Skip to main content
. 2021 Jun 10;68(6):973–983. doi: 10.1080/20473869.2021.1933730

Table 3.

Comparison of accuracy rate of various classification models with and without RFE in case 2.

Missing field Classifier Without feature selection Feature selection method
DT SVM RF LR
Age ANN 0.7303 0.9942 0.9914 0.7246 0.9714
RF 0.9572 1 1 0.9957 1
SVM 0.8159 1 1 1 1
Gender ANN 0.7303 0.9942 0.9643 0.8288 0.7303
RF 0.9572 1 0.9986 0.8131 0.7475
SVM 0.9372 1 1 0.7303 0.7303
Jaundice ANN 0.9514 0.9942 0.9671 0.8901 0.98
RF 0.9572 1 0.9971 0.9957 1
SVM 0.9514 1 1 1 1
Autism ANN 0.9514 0.9942 0.99 0.7303 0.9871
RF 0.9572 1 1 0.8146 1
SVM 0.9514 1 1 0.7303 1
used_app_before ANN 0.7303 0.9928 0.99 0.9058 0.7303
RF 0.9572 1 1 0.9957 0.7475
SVM 0.9514 1 1 1 0.7303
Type 1 ANN 0.8159 0.9928 0.9928 0.7303 0.7303
RF 0.9543 1 1 0.8245 0.7475
SVM 0.8159 1 1 0.7303 0.7303
Type 2 ANN 0.8188 0.9942 0.7303 0.7303 0.9843
RF 0.9543 1 0.7532 0.8188 1
SVM 0.8188 1 0.7303 0.7303 1
Type 3 ANN 0.7646 0.9942 0.9671 0.7631 0.7303
RF 0.9572 1 0.9986 0.9957 0.7475
SVM 0.7646 1 1 1 0.7303

Abbreviations: DT, decision tree; SVM, support vector machine; RF, random forest; LR, logistic regression; ANN, artificial neural network; RFE, recursive feature elimination.