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A B S T R A C T

Mechanical ventilation is an essential tool in the management of Acute Respiratory Distress Syndrome (ARDS),
but it exposes patients to the risk of ventilator-induced lung injury (VILI). The human lung–ventilator system
(LVS) involves the interaction of complex anatomy with a mechanical apparatus, which limits the ability
of process-based models to provide individualized clinical support. This work proposes a hypothesis-driven
strategy for LVS modeling in which robust personalization is achieved using a pre-defined parameter basis in
a non-physiological model. Model inversion, here via windowed data assimilation, forges observed waveforms
into interpretable parameter values that characterize the data rather than quantifying physiological processes.
Accurate, model-based inference on human–ventilator data indicates model flexibility and utility over a
variety of breath types, including those from dyssynchronous LVSs. Estimated parameters generate static
characterizations of the data that are 50%–70% more accurate than breath-wise single-compartment model
estimates. They also retain sufficient information to distinguish between the types of breath they represent.
However, the fidelity and interpretability of model characterizations are tied to parameter definitions and
model resolution. These additional factors must be considered in conjunction with the objectives of specific
applications, such as identifying and tracking the development of human VILI.
1. Introduction

Hospitalized patients often undergo assisted ventilation, either due
to the inability to breathe on their own or because care providers
determine they should not do so. In such cases, respiration is supported
by a programmable mechanical ventilator that actively supplies air to
the lungs. Proper ventilator management is a particular concern in
patients presenting acute respiratory distress syndrome (ARDS), a life-
threatening condition associated with mortality in 3%–4% of intensive
care unit (ICU) admissions [1,2] and nearly 60% of ventilated COVID-
19 patients under intensive care [3]. Mismatches in timing, breath-
trigger threshold, or pressure/volume budget evince dyssynchronous
interaction between patient and machine, which may contribute to
problems such as edema and hypoxia [4]. Further, ventilator dyssyn-
chrony may cause parenchymal damage termed ventilator-induced lung
injury (VILI) and may exacerbate the effects of ARDS. Clinical man-
agement requires carefully specified thresholds and target quantities to
provide necessary and sufficient respiration [5] while avoiding VILI,
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a major risk for assisted patients [6]. The prevalence of these cases
strongly motivates additional lung-protective considerations [7–10] to
improve ventilated patient outcome.

Respiratory management would benefit from an improved under-
standing of the lung in the context of the clinical environment where
VILI occurs, including interaction with the ventilator. Many investiga-
tions use controlled ventilation to probe lung properties ([11–15] as
well as [16] and references therein). Compartment-based models, de-
scribed in the following subsection, estimate the relationship between
observed pressure (𝑝) and volume (𝑉 ) in terms of lung compliance and
resistance. However, the signals primarily originate in the ventilator
and are observed outside the patient to reflect the bulk effect of the
lung system. Consequently, existing models try to infer lung-specific
parameters governing lung dynamics from data that aggregate effects
of respiratory, systemic, and healthcare processes.

A lung–ventilator system (LVS) comprises the interaction of the
pulmonary system and breathing support. These produce a variety of
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Fig. 1. Linear single-compartment state resolution: pressure observation (𝑝data) vs. optimal single compartment estimation (𝑝est) for human breaths of patient #1 with mild ventilator
dyssynchrony [19]. Information about lung damage and disease may manifest itself in the shapes of waveform features not resolvable by the assumed 𝑝𝑉 relationship.
dynamics observable in pressure and volume waveforms that are of
primary focus in the study of VILI and ventilator dyssynchrony [17–19].
Simulating these behaviors in process-oriented models requires a high
degree of either complexity or parameterization to account for dynamic
heterogeneity in patients and respiratory therapies. Methods for identi-
fying, classifying, and preventing dyssynchrony in timing and delivery
of breath support are nascent applications in clinical informatics.

This work focuses on a hybrid model-based method for transforming
LVS data into discrete parametric vectors that retain features of interest.
The approach is intended for informatics applications that require
description of the LVS rather than material lung properties, where
further analysis demands the context of health care process information
such as ventilator settings. Such a tool would benefit the scientific
inquiry of VILI by facilitating data representation in algorithms capable
of detangling the effects of ventilator settings from changes in the lung
response. The following subsection revisits the existing method of LVS
estimation to motivate the proposed approach which is oriented toward
operational LVS representation and clinical translation.

1.1. The dynamic single-compartment model: framework and limitations

The single-compartment model [20] describes a stationary 𝑝𝑉 rela-
tionship in the respiratory tract by the equation

0 = 𝑅 ⋅
𝑑𝑉
𝑑𝑡

+ 𝐸 ⋅ 𝑉 (𝑡) − 𝑝(𝑡), (1)

with parameters (possibly defined as nonlinear functions) for resistance
(𝑅) and elastance (𝐸). In practice, 𝑝 is the pressure with respect to a
zero-volume reference; the system requires a baseline pressure parame-
ter (viz. positive end-expiratory pressure, or PEEP) for the relationship
to hold for arbitrary initial times.

This model is a fast and efficient means of estimating physiolog-
ical lung properties from the 𝑝𝑉 relationship. However, it requires
higher-fidelity process resolution to reproduce features of clinical in-
terest even for the simplest cases [21]. Fig. 1 illustrates the failure of
the linear model to capture waveform features such as the pressure
plateau shape related to patient effort. Nonlinear extensions broaden
resolution by adopting time- or state-dependent sub-models of tissue
rheology to model specific components of lung injury from mechanis-
tic understanding [16,21–26], while others increase complexity using
multi-compartment frameworks [27–30]. These enhancement strategies
impose additional limitations, and no identified literature reports their
application to mechanically ventilated human data.

Limits of the compartmental framework create obstacles to per-
sonalization and clinical translation. The increased parametrization
required to resolve specific dynamics may not capture signatures of
ventilator dyssynchrony, such as those discussed in [31–33], in a way
easy to estimate from data. Nonlinear compartmental models, such
as those with state-dependent parametric effects, are more difficult to
invert due to strongly correlated state and parameter effects. Inversion
of multi-compartment models may not uniquely identify and ascribe
parameter values without additional LVS knowledge even when com-
partments have unique parametric timescales. Likewise, time-varying
formulations [24,34,35] may fully resolve dynamic elastance without
the discrete structure needed to convey this information compactly.
2

Caregivers versed in waveform descriptors and ventilation annotation
schemes [36] may also have difficulty adopting complex parametric de-
scriptions of lung deformation properties. Such ontological differences
further limit the scope and effectiveness of translating patient-specific
parameters into clinical and translational informatics (e.g., machine
learning) domains for desirable applications such as LVS phenotyping
and classifying dyssynchronous behaviors [19].

1.2. Purpose & outline

Understanding the severity and incidence of ventilator dyssyn-
chrony and their relation to VILI, ARDS, and clinical outcomes re-
quires quantifying the effects of the healthcare process. These effects
must be inferred from data generated by non-stationary heterogeneous
patient-treatment systems, a clinical informatics problem that may be
investigated by learning algorithms. Developments in this context are
precluded by the lack of compact representation of LVS waveform
data, as current mechanistic models are too inflexible to produce
them reliably. This work presents an inferential model-based approach
that characterizes LVS waveform data into interpretable parametric
descriptors where expert knowledge or other a priori definitions replace
theory-driven mechanistic processes in the dynamical system. Discov-
ery and hypothesis generation from LVS data regarding dyssynchrony,
VILI, and ARDS may then be pursued, leveraging these parametric
representations in correlational and distance-based informatics pro-
cesses. The central hypothesis in this work is that parameter-expressed
waveforms retain interpretable, distinguishing characteristics of data
in digitized form. Such properties are essential to descriptor utility for
categorizing waveform changes and deconvolving ventilator effects on
the patient.

The remainder of this work is outlined as follows. Section 2 pro-
poses a model approach to parametric estimation of LVS waveform
data, outlines the employed inference scheme, and describes the data
source. Section 3 presents experimental results of parameter estima-
tion on human 𝑝𝑉 collected from ventilated patients diagnosed with
ARDS. Section 4 discusses the gains and limitations of the proposed
methodology in application to the clinical estimation environment.

2. Method

This section presents an LVS estimation approach comprising a sim-
ple linear dynamical system (Section 2.1) combined with a windowed
ensemble-based estimation scheme (Section 2.2). The dynamical model
generates waveforms from a simple, parametrically-defined forcing
function that can be data-optimized to yield a parametric form of the
ingested data. A windowed ensemble Kalman-type smoothing method
is employed here to assimilate patient data and systematize 𝑝𝑉 data
into a small set of patient-specific descriptors.

2.1. The data representation model

The presented model determines a parametric representation of
LVS waveforms using a method conceptually recent related to work
recent [37]. Rather than use physiological relationships to model data
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generation, the proposed method simulates parametric waveforms, in-
cluding dyssynchronous breaths, within an inferential scheme. The
approach circumvents direct resolution of the lung and ventilator which
may require many parameters to model robustly, involve bulk pro-
cess parametrizations at some scale, and must ultimately sacrifice
mechanistic fidelity for functionality.

The proposed LVS waveform model simulates a signal 𝑥(𝑡) (e.g.,
ressure or volume) according to the equation:
𝑑𝑥
𝑑𝑡

+ 𝑔 ⋅ (𝑥(𝑡) − 𝑥0) = 𝜙(𝑡, 𝜔) (2)

where 𝑔 > 0 is a smoothing parameter and 𝜙 is a time-dependent
function of parameter vector 𝜔. The value 𝑥0 corresponds to a reference
baseline, which is ventilator PEEP in LVS pressure applications. The
user-defined periodic forcing function 𝜙 drives the system dynamics in
time. The equation transforms parameters defining the function 𝜙 into
the continuous state output 𝑥. The forcing function and output states
have equivalent parameter dependencies within this linear differential
equation, with the input parameters generating localized features of the
solution. In the following applications, the respiratory cycle length 𝜃
and baseline value 𝑥0 are fixed values but may be estimated in other
applications targeting patient-triggered ventilation.

The relationship of parameters to the solution is specified by forc-
ing function 𝜙, which may be customized per application. One may
target specific waveform features or particular nuances of interest for
a given application, leveraging domain-expert knowledge to maximize
the relevance of parametric representation.

For simplicity, presented applications use a step function 𝜙𝑀 ob-
tained by discretizing the breath cycle into 𝑀 equal epochs:

𝜙𝑀 (𝑡; 𝑎, 𝜃) =
𝑀
∑

𝑖=1
𝑎𝑖

[[

(𝑖 − 1) ≤ �̂�
𝛥𝑡

< 𝑖
]]

(3)

where 𝜃 is the breath cycle duration, �̂� ∶= 𝑡 (mod 𝜃) is local breath
ime, 𝑖 = 1..𝑀 indexes the epochs with common length 𝛥𝑡 ∶= 𝑀∕𝜃,
is a vector of amplitudes, and [[⋅]] is the logical operator. The epochs-
er-breath number 𝑀 defines the model resolution, and the simplified
odel is identified by the function 𝜙𝑀 in this discussion.

In the case where Eqn(3) defines the model, parameter interpretabil-
ty is inherited through the forcing function, which localizes solution
ependence on each parameter. Parameter values are therefore directly
ssociated with the waveform amplitude and derivative over the time
pochs that define them. In the LVS case, the first parameter is associ-
ted with initial inspiration and the last with the end of a breath; the
ther parameters have a resolution-dependent association with ordered
pochs elapsing during the breath sequence.

For cases in which Eqn(3) has unequal epochs, estimation is im-
roved by rescaling amplitudes to make parameter magnitudes inde-
endent of epoch lengths: 𝑎𝑖 ← 𝑎𝑖𝑔−1

(

1 − exp(−𝑔𝛥𝑡𝑖)
)

.

.2. Parameter inference via data assimilation

Personalizing the model proceeds by optimizing parameters so that
imulated output fits the target data. Tracking the LVS evolution of a
atient under mechanical ventilation requires estimating tens of thou-
ands of breaths per day. The need to estimate many short features over
his much longer scale constrains inference options based on speed,
obustness, and comparability of estimates; such considerations dis-
ourage the use of Markov Chain Monte Carlo methods and windowed
pectral decomposition.

In this work, parameter inference is accomplished by a windowed
nsemble Kalman smoother (EnKS) [38,39]. It approximates a Bayesian
pdate scheme by minimizing the difference between a model forecast
rajectory and associated external data 𝑦𝑜𝑏𝑠𝛺(𝑘) (𝑘 = 1..𝐿) using an

ensemble forecast over times {𝑡 , ..𝑡 , ..𝑡 }.
3

0 𝑘 𝐿
Identified parameters (viz. 𝑎, of 𝜙𝑀 ) are minimizers of the cost
unction

(𝑥) = 1
2𝛾

‖

‖

‖

𝐏−1∕2
0 (𝑥 − 𝑥0)

‖

‖

‖

2
+ 1

2
∑

𝑘∈𝛺

‖

‖

‖

𝐑−1∕2(𝑦𝑜𝑏𝑠𝑘 − 𝑦𝑓𝑘 )
‖

‖

‖

2
(4)

where 𝛾 is a covariance inflation factor to control the weight of data;
initial data and parameters for the ensemble are characterized by
mean 𝑥0 and covariance 𝐏1∕2

0 𝐏𝑇 ∕2
0 ; and 𝐑1∕2 is the observation error

covariance matrix. Symbols 𝑦𝑓𝑘 are simulated observations generated
by 𝜙𝑀 using initial state 𝑥 and parameters 𝑎, and 𝛺 is a sub-indexing
of time to select data for assimilation. The ensemble of parameter
variations about the optimal mean are retained to re-initialize model
forecast at time 𝑡𝑆 (0 < 𝑆 ≤ 𝐿) for the next forecast-correction iteration.
Fig. 2 illustrates the inference scheme, with additional details in SI
Appendix A.

2.3. Experiments and data

Synthetic data inference experiments (SI Appendix C) verify the
proposed method in cases with known, non-stationary parameters. The
following section presents experiments performed on LVS data collected
from mechanically ventilated patients with the approval of University
of Colorado Multiple Institutional Review Board (COMIRB, protocol
#18-1433). These prospective data comprise 50 patients admitted to
University of Colorado critical care units during 2019–2021 with ARDS
diagnoses [40] or ARDS risk factors such as COVID-19, sepsis, aspi-
ration, and pneumonia. The cohort definition includes patients aged
18–89 years excluding pregnant women; the imprisoned; and those
with facial fracture, esophageal fistula, recent (3 months) gastric or
esophageal surgery, or recent variceal bleeding or banding. Hamilton
G5 ventilator data were collected at 31.25 Hz using Hamilton DataLog-
ger v5.0 software (www.hamilton-medical.com) beginning within 24 h
of intubation or esophageal balloon placement for a maximum of 48 h.
Additional details regarding patient demographics, ARDS etiology, and
use of neuromuscular blockade (NMB) were gathered from electronic
health records.

Numerical experiments use eleven 40-breath sequences (70–170 s)
containing identifiable and consistent breath types without artifacts
(e.g., discontinuities) caused by ventilator self-recalibration. Table 1
provides details for six source patients whose data are used in experi-
ments. Sequences from the patients #1 and #2 are composed of either
normal breaths or dyssynchronous breaths identified as flow-limited
(FL), early ventilator-termination (eVT), or early reverse-trigger (eRT)
types [32,41]. Five additional sequences (SI Appendix D) from patients
#3–#6 feature other types of LVS behavior. The eleven total sequences
include six types of LVS dyssynchrony types; see [19] regarding the me-
chanics and clinical implications of these behaviors. The experiments
do not exhaust all possible LVS dynamics, but they are representative
of the various known dyssynchrony types that occur during a single
ventilator cycle.

3. Results: Inferential data parametrization

This section explores experiments inferring parameter representa-
tions of data using the proposed inferential modeling method presented
above. Data are estimated by optimizing model parameters, and these
estimates are statistically summarized over each 40-breath sequence.
Characterization of the data, a static waveform representative, is gen-
erated by applying the forward model to the summary mean (or another
estimator). Synthetic data experiments (SI Appendix C) verify that
model inversion quickly and accurately tracks parameter dynamics
as needed for application to LVS data. The ensemble approximation
also captures the parameter covariance structure (viz. the upstream
dependence of 𝑎𝑖 on 𝑎𝑖−1) that may otherwise confound inversion.

The following sections estimate human LVS data in normal and
more pathological cases, including parametric representation of
pressure–volume loops. Supplemental Table B.4 contains experiment
level hyper-parameters.

http://www.hamilton-medical.com
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Fig. 2. The schematic windowed assimilation process. The conceptual relationship between the true state, observational data, modeled data, and model states is shown. The model
, red) performs the forecast process over the window (blue), simulating equivalents of data as well as the error covariance structure. The optimal solution at any time 𝑡𝑆 within
he window derives from error analysis of data-forecast mismatch. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
his article.)
Table 1
Description of patients whose LVS data are used in experiments. Age given in years. PF = PaO2/FiO2 ratio at admission, BMI
= Body Mass Index in kg/m2, NMB = Neuromuscular Blockade usage, AA = African-American.

Patient Age Sex Race PF ratio BMI NMB ARDS risk

# 1a 61 F White 81 45.5 F Sepsis
# 2 43 F White 80 72.1 F Pneumonia
# 3 62 M Black/AA 136 33.5 F COVID-19
# 4a 41 F White 365 17.8 F Other
# 5 70 M White 271 21.3 F Sepsis
# 6 40 M Whiteb 155 36.5 T COVID

aPatient death during encounter.
bHispanic or Latino ethnicity.
Table 2
Breath-averaged RMS differences of continuous pressure estimation, with the lowest
value for each sequence in bold.

Model: 𝜙12 𝜙18 𝜙24 𝜙30

Pressure (cm H2O)
p#1 Normal 1 0.24 0.24 0.24 0.24
p#1 Normal 2 0.25 0.25 0.25 0.25
p#2 FL 0.10 0.10 0.10 0.10
p#2 eVT 0.13 0.14 0.14 0.14
p#2 Normal 0.29 0.29 0.29 0.29
p#2 eRT 0.34 0.34 0.34 0.34

Volume (ml)
p#1 Normal 1 4.39 4.40 4.41 4.42
p#1 Normal 2 4.09 4.11 4.13 4.06
p#2 FL 4.46 4.46 4.49 4.59
p#2 eVT 4.25 4.24 4.24 4.48
p#2 Normal 4.01 4.00 4.00 3.92
p#2 eRT 3.14 3.18 3.24 3.33

3.1. Normal breath estimates

In this and the following section, experiments explore 40-breath
sequences of clinical LVS data from patients with ARDS. These 80–100 s
intervals illustrate the fidelity of estimates for breaths of similar type,
although practical applications may require shorter intervals for less
regular data.

Table 2 presents breath-level mean errors for the pressure and
volume estimated by parameters at various model resolutions for the
cases presented. Experiments focus on pressure waveform estimation
because the ventilator controls the volume delivery throughout each
experiment. PEEP values (𝑥0) for pressure data are estimated as the
mean minimum pressure across all breaths, while volume applications
assume a zero-valued baseline. Period regularization within each win-
dow maintains a consistent parameter definition throughout the breath
sequence and, in practice, may be applied to shorter sub-sequences
when the breath cycle is irregular.

Fig. 3 shows the inference process using 12 epochs per breath
4

(𝜙12) for sequences of normal, mildly dissimilar breath waveforms
in patient#1 recorded 8.4 days apart. Individual breaths are well-
resolved in continuous time with small relative errors that occur when
the epoch-based parameter definitions span breath features. Inferred
parameters give a low-dimensional representation of the data as both
parameter vectors and state characterizations, together with quantified
parameter uncertainties. The accuracy of these model summaries is
affected by the parameter definitions, with characterized waveform
including artifactual signatures of the parametric resolution.

Parameter estimate distributions of the two sequences of normal
breaths distinct (𝑝 < 0.05, approximated via [42]), providing a direct
way to categorize and distinguish breath sequence types. Differences
in parameter mean likewise coarsely resemble differences in the breath
shape. For example, the inspiration parameters of the first sequence
during the first half of the breath show a monotone decrease whereas
the second sequence’s parameters rise later into the breath, just as in
the waveform pressure shapes (Fig. 3E).

3.2. More complex varieties of human breaths

Patient#2 data comprise four sequences of breath types identified
as flow-limited (FL), early ventilator-termination (eVT), normal, and
early reverse-trigger (eRT). These sequences occur 4, 3, and 14 h
apart, respectively, with roughly equal breath lengths for direct breath
comparison. Parameter distributions for these sequences are again dis-
tinct (𝑝 < 0.05, pairwise), formalizing the illustrated differences in
characterization and mean summaries (Fig. 4).

The characterizations and parameter average vectors encode the key
differences observed in the data and may be interpreted similarly. For
example, inspiration onset pressures (𝑎1) in normal and eRT sequences
(third and fourth rows) are greater than those of FL and eVT sequences
(first and second rows). Similarly, the eRT sequence requires a strong
negative parameter (𝑎3) to complete its rapid exhalation. The eVT
sequence pressure plateau notch is identified with a decrease in 𝑎3
relative to its neighbors. Expiratory pressure rises observed in eVT and
eRT breaths are likewise captured as positive transient values of breath
parameter 𝑎7.

Estimated 𝑝𝑉 loop structures for patient#2 are presented in Fig. 5)

at various parameter resolutions defined by 𝑀 . Among the model
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Fig. 3. Characterizing two patient#1 pressure data sequences with 12 parameters 𝜙12. Data (A and C, dashed black) are well-estimated by inference model estimates (blue) in
continuous time on overlapping 1.2 s analysis windows. Tabulating data (B and D, black) and mean parameter estimates (blue, with inter-quartile range shown) in cyclic breath
time compares the characterization (red) of each sequence with the data. Mean parameter vectors of the two sequences, which have significant distributional differences, are
depicted over a normalized breath duration (E). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
resolutions tested, the 24-parameter model (𝜙24) provides the best
overall 𝑝𝑉 fit as measured by RMSE over all four sequences ( Table 2).
However, 𝜙30-based characterization more accurately represents eVT
(B) and normal (C) sequences. The static eRT trace (D) has inaccu-
rate plateau pressure and expiratory volume at this same resolution.
Notably, optimal resolutions differ for pressure and volume variables.
Further, the 12-parameter model suffices to distinguish the eVT pres-
sure sequence of patient#2 (Fig. 4, D) from the normal breath type (F).
Meanwhile, the corresponding 𝑝𝑉 estimate at that resolution (Fig. 5, B
in purple) misrepresents the net compliance, as approximated in terms
of the 𝑝𝑉 slope over inspiration. It is likely advantageous to represent
pressure and volume at different resolutions, as these waveforms differ
in smoothness and timing of key features. This is easily pursued as
representation of 𝑝𝑉 data does not require joint 𝑝𝑉 estimation.

3.3. Characterization fidelity

Waveform characterizations derived from parametric descriptors
are more casually interpretable than parameters, and it is important
to evaluate their fidelity. Fig. 6 compares stationary, low-resolution
characterizations (𝑀 = 12) to breath-by-breath estimates of the linear
compartment model for the pressure sequences previously discussed.
The differences are more pronounced in dyssynchronous breaths se-
quences (C,D,F) than in normal breaths (A,B,F), with higher accuracy
achieved by the characterization. Tables 3 and D.5 presents the errors
of these estimates to the continuous-time data at several resolutions.

In normal pressure sequences, the low-dimensional characterization
accuracy is comparable to the compartment model and estimates are
qualitatively similar (Fig. 6). The relative difference in normal breath
errors between the models is typically less than 20%, with several
5

breaths contributing strongly to the compartment error. In contrast,
compartmental pressure errors that are 60%–70% larger than those of
the 𝜙12-characterization for breaths with dyssynchrony (panels C,D,F).
Sequences of several other patients are estimated SI Appendix D with
similar implications.

3.4. Summary

Numerical experiments results indicate successful parametric repre-
sentations of LVS data using informed-model data assimilation. Several
thousand time-dependent 𝑝𝑉 data points of each sequence are reduced
to static (2𝑀 + 2)-parameter descriptions (including PEEP and period)
and may be estimated with higher accuracy by either increasing the
number of parameters 𝑀 or shortening summary window lengths. In all
cases, inferred parameters accurately represent breath data in continu-
ous time with localized errors related to mis-timings between waveform
features and parameter definitions. The patient breaths are distinguish-
able from the distribution of estimated parameters, even for the generic
forcing function used here. These parameters are also interpretable
through a priori definition of the forcing function, either as parameter
descriptor vectors or as the waveforms characterizations generated
by the forward model. Together, these points indicate that parameter
distributions provide a meaningful way to estimate similarity of breaths
or breath sequences.

The accuracy of parameter representation and fidelity of charac-
terization are influenced by several factors. Parameter uncertainties
are greatest where parameter epochs mis-align with waveform features
or when waveform feature timings (including the cycle length) vary.
The resolution-dependent relationship between discrete epochs and
continuous data features influences uncertainty; these factors should
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Fig. 4. Characterizing four patient #2 pressure data sequences with 𝜙12, as in Fig. 3. Differences in the data waveforms have direct, interpretable relationships to differences
between parameter descriptors, which could be used in resolution-dependent LVS breath classification. Summary parameter vectors (I.) are the means of statistically different and
distinguishable distributions.
Table 3
Total estimate for various resolution characterizations and the single-compartment model (Eqn(1)), with the lowest
value in each row in bold. The large compartment model error for the second sequence of patient#2 arises from a
small, persistent difference in phase.

MODEL 𝜙12 𝜙18 𝜙24 𝜙30 Eqn(1)

Pressure (cm H2O)
p#1 Normal 1 1.25 0.87 0.80 0.78 1.59
p#1 Normal 2 0.98 0.84 0.89 0.78 1.91
p#2 FL 0.87 0.86 0.89 0.74 3.17
p#2 eVT 0.93 0.82 0.74 0.79 2.23
p#2 Normal 1.13 1.09 0.91 0.83 2.90
p#2 eRT 1.97 2.00 1.66 1.55 4.70

Volume (ml)
p#1 Normal 1 8.97 8.33 8.53 9.18 20.03
p#1 Normal 2 7.75 7.31 7.62 11.56 23.23
p#2 FL 22.05 21.73 21.78 23.36 329.23
p#2 eVT 19.02 18.64 19.22 24.30 41.67
p#2 Normal 10.52 8.63 8.58 10.25 33.54
p#2 eRT 22.45 20.98 22.33 22.44 45.09
be considered when choosing the number of parameters (𝑀) and
summary window length for an intended application. Increasing the
number of parameters may achieve higher characterization fidelity,
although this increases model sensitivity to noise in the data. Shorter
statistical summary windows are needed for heterogeneous sequences
to avoid multi-modal parameter distributions for which mean-based
characterization may be inaccurate.
6

4. Discussion

This work presented a hypothesis-driven approach to modeling the
lung–ventilator system (LVS) to infer interpretable parametric repre-
sentations of human clinical data. Rather than resolving mechanistic
processes, the proposed method emphasizes model inversion to over-
come limitations of the compartment model framework (Section 1.1)
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Fig. 5. Patient#2 𝑝𝑉 loop characterizations at various parameter resolutions. In addition to normal breaths (C) similar to those of patient#1, these patient data feature flow-limited
breaths (A), early ventilator-termination breaths (B), and early reverse-trigger breaths (D). Increasing model resolution generally improves parametric characterization of the 𝑝𝑉
data, although accuracy also depends on the summary window length and timing of features in the data. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
Fig. 6. Comparison of static sequence characterization to compartment model es-
timation. The previous set of pressure sequences (grey) are represented by static
12-parameter characterization (red) and by breath-to-breath application of the linear
compartment model (blue). Estimation of normal breath pressures (A,B,E) is similar
in both models. For breaths with marked dyssynchrony (C,D,F), static characterization
outperforms the compartment model. Note that the compartment model estimate is
dynamic while the red characterization is stationary, and time axes are regularized to
a fixed breath cycle length to plot these signals together. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)
7

by combining data- and model-driven methods. This method increases
key inference attributes of resolution, inferability, and translatabil-
ity by exchanging a physiology-based model framework for one able
simulate heterogeneous LVS waveforms. The linear dynamical model
employs a user-specified forcing function whose data-optimized pa-
rameters discretize the waveform properties. These model parameters
are interpretable through their relationship to the forcing function
they define and the waveform properties to which they are opti-
mized. Simulations employed a simple non-specific forcing function
whose parameters relate to waveform amplitude and derivative during
various sub-phases of inspiration and expiration. Data-informed esti-
mates could be distinguished and interpreted by parameter vectors as
well as waveform characterization, the model image of the parameter
distribution center. Parametric digitization of source waveform data
may be analyzed in conjunction with other data streams (Section 4.3
below). Characterization presents parametrized data in a way famil-
iar to domain experts, who may recognize physiological implications
graphically and therefore directly aid in hypothesis generation.

The inferential model system successfully assimilated both synthetic
data as well as sequences of human LVS data, comprising both nor-
mal and dyssynchronous breaths from patients with ARDS. Synthetic
data experiments (SI Appendix C) showed dynamic parameter tracking
through waveform shape changes, with small parameter errors related
to insensitivity and sequential dependence. Experiments on patients
#1 and #2 inferred parameters from normal breaths and several types
of LVS dyssynchrony. These parameters showed statistically significant
differences in distribution even between similar breath sequences. Ad-
ditional experiments (SI Appendix D) apply the method to cases with
remaining types of dyssynchrony observable during a single ventilator
cycle [19]. Together, results support the hypothesis of this work by
indicating that the parametrization technique applies across the breath
types of particular interest in ARDS research while encoding enough
detail to discriminate between them at a granular level.

The model generates waveform characterizations from estimated
parameter distributions, which are easily extended to 𝑝𝑉 loops by
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independent application to pressure and volume sources. Paramet-
ric summaries, or the forward-model characterizations they induce
via 𝜙𝑀 ↦ 𝑥, provide an effective basis for discretely organizing,
comparing, and analyzing waveform data. Coarse estimation with a 12-
parameter model showed error reductions of more than 50% compared
with the linear compartment model in dyssynchronous sequences. Ac-
curacy may be improved by increasing a more highly parameterized
model, although this should be considered in relation to the structure
of the forcing function and objective use of the estimates (Section 4.2
below).

4.1. Hypothesis-driven inference

In broad view, this model strategy is an example of hypothesis-
driven inferential modeling in which prior knowledge informs the pa-
rameter design of the model, and those parameter values are informed
by patient data. This hybrid approach is neither purely empirical like
machine learning, nor representative of physical or mechanistic pro-
cesses as in data assimilation. Parameter estimates, therefore, occupy
a grey area between those of more familiar methods. Interpretation
– of parameter values or waveform characterization – is based on a
priori definitions, while the model itself bears no link to the physical
data-generating process. Unlike machine learning, however, parameter
values and their patient-level differences may be interpreted in relation
to the source data and these definitions. Background knowledge may be
incorporated to define the forcing function, which structures parame-
ter definitions without influencing their values like an uninformative
Bayesian prior distribution. A large covariance factor (𝛾) in the infer-
ence process ensures that parameter values are strongly informed by
the data while parameter definitions control the model output space.
From this perspective, the prior knowledge defining the parameters
acts as a constraint framework for posing testable hypotheses of the
model. The method is also generalizable, although this work focused
on ventilator-supported respiration. Namely, the parametrization of
clinical waveforms is translatable to other domains (e.g., capnogra-
phy [43] or intracranial hemodynamics [44,45]) where underlying
processes evade efficient or flexible models needed for analysis at
longer timescales.

4.2. Pragmatic limitations and trade-offs

While parameter and characterization fidelities are higher than the
compartment model for breaths with dyssynchrony, important limita-
tions exist on interpretability and representation errors. Interpretation
depends on the definition of the forcing function, which may be tai-
lored to incorporate domain-specific considerations or knowledge. The
generic forcing function used in experiments is highly flexible but
generic. Therefore, its parameters could only be interpreted in relation
to breath behavior during a certain interval of the breath. More so-
phisticated parameters can provide more granular interpretation but
may be difficult to estimate quickly and accurately. For example, if
feature timings – such as the durations of flow phases – are estimable
parameters, sequential dependence strongly correlates their values.
Here, efficient inference is confounded by parameters being defined in
relation to one another within the breath cycle: a change in one param-
eter requires compensatory changes in others. The trade-off between
flexibility and interpretability results from the generic forcing function
adopted in experiments. However, interpretability can be refined by
incorporating additional knowledge of the target waveforms into the
model forcing function without sacrifice. For example, the inspiration
phase can be targeted at higher resolution than expiration by scaling
parameter epochs based on the inspiration-to-expiration (I:E) ratio.

The statistical summary process over a temporal window imposes
stationarity assumptions with consequences for interpretability, gener-
alizability, and use of estimates to differentiate breaths. The minimum
resolution needed to capture breath-level features is identified by the
8

Nyquist sampling theorem [46]: a number of parameters 𝑀 > 2𝜃∕𝜏 is
eeded to resolve features with timescale 𝜏. Increasing parameter res-
lution improves the overall fidelity of waveform characterization, up
o the threshold of fitting observation noise. However, well-estimated
arameter distributions may be non-gaussian, generating characteri-
ations with inaccurate features due to variability of breath length
r feature timing. In particular, the averaging process may eliminate
eatures of interest (e.g., patients #5 and #6 in SI Appendix D) that
re captured in the sampled parameter estimates. Characterization
idelity increases by shortening the summary window length from 40
reaths (70–170 secs in the experiments) to a few (10–15 s), although
his depends on the data. Shorter summary windows (1–3 breaths or
10 secs) assume little stationarity – and are therefore generalizable
and should be assumed for arbitrary sequences of LVS data. The

deal number of parameters and the summary length thus present bias–
ariance trade-offs, with application-specific resolution requirements
onsidered in tandem with the desired summary precision, stability of
arameter estimates, and temporal granularity.

Tuning the quantity of generic-model parameters (𝑀) and sta-
ionarity assumptions may not be suitable for some forms of LVS
yssynchrony. For example, double-triggered breaths result from mul-
iple ventilator cycles occurring within a patient breath cycle. This
yssynchrony was not included in experiments precisely because it is
ot indexed by the ventilator the same way as other types and must
herefore be treated differently in the model and data processing. Multi-
odality in estimated parameters may identify specific forms such

s reverse-triggered breaths, which may have a particular repeating
equence of different breath types (e.g., a (normal, normal, reverse
rigger) breath cycle). In this case, time-ordered parameter estimates
re required to discern the sequence from one with a complete tran-
ition from normal breaths to reverse-triggered ones. Robust statistical
escription, such as non-parametric discrimination analysis [47], may
e necessary to accurately summarize non-stationary breath sequences
rom multivariate parameter estimates with correlated components.

.3. Informatics-minded applications

The purpose of encoding LVS waveforms into discrete parameters is
or use in research informatics applications involving machine learning
nd other automated methods. The inference system presented defines
ectors to serve in learning tasks such as identification and classifi-
ation in conjunction with domain-specific information. For studies
ocusing on individuals, it permits the algorithmic analysis of breath
rogression in relation to adjunct patient record information not en-
oded by parameters. Patient status, intervention, and lung response
ompose a more complete description of respiration within the health
are processes, a representation needed to separate lung changes from
ommingled signals.

The method proposed in this work facilitates the formulation and
esting of hypotheses about the role of LVS dyssynchrony in relation
ILI, ARDS, and patient outcome. Changes in breath behavior and

njuries may arise from isolated events as well as accumulated ef-
ects over time. The dynamics are influenced by ventilator settings
hanges, sedation, and manipulations performed in response to patient–
entilator interaction and these should be detangled from changes in
he patient lung state. Limited to intervals of static ventilator set-
ings and documented sedation, parameter trend analysis over hour
imescales may differentiate VILI associated with the duration of ven-
ilation from injuries arising from patient efforts such as coughing or
oluntary breaths. Breath characterization also provides a framework
or quantifying the severity of several types of ventilator dyssynchrony,
llowing one to measure distance from a normal breath or to penalize
he loss of breath smoothness.

Such studies targeting the sources of VILI and quantifying their
ontributions may improve the understanding of lung–ventilator in-
eraction and its consequences on ARDS patient outcomes. Wider,



Journal of Biomedical Informatics 137 (2023) 104275J.N. Stroh et al.

i
d
i
w
e
i
a
p
r
i

C

&
P
R

D

c
i

A

t
p

A
f

s

𝑥

i
t
i
s
e
T
t
a
m

o
i
w
s
w
o
c
i
f

A

s
d
p

v
b

𝐉

H
b
a

cohort-oriented works in this vein may create new pathways to im-
proved lung-protective ventilator management and patient care strate-
gies. However, applications involving inter-patient comparison require
normalization of LVS parameter vectors augmented by patient record
information. Additional work is needed to identify suitable normaliza-
tions and distance functions required for algorithmic comparisons of
data summaries comprising parameterized waveforms and peripheral
information.

4.4. Concluding remarks

Changes in lung compliance, capacity, and alveolar recruitment
affect the time distribution of lung volume and pressure in response
to ventilator forcing. Model parameters quantify observed properties of
this distribution with definitions detached from process resolution. This
fact limits identifying the source of LVS changes, which may originate
from material changes in and of the lungs as well as changes in ventila-
tor settings and patient state. Practical applications, therefore, require
analyzing 𝑝𝑉 characterization within the full patient-data environment,
ncluding knowledge of ventilator settings which the experiments here
id not consider. Investigation of the relationship between lung phys-
ology and estimated parameters can proceed in tandem with LVS
aveform research, such as those of ventilator control mechanisms
.g., [48], as well as models with explicit process mechanisms [26] and
njury-specific waveform representation [37]. Although such consider-
tions are beyond the scope of this discussion, the hypothesis-informed
arameter descriptions can augment those analyses as low-dimensional
epresentations of waveform data by providing both flexibility and
nterpretability in a discrete form.
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ppendix A. Windowed smoothing via ensemble Kalman trans-
orm

In linear ensemble Kalman filtering, the correction of the forecast
tate is defined as a linear combination of 𝑁 ensemble perturbations

about the forecast state. In particular, the Kalman update is 𝑥𝑎 =
̄𝑓 + 𝐊(𝑦 − 𝐻(�̄�𝑓 )), with superscripts 𝑎, 𝑓 denoting the analysis and
forecast, respectively. The gain matrix 𝐊 may be computed in several
different ways, but the full-rank ensemble case always reduces to
manufacturing a matrix of the form 𝐊 = 𝐏1∕2 ⋅ Ξ, where 𝐏1∕2 is a
matrix of scaled ensemble state anomalies about the ensemble mean.
9

Importantly, the column space of 𝐊 is determined by the column space
of 𝐏1∕2. Therefore, the analysis has the form 𝑥𝑎 = �̄�𝑓 +𝐏1∕2𝑤∗ where 𝑤∗

s an optimal weight vector for columns of 𝐏1∕2 determined by applying
he remaining Kalman gain factors Ξ to the data. This implementation
s referred to as the ensemble transform as each state 𝑥 in the ensemble
pan (i.e., the possible EnKF analyses) is uniquely identified with an
nsemble expansion coefficient 𝑤 ∈ R𝑁 where 𝑁 is the ensemble size.
he ensemble of forecast states is used in the ensemble Kalman filter
o approximate dynamical uncertainties. Namely, the ensemble state
nomaly matrix 𝐏1∕2 is formed column-wise by deviations about their
ean and scaled by

√

𝑁 ; it is a Cholesky factor of an empirical rank-
𝑁 approximation to the true model error covariance 𝐏. Because error
distributions of the model and data are assumed to be gaussian, the
analysis 𝑥𝑎 may equivalently be identified by minimizing the common
cost function

𝐉(𝑥) = 1
2
‖

‖

‖

𝐏−1∕2 (𝑥 − 𝑥0
)

‖

‖

‖

2
+ 1

2
‖

‖

‖

𝐑−1∕2 (𝑦𝑜 −(𝑥))‖‖
‖

2
(A.1)

ver the 𝑁-dimensional subspace span{�̄�𝑓+𝐏1∕2𝑤}. Here, 𝐑 = 𝐑1∕2𝐑𝑇 ∕2

s the error covariance matrix associated with the observation process,
hich includes error and uncertainties involved in translating model

tates to equivalents of observational data as well as instrument errors
hen generating observational data from the real world. The inverse
f the hessian matrix associated with 𝐉(𝑥𝑎) identifies the posterior error
ovariance matrix [49]. From a Bayes’ Rule perspective, this optimum
s the mode of the posterior probability distribution produced when the
orecast model is updated based on new data [50].

.1. Asynchronous smoothing

Extensions of the EnKF method described above to assimilate ob-
ervations occurring at various times within a moving window are
eveloped in e.g. [51,52]. The passage below follows the variational
erspective of [53,54] for conciseness.

The equivalent of Eq. (A.1) conditioning the optima transform
ariable 𝑤 on multiple observations {𝑦𝑜𝑘}𝑘∈𝛺 in the window is given
y the quadratic function:

(̂𝑤) = 1
2
‖𝑤‖

2 + 1
2
∑

𝑘∈𝛺

‖

‖

‖

𝑐𝑓𝑘 − 𝐙𝑘𝑤
‖

‖

‖

2
(A.2)

= 1
2
𝑤𝑇𝐐𝑤 + 𝑏𝑇𝑤 + 1

2
𝜀2. (A.3)

ere, 𝑘 ∈ 𝛺 ⊂ {1,… , 𝐿} indexes the times associated with observations
eing assimilated, at which times one requires observed model forecast
nomalies 𝐙𝑘 and scaled misfits to the data 𝑐𝑓𝑘 ∶= 𝐑−1∕2

(

𝑦𝑜𝑏𝑠𝑘 −𝐇𝑘�̄�
𝑓
𝑘

)

.
In Eq. (A.3), the object 𝐐 ∶= 𝐈𝑁 +

∑

𝑘∈𝛺 𝐙𝑇
𝑘𝐙𝑘 is the hessian matrix

for the system linearized about the initial trajectory 𝑥𝑓0 , the vector
𝑏 ∶= −

∑

𝑘∈𝛺 𝐙𝑘𝑐𝑓 is the linear coefficient, and 𝜀2 ∶=
∑

𝑘∈𝛺 ‖𝑐𝑓𝑘 ‖
2

is initial trajectory error. In applications with overlapping-windowed
analysis, 𝛺 regulates whether data assimilated in a previous window
are re-assimilated in the present one.

A linear approximation to the variational optimum is found alge-
braically by targeting the mode of the posterior distribution. Specif-
ically, solving ∇𝐉 = 0 yields the (approximately) optimal coefficient

𝑤∗ = −𝐐−1
𝛾 𝑏 =

(

𝛾−1𝐈𝑁 +
∑

𝑘∈𝛺
𝐙𝑇
𝑘𝐙𝑘

)−1 (
∑

𝑘∈𝛺
𝐙𝑇
𝑘 𝑐

𝑓

)

(A.4)

where 𝛾 is an optional covariance inflation factor with 𝛾 > 1 increasing
relative weight on errors to the data. The true minimum of the non-
linear problem may be obtained by minimizing Eq. (A.2) by iterating
over re-forecasts; Ref. [54] includes a more comprehensive analysis of
different schemes for computing the full optimum. Such approaches are
important in strongly nonlinear systems whose ensemble of solutions
diverges strongly within the assimilation window, which is not the case
with the simple model considered in this work.

Once the optimal analysis state 𝑥𝑆 is calculated, the ensemble varia-
tions about this new distributional center are found by re-weighting the
forecast covariance Cholesky factors by those of the quadratic program
inverse Hessian matrix: 𝐏1∕2 ← 𝐏1∕2𝐐−1∕2.
𝑆 𝑆 𝛾
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Fig. C.7. Inversion of 𝜙10 with synthetic data (upper panel, grey) generated by known parameters (lower panels, dashed grey) correctly identifies the correct parameter values
and their changes in time. Reconstructed waveforms (upper, blue) accurately track the correct solutions. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
Table B.4
Non-forcing parameters and experiment details are given, where ‘data’ indicates values
extracted from the data.

Symbol Synthetic expt. Human expt.

Ensemble size 𝑁 32 60
Sample rate (Hz) – 25 31.25
Window length 𝐿 75 50
Update step 𝑆 25 20
ODE parameter 𝑔 𝑒 𝑒
Reference state 𝑥0 20 data
Breath cycle 𝜃 5 s data
Initial parameters – 0.5 0.5
Data RMSE 𝐑1∕2 5% 5%
Parameter RMSE 𝐏1∕2

0 0.025 0.025
Covariance inflation 𝛾 100 100

Appendix B. Algorithm parameters for experiments

See Table B.4.

Appendix C. Parameter accuracy via synthetic data experiments

Parameters were changed every 8 breaths in the 10-parameter
model (𝜙10) with a fixed 5-second cycle length to generate two min-
utes of 25 Hz synthetic data (Fig. C.7, top panel in grey). Inference
experiment results (blue, throughout figure) use a high covariance
inflation factor (𝛾 = 100) to sharply focus the solution on a noise-
contaminated version of these data. Simulated waveforms accurately
reconstruct window-wise trajectories (top, blue) from local parameter
10
estimates inferred from noisy data. Estimated parameter values (lower,
blue) accurately and quickly track changes of the true parameters
defining the data (lower, grey), with transitions to new parameter
values occurring within two update windows (twice the length of 𝑡𝑆 ,
or about 2 s).

Early breath parameters change sooner than parameters later in
the breath, seen by comparing transitions of 𝑎1 and 𝑎2 to those of
𝑎7 and 𝑎8 (around 60 s). This is a result of early-breath data begin
assimilated sooner, with upstream parameter dependence also evident
in the estimates. For example, the value of 𝑎1 is slightly underestimated
for 𝑡 ∈ (30, 60) and the value of 𝑎2 is correspondingly slightly overesti-
mated to compensate. Relative errors are smallest for large magnitude
parameters and largest for those with values near zero (such as 𝑎10).
The large error in estimated 𝑎8 for 𝑡 ∈ (60, 90), where the true value
of 1.8 is estimated near 2.8, is a consequence of diminished model
sensitivity to smaller-magnitude parameters. The inversion process ac-
curately infers the parameters dominant in determining the solution
shape, aptly tracks parameter set changes in time, and thereby gives
dynamic representations of the data via model parameters.

Appendix D. Estimation of additional patients

This addenda estimates several breath sequences in addition to
those of Section 3. The estimated sequences from three patients (#3–
#6) were selected for a minimum of data artifacts and consistency of
waveform behavior. In these sequences, the windowed model inver-
sion tightly fits the parametric model to data (Fig. D.8, left column)
regardless of the waveform shape. Characterizations (right, red) give



Journal of Biomedical Informatics 137 (2023) 104275J.N. Stroh et al.
Fig. D.8. Parameter estimation and characterization (𝑀 = 24) of additional pressure sequences, as in Figs. 3, 4. Specific dyssynchrony types are not identified but breaths in the
first and third row are relatively normal. Rows two and four are suspected to feature delayed cycling and early cycling, respectively; both include ineffective triggering but the
dyssynchrony type cannot be confirmed without esophageal pressure data, which is unavailable during these sequences. The last row features breaths with an irregular cycle; the
data plotted in panel K indicate a bimodal breath cycle.
Table D.5
RMS errors (RMSE) of estimates to data for various resolutions and the single compartment model (Eqn(1)),
with lowest error among proposed static model characterizations is indicated in bold. Large errors in volume of
compartment model estimation result from persistent differences in phase.

MODEL 𝜙12 𝜙18 𝜙24 𝜙30 Eqn(1)

Pressure (cm H2O)
p#3 seq1 1.03 0.80 0.60 1.11 0.65
p#3 seq2 0.70 0.66 0.63 0.62 1.43
p#4 2.61 2.27 2.06 1.87 4.71
p#5 0.63 0.62 0.63 0.63 3.32
p#6 1.50 1.51 1.57 1.97 3.46

Volume (ml)
p#3 seq1 16.92 12.11 10.07 9.70 23.81
p#3 seq2 56.55 55.83 55.80 55.60 349.77
p#4 29.31 29.09 29.59 31.37 58.43
p#5 44.02 43.76 43.71 43.70 230.45
p#6 148.32 148.73 155.00 166.66 262.49
low-dimensional representations including resolution-dependent inac-
curacies. For example, the pressure peak of patient#3 sequence 2
(second row) is highly variable in both amplitude and timing; the
associated characterization based on the mean is inaccurate, but the
variability is captured and encoded into the parameter uncertainty (left,
blue). Similar inaccuracy is evident in the late pressure plateau pressure
peak of patient #5’s sequence (fourth row). Rather than increasing the
number of parameters, resolving it requires decreasing the summary
window to 4–5 breath windows. The pressure waveforms of patient
#6’s sequence (bottom row) have an irregular cycle, leading to a
11
bimodal parameter estimate when assuming a common period for the
40 breaths. This generates large uncertainties in all estimated param-
eters, and the sequence is best characterized by the coarse resolution
model. Nevertheless, static characterizations based on the mean param-
eter vector generally have lower RMSE over the 40-breath sequence
than corresponding estimates made by the linear compartment model
( Table D.5). The first sequence of patients is better estimated by the
compartment model than the low-resolution characterization (𝑀 = 12);
for all other sequences, errors decrease by over 40% using the 12
parameter model (Fig. D.9).
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Fig. D.9. Compartment model estimate and static characterization (𝑀 = 12) compared to pressure data, as in Fig. 6. The rows correspond to the rows of the previous figure and
of the following table. The time axis of each sequence is regularized to a fixed breath cycle length to depict these signals together.
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