the prevalence
of CAZ/AVI-resistant Gram-negative bacteria in populations. The development of new methods of detecting
CAZ/AVI resistance may facilitate more rapid detection and treatment of resistant strains. These methods to
detect CAZ/AVI resistance are with excellent values of sensitivity and specificity. And these screening methods
provide the opportunity to detect CAZ/AVI-resistant isolates regardless of their resistance mechanisms. They
are reliable and economical. However, the specific resistance mechanisms to CAZ/AVI are unclear, so it can-
not guide medication concretely.

5 | CONCLUSION

CAZ/AVI, a combination of p-lactam and a novel -lactamase inhibitor (AVI), has been listed since 2015, which is an
important drug used to treat complicated urinary tract infections and complicated intra-abdominal infections caused by
carbapenem-resistant Gram-negative bacterial infections. Increases in its clinical use have led to the development of
bacterial resistance. According to the global resistance surveillance reports in recent years, the overall resistance rate of
Gram-negative bacteria to CAZ/AVI was low. The resistance rate of P. aeruginosa to CAZ/AVI was significantly higher
than that of Enterobacteriaceae. In addition, the resistance rate of CAZ/AVI in carbapenem-resistant Gram-negative
bacteria was significantly increased. And the resistance rate of CAZ/AVI was significantly different among different
continents. By summarizing the mechanisms of resistance to CAZ/AVI, we find that p-lactamase variants, especially
those associated with blaxpc gene mutations, are the most widely reported. Other possible mechanisms associated with
CAZ/AVI resistance include overexpression of efflux pumps, reduced expression of outer membrane proteins, and gene
mutations leading to loss of outer membrane proteins. Finally, we summarized the detection methods of CAZ/AVI
resistance.

These studies on the resistance mechanisms to CAZ/AVI will help guide clinical drug use. Currently, Combination
drug therapy is mostly used to prevent and treat the emergence of resistant strains to CAZ/AVI in clinical practice, but
the treatment lacks specificity. At present, broad-spectrum metal p-lactamase inhibitors have been developed for the
strains which are natural resistance to CAZ/AVI. As for the treatment of CAZ/AVI non-naturally resistant strains,
research and development of specific medicine may be the trend of future development. Additionally, the development
of new methods to detect CAZ/AVI resistance may be beneficial for the treatment and control of drug-resistant bacte-
rial infections.
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