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A B S T R A C T   

The main (Mpro) and papain-like (PLpro) proteases are highly conserved viral proteins essential for replication of 
the COVID-19 virus, SARS-COV-2. Therefore, a logical plan for producing new drugs against this pathogen is to 
discover inhibitors of these enzymes. Accordingly, the goal of the present work was to devise a computational 
approach to design, characterize, and select compounds predicted to be potent dual inhibitors – effective against 
both Mpro and PLpro. The first step employed LigDream, an artificial neural network, to create a virtual ligand 
library. Ligands with computed ADMET profiles indicating drug-like properties and low mammalian toxicity 
were selected for further study. Initial docking of these ligands into the active sites of Mpro and PLpro was done 
with GOLD, and the highest-scoring ligands were redocked with AutoDock Vina to determine binding free en-
ergies (ΔG). Compounds 89–00, 89–07, 89–32, and 89–38 exhibited favorable ΔG values for Mpro (− 7.6 to 
− 8.7 kcal/mol) and PLpro (− 9.1 to − 9.7 kcal/mol). Global docking of selected compounds with the Mpro dimer 
identified prospective allosteric inhibitors 89–00, 89–27, and 89–40 (ΔG -8.2 to − 8.9 kcal/mol). Molecular 
dynamics simulations performed on Mpro and PLpro active site complexes with the four top-scoring ligands from 
Vina demonstrated that the most stable complexes were formed with compounds 89–32 and 89–38. Overall, the 
present computational strategy generated new compounds with predicted drug-like characteristics, low 
mammalian toxicity, and high inhibitory potencies against both target proteases to form stable complexes. 
Further preclinical studies will be required to validate the in silico findings before the lead compounds could be 
considered for clinical trials.   

1. Introduction 

The global pandemic of COVID-19 disease caused by the SARS-CoV-2 
virus is one of the most challenging outbreaks the world has ever 
experienced. At the last update on September 30, 2022, the WHO re-
ported 614, 385, 693 confirmed cases and 6,522,600 confirmed deaths 

[1]. This crushing pandemic continues to inflict major disruptions on 
national healthcare systems and the global economy. Furthermore, 
many countries have experienced second or third waves of COVID-19 
outbreaks, mainly due to the emergence of mutant variants of the 
virus, such as the Omicron strain, which is the principal variant of 
SARS-CoV-2 that is currently circulating [2]. 
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Fortunately, there are now vaccines to help protect against SARS- 
CoV-2 infection [3], and monoclonal antibodies to confer passive im-
munity against the virus [4]. Moreover, several small-molecule antiviral 
drug options have recently emerged to treat existing infection, including 
molnupiravir and remdesivir (nucleoside analogs that inhibit viral 
replication by different downstream mechanisms following their incor-
poration into the viral genome) [5,6] and nirmatrelvir (a dipeptide 
analog that blocks viral replication by covalently inhibiting an essential 
viral protease, Mpro) [7]. 

Nevertheless, current preventative and therapeutic advances have 
limitations. Although vaccines are regarded as the best safeguard against 
SARS-CoV-2 infection, they lose their effectiveness over time requiring 
periodic boosters and/or development of new vaccines in response to 
viral mutations [8]. Monoclonal antibodies are expensive to produce 
and subject to viral evasion arising from mutations [4,9]. Remdesivir 
must be administered by intravenous infusion, but it has higher efficacy 
than oral molnupiravir [10,11]. Nirmatrelvir is the most recent antiviral 
medication; it is given orally and has been shown to be highly efficacious 
[7], although as with remdesivir and molnupiravir, the target popula-
tion consists of those with mild to moderate COVID-19 symptoms [10]. 
Thus, despite these encouraging prophylactic and therapeutic in-
novations, there is still an urgent need for the discovery and develop-
ment of additional and highly selective antiviral agents [12]. 

Human coronaviruses contain a positive-sense single-stranded RNA 
genome and are among the fastest-evolving viruses owing to their high 
rates of nucleotide replacement and recombination [13]. SARS-CoV-2 
belongs to the β-genus of the Coronaviridae family, and upon transcrip-
tion of its genome, the virus produces a ~800 kDa polypeptide that is 
proteolytically processed to yield non-structural proteins (Nsp) required 
for viral replication [14,15]. The specific cleavage of this long poly-
peptide chain is carried out by proteolytic enzymes: notably, the main 
protease (Mpro, also known as the 3-chymotrypsin-like cysteine prote-
ase 3CLpro, a domain within Nsp5), and the papain-like protease (PLpro, 
a domain within Nsp3). Despite the high mutation rate of SARS-CoV-2 
and other coronaviruses, the sequences of essential viral proteins such 
as Mpro and PLpro tend to be preserved because mutations of such vital 
proteins are often lethal to the virus [16]. Moreover, compounds tar-
geting Mpro can reduce the risk of mutation-mediated drug resistance in 
future deadly viral strains [17]. 

The Mpro enzyme of SARS-CoV-2 is a highly conserved homodimeric 
protease with >96% overall sequence identity (100% in the active site) 
to its counterpart in the SARS-CoV virus [18,19]. The active form of this 
enzyme is a homodimer; each monomer comprises 306 amino acid 
residues and three domains [20, PDB ID 7L0D]. The active site of Mpro 
has a non-classical His-Cys catalytic dyad (His41-Cys145), and it can be 
divided into four subsites, S1–S4. The following active site residues of 
Mpro are involved in substrate binding: His41, Met49, Glu143, Ser144, 
His163, His164, Met165, Glu166, Leu167, Asp187, Arg188, Gln189, 
Thr190, Ala191, and Gln192. The main protease plays pivotal roles for 
viral genome replication, transcription, and other processes that are 
vital for the continued survival of the virus. Therefore, Mpro is a 
promising target for the discovery and development of anti-coronavirus 
drugs, especially given that humans do not have a homologous protease 
[21]. Moreover, the recent success with the antiviral drug, nirmatrelvir, 
attests to the appropriateness of Mpro as a druggable target and the 
possibility of designing inhibitors with high selectivity against it [7]. 
However, some inhibitors of Mpro, including nirmatrelvir, can also 
inhibit human cysteine proteases such as cathepsin-L, although this 
cross-reactivity could be turned into an advantage because cathepsin-L 
is known to facilitate viral entry [19]. 

PLpro is a constituent of Nsp3, a large multidomain protein with a 
MW of ~212 kDa and 1945 amino acid residues that is an essential 
component of the viral replicase-transcriptase complex [22]. The PLpro 
constituent is highly conserved among all coronaviruses, and it plays 
important roles in the proteolytic processing and maturation of viral 
polyproteins [23]. PLpro may also act on host cell proteins to disrupt 

host immune response machinery, thereby facilitating viral replication 
and proliferation. This viral protein is composed of 316 amino acid 
residues with a relatively high content of cysteine (3.5%) [24], PDB ID 
7LBR]. The active site of PLpro has a canonical catalytic triad (Cys111, 
His272 and Asp286), unlike the Mpro protein [25]. Zinc ion binding is 
crucial for the structural integrity and protease activity of PLpro. The 
zinc ion is coordinated by four cysteine residues (Cys189, Cys192, 
Cys224 and Cys226), which are located on two loops of two β-hairpins. 
The following amino acid residues of PLpro are involved in substrate 
binding: Tyr268, Met208, Pro247, Pro248, Thr301, Tyr264, Asn267, 
Gln269, Leu162, Cys270, Gly271, and Tyr273 [26]. In view of these 
structural and functional characteristics of PLpro, this enzyme, along 
with Mpro, is a suitable target for developing inhibitors of its activity as 
therapeutic agents against SARS-CoV-2. 

There are three broad functional classes of enzyme inhibitors that we 
considered when embarking on the present work: covalent irreversible 
inhibitors acting at the active site; noncovalent reversible inhibitors 
acting at the active site; and noncovalent reversible inhibitors acting at 
allosteric sites (ligand-binding at loci other than the active site that 
could modulate the activity of the active site) [27]. 

Covalent inhibitors were formerly shunned as viable drug candidates 
because of the perception of a greater toxicity risk associated with 
irreversible and non-selective binding of ligands to proteins [28,29]. 
However, covalent inhibitors have been gaining acceptance, owing to 
their potential for high potency and, when desired, a prolonged duration 
of action [30]. Nevertheless, covalent docking is still a relatively new 
approach that is more difficult to implement than reversible docking, 
especially in a high-throughput manner. Moreover, selectivity can be an 
issue with covalent inhibitors. For example, considering the design of 
covalent inhibitors of cysteine proteases such as Mpro, ligands would 
contain reactive electrophilic groups to form covalent bonds with the 
active site cysteine. However, such electrophiles could react indiscrim-
inately with cysteine residues outside of the active site unless the ligand 
included specific groups equipped to recognize complementary residues 
in the active site, as was done with nirmatrelvir as a covalent inhibitor of 
Mpro [7]. For these reasons, the present work focused on noncovalent 
reversible inhibitors. 

Recent studies aimed at discovering reversible inhibitors of Mpro 
identified ML188 (Table 1) as one of the most potent, with an IC50 of 2.5 
μM [20]. Furthermore, in the same study, a crystal structure of this 
compound in complex with Mpro was solved to 2.39 Å resolution, thus 
furnishing a target structure for the present investigation (PDB ID 7L0D). 

Likewise, compound GRL0617 (Table 1) has been shown to be 
highly effective at reversibly inhibiting the in vitro activity of PLpro, 
with an IC50 of 1.6 μM [31,32]. However, the available crystal structures 
of PLpro in complex with GRL0617 had resolutions in the 2.5–3.2 Å 
range; therefore, a structure of PLpro in complex with XR8-89, an analog 
of GRL0617, with a resolution of 2.2 Å was chosen as a target structure 
for the present work (PDB ID 7LBR). Notwithstanding its favorable po-
tency against PLpro, GRL0617 exhibited poor metabolic stability that 
prevented its potential clinical application [33]. In fact, despite inten-
sive studies, efficacious PLpro inhibitors with low mammalian toxicity 
have still not been developed and subsequently approved by the US FDA 
[3]. 

Our preliminary investigations of Mpro included blind docking of 
ligands using a simulation cell that encompassed the entire dimer rather 
than being focused on the catalytic active sites in the constituent 
monomers. These studies revealed sites other than the catalytic active 
sites with favorable free energies of binding that overlapped the values 
obtained by docking the same ligands into the active sites. Furthermore, 
these results were in agreement with recent reports of allosteric binding 
sites in Mpro [34,35]. Because allosteric sites have been less explored 
than catalytic sites and allosteric binding could furnish new avenues for 
modulating the activity of Mpro [36], discovery of allosteric binding 
sites was incorporated into the present work. 

A common approach for drug discovery and development in 
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medicinal chemistry is a single-target strategy, i.e., a search for an in-
hibitor with high affinity for a single target. However, this approach 
does not always lead to success, and the number of single-target drugs 
discovered in recent years is quite small [37]. An alternative tactic for 
drug design is a multi-target methodology, which implies the partial 
inhibition of several targets simultaneously by one compound. In this 
case, the inhibitor should not necessarily demonstrate a high binding 
affinity for these targets. Indeed, surprising advances in multi-target 
drug discovery have demonstrated that partial inhibition of a small 
number of targets can be more effective than complete inhibition of a 
single target [37]. 

The goal of the present work was to discover a new class of dual 
inhibitors of Mpro and PLpro with predicted high potency and low 
mammalian toxicity using in silico original drug design encompassing a 

Table 1 
AutoDock Vina ΔG values for selected pyrazolopyridazine ligandsa docked into 
the active sites of Mpro and PLpro.  

Compound Structure ΔG 
Mpro, 
kcal/mol 

ΔG 
PLpro, 
kcal/mol 

89–00b − 7.8 − 9.1 

89–03 − 8.2 − 8.7 

89–07b − 8.7 − 9.2 

89–10 − 7.8 − 8.9 

89–22 − 8.3 − 8.5 

89–24 − 7.5 − 8.4 

89–25 − 7.6 − 8.3 

89–27 − 7.6 − 9.2 

89–30 − 8.1 − 8.5 

89–31 − 8.1 − 8.3 

89–32b − 8.1 − 9.2 

89–33 − 8.2 − 8.5  

Table 1 (continued ) 

Compound Structure ΔG 
Mpro, 
kcal/mol 

ΔG 
PLpro, 
kcal/mol 

89–37 − 7.8 − 8.3 

89–38b − 8.7 − 9.7 

89–40 − 7.7 − 8.3 

89–42 − 8.1 − 8.5 

ML188 − 7.9 − 6.7 

GRL0617 − 7.4 − 9.9 

94-00 
(Azachalcone) 

− 8.5 − 9.3  

a In addition to the 16 compounds selected by their ChemPLP GOLD docking 
scores from the 43 ligands generated from compound 89–00 by LigDream, the 
known inhibitors ML188 (Mpro) [20] and GRL0617 (PLpro) [33] along with 
previously identified compound 94–00 [44] were included in the Vina docking 
studies for comparison. 

b These ligands were selected for more detailed study based on their average 
docking scores and favorable ADMET properties. 
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novel computational multistep approach similar in principle to a recent 
report by Yang et al. [38]. Starting with a compound predicted in our 
previous work to have high inhibitory potency against Mpro, we have 
applied our computational workflow to yield a series of novel structures 
exhibiting the desired inhibitory potencies and ADMET properties as 
assessed in silico. These compounds all contain heterocyclic rings (in 
particular, pyrazolopyridazine and tetrazole moieties) that are impor-
tant organic building blocks for the construction of bioactive molecules. 
Pyrazolopyridazine and tetrazole derivatives have a wide range of bio-
logical activities, including antibacterial, antifungal, anticancer, anal-
gesic, anti-inflammatory, and antidiabetic properties [39,40]. 
Moreover, these derivatives are synthetically accessible compounds 
with significant antiviral activity [41–43]. Therefore, our identified 
compounds, which contain pyrazolopyridazine and tetrazole moieties as 
organic scaffolds, were deemed suitable as starting points for continued 
discovery of novel SARS-CoV-2 Mpro/PLpro dual inhibitors and further 
development as potential therapeutic drugs for COVID-19. 

2. Materials and methods 

2.1. Creation and screening of the virtual ligand library 

The workflow for creating and screening the virtual ligand library is 
shown in Fig. 1. Starting with structure 94–00 (Table 1), which was 
identified in our previous study as a potential inhibitor of Mpro [44]. 2D 
structures of new ligands (100 compounds) were generated using an 
artificial neural network-driven platform, LigDream, as a shape decod-
ing tool (Fig. 1; Fig. S1) [45,46]. The SMILE string of compound 94–00 
was uploaded to the server and ran to generate 100 SMILE strings for 
new compounds. Default parameters of LigDream for generation of li-
gands were used. 

After filtering these structures for desirable ADMET properties using 
ADMETlab 2.0 [47] (Tables S4 and S5) (section 2.5), compound 89–00 
(Table 1) was selected for a second round of ligand generation by Lig-
Dream to produce 2D structures of 43 novel 1-oxo-1H-pyrazolo[1,2-a] 
pyridazine derivatives (Table S1). The 2D structures were converted to 
3D using MarvinSketch 21.10 with the addition of true ionization and 
tautomeric states at pH 7.4. All ligands were structurally optimized 
using the Universal Force Field [48] with a steepest descent algorithm 
(500 steps) in Avogadro 1.2.0 [49]. OpenBabel 3.0.0 [50] was used to 
convert the 3D structures (as mol files) to mol2 and pdbqt formats for 
use in consecutive molecular docking. For the first phase of docking, the 
43 ligands generated by the second cycle of LigDream were docked into 
Mpro and PLpro by GOLD 5.3. The 16 highest-scoring compounds from 

GOLD were redocked with AutoDock Vina 1.1.2 along with three 
reference compounds to determine the affinity scores shown in Table 1 
(sections 2.2 and 2.3). To gauge their intrinsic diversity, the structural 
and pharmacophoric Tanimoto similarities of the 16 new ligands and 
three reference compounds were quantified relative to compound 89–00 
using ROCS 3.5.0.2: OpenEye Scientific Software, Santa Fe, NM, http 
://www.eyesopen.com (Fig. 2). Based on rankings of docking scores 
along with favorable ADMET characteristics, four compounds were then 
subjected to molecular dynamics (MD) simulations in YASARA 21.12.19 
to assess the stability of the ligand-protein complexes (section 2.4). 

2.2. Preparation of protein docking targets 

The X-ray crystal structures of SARS-CoV-2 main protease (PDB ID: 
7L0D, resolution 2.39 Å) and SARS-CoV-2 papain-like protease (PDB ID: 
7LBR, resolution 2.20 Å) were downloaded from the Protein Data Bank 
(PDB). Potential allosteric binding sites of the Mpro dimer (7L0D) were 
detected using the DoGSiteScorer tool [51,52] of the structure-based 
modeling server, ProteinsPlus [53,54]. For molecular docking, 
co-crystallized ligands, ions, and solvents were removed from the pro-
tein structures. The asymmetric unit of PLpro (7LBR) contained two 
chains, A and B; chain B was selected for use based on its higher-quality 
structure factors given in the PDB. The protonation states of proteins 
were adjusted at pH 7.4 using PROPKA 3.1 with addition of missing 
atoms and overall optimization of the hydrogen-bonding network using 
PDB2PQR 2.1, as provided by the ProteinPrepare tool on the Play-
Molecule web server [55]. 

2.3. Consecutive molecular docking 

Consecutive molecular docking was performed using CCDC GOLD 
Suite 5.3 software [56] followed by AutoDock Vina 1.1.2 on the 
graphical platform, MGL Tools 1.5.6 [57,58]. 

GOLD (Genetic Optimization for Ligand Docking) is a genetic algo-
rithm for docking flexible ligands into protein binding sites. GOLD was 
used for primary fast docking (calculation of fitness) and identification 
of possible Mpro/PLpro binders. ChemPLP [59] was selected as the 
scoring function with maximal search efficiency and number of opera-
tions. Default parameters were used for the genetic algorithm settings. 
The active sites of Mpro (7L0D) and PLpro (7LBR) were centered on the 
original co-crystallized ligands with a radius of 10 Å to define the search 
space. Input ligands with full protonation were used in mol2 format. 

Subsequent to the initial docking with GOLD, AutoDock Vina was 
used for re-docking and prediction of the apparent free energies of 

Fig. 1. Workflow for creation and screening of the virtual ligand library.  
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binding (ΔG, also referred to as "affinity", in kcal/mol [57]) of pro-
spective dual inhibitors of Mpro/PLpro. Kollman charges were added for 
proteins and Gasteiger charges were applied for ligands. The following 
docking parameters were used: number of XYZ grid points of the cubic 
simulation cell (60 × 60 × 60 Å), spacing (0.5 Å), XYZ coordinates of the 
grid center for the monomer of 7L0D (10.807, − 17.259, 21.463), grid 
center for the monomer of 7L0D; and XYZ coordinates of the grid center 
for the B-chain of 7LBR (2.68, − 63.737, 3.074). Exhaustiveness was set 
to 24 and other parameters were set to default values. Input ligands with 
polar hydrogens were used in pdbqt format. For docking of the 7L0D 
dimer, the following parameters were used: XYZ number of grid points 
of the cubic simulation cell (62 × 72 × 80 Å), spacing (1.0 Å), XYZ 
coordinates of the grid center (0.129, − 11.308, − 0.152), and exhaus-
tiveness (100). 

3D images of docking results were generated using UCSF Chimera 
1.14 [60]. 2D images of protein-ligand interactions were constructed 
with BIOVIA Discovery Studio® Visualizer 21.1.0.20298 [61]. 

2.4. MD simulations 

Each ligand-protein complex for MD simulations was obtained by 
molecular docking of the ligand into the known active site of the protein 
using AutoDock Vina as described in section 2.2. 

All steps of the MD simulation were carried out using YASARA- 
Structure 21.12.19 for Linux [62,63]. The computer system was a 
desktop workstation equipped with an AMD 3970 × 32-core CPU @3.7 
GHz accelerated by an Nvidia RTX 3090 GPU using OpenCL. The 
operating system was Linux Mint 20.3 Xfce, based on Ubuntu 20.04 LTS. 

The ligand-protein complex was centered within a cuboid simulation 
cell to encompass the protein with an additional 10 Å clearance on all 
sides. The long axis of the protein was aligned parallel to the x-coordi-
nate of the cell. Periodic boundary conditions were used. Explicit solvent 
consisted of TIP3 water [64] containing 0.15 M NaCl at pH 7.4 and 

additional Na or Cl ions as needed to balance the total charge of the 
system. 

After steepest descent and simulated annealing minimizations to 
remove clashes followed by optimization of the hydrogen-bonding 
network [65,66], the simulation was run for 100.5 ns using the 
AMBER14 force field for protein [67] augmented by GAFF2 [68] and 
AM1BCC [69] for ligand components. The cutoff for van der Waals 
forces was 8 Å [70]. For electrostatic forces, the Particle Mesh Ewald 
(PME) algorithm was used [71]. Equations of motion were integrated 
with a multiple timestep of 1.25 fs (bonded interactions) and 2.50 fs 
(nonbonded interactions) at 310 K and 1 atm (modified NPT ensemble). 
Pressure was automatically regulated by isotropically resizing the 
simulation cell to achieve the target solvent density of 0.997 g/ml [72]. 

MD trajectories were saved every 100 ps as YASARA SIM files until 
1005 files were collected, representing 100.5 ns of simulation time, in 
order to ensure that 100 ns durations were captured for each run. The 
trajectories were then processed in YASARA to yield data for assessing 
the characteristics and stability of the ligand-protein complexes, 
including the radius of gyration of the complex (Rg), root-mean-square- 
deviation of the C-alpha backbone of the protein (RMSD-Cα), root-mean- 
square-deviation of the ligand (RMSD-Ligand), and the root-mean- 
square-fluctuation per residue of the protein (RMSF). 

Binding affinity (ΔG, no electrostatic contribution) of compounds 
was calculated for the last snapshot of each MD simulation using the 
PRODIGY-LIGAND web server [73,74]. 

2.5. In silico prediction of physicochemical properties and 
pharmacokinetic ADMET profiles 

The following parameters were calculated for the pyrazolopyr-
idazines using ADMETlab 2.0 [47]: 

Physical and medicinal chemistry: MW, number of hydrogen bond 
acceptors, number of hydrogen bond donors, number of rotatable bonds, 

Fig. 2. (A) Tanimoto similarity coefficients (Tc) for 
the 16 89-series compounds with the highest PLP 
docking scores from GOLD and 3 reference com-
pounds (94–00, GRL0617, and ML188). Bar colors: 
gray = Tc_color (pharmacophore similarity); red =
Tc_shape (shape similarity from overlap of molecular 
volumes); blue = Tc_combi (Tc_color + Tc_shape). Tc 
values are relative to compound 89–00. Tc_color and 
Tc_shape range from 0 (no similarity) to 1 (complete 
similarity). Tc_combi ranges from 0 (no similarity to 2 
(complete similarity). (B) 2D pharmacophoric struc-
ture of 89–00 showing its 3 types of pharmacophores. 
(C) Color codes for the 6 pharmacophores assessed 
(red = acceptor, blue = donor, green = hydrophobe, 
yellow = rings, orange = anion, magenta = cation). 
Tc values were calculated using ROCS 3.5.0.2: 
OpenEye Scientific Software, Santa Fe, NM, http 
://www.eyesopen.com [77].   
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topological polar surface area, log of the octanol/water partition coef-
ficient, logP at physiological pH 7.4, synthetic accessibility score, Lip-
inski rule, Pfizer Rule, Golden Triangle, PAINS, ALARM NMR, BMS, and 
Chelator Rule. 

Pharmacokinetics, absorption: Caco-2 permeability, MDCK perme-
ability, Pgp-inhibitor, Pgp-substrate, and human intestinal absorption. 

Pharmacokinetics, distribution: plasma protein binding, volume of 
distribution, blood-brain barrier penetration, fraction unbound in 
plasma), and xenobiotic metabolism by cytochrome P450 (CYP) en-
zymes (CYP1A2, CYP2C19, CYP2C9, CYP2D6, CYP3A4 inhibitor and 
substrate potential). 

Pharmacokinetics, excretion: drug clearance. 
Toxicity: human ether-a-go-go related gene blockers, human hepa-

totoxicity, drug-induced liver injury, Ames test for mutagenicity, rat oral 
acute toxicity, carcinogenicity, respiratory toxicity, nuclear receptors 
(NR) or their ligand-binding domains (LBD) (NR-AR-LBD, NR- 
Aromatase, NR-ER-LBD, NR-PPAR-gamma), and stress response (SR) 
pathways (SR-ARE, SR-HSE, SR-MMP and SR-p53). 

2.6. Statistical analyses of MD simulation data 

Time-series data (Rg, RMSD-Cα, and RMSD-Ligand trajectories) from 
MD simulations were determined to be autocorrelated by applying the 
autocorrelation function (acf) in R version 4.2.1. Mean and standard 
error of the mean (SEM) values for Rg, RMSD-Ca, and RMSD-Ligand 
were calculated using block averaging to correct for autocorrelation 
[75] as implemented by the R function, block_average [76]. 

Statistical significance of the differences among all pairwise com-
parisons of mean values was determined by one-way ANOVA followed 
by the Tukey multiple comparisons test when the variances were sta-
tistically equivalent. For unequal variances, the Brown-Forsythe and 
Welch corrections were applied, and Dunnett’s T3 multiple comparisons 
test was used. The alpha level for ANOVA was 0.05, and p < 0.05 was the 
level of significance for post-hoc tests. RMSF profiles were found to be 
not normally distributed by all four of the following tests for normality: 
D’Agostino and Pearson, Anderson-Darling, Sharpiro-Wilks, and 
Kolmogorov-Smirnov. Therefore, the non-parametric Spearman corre-
lation coefficient was used to assess correlations among all pairs of 
RMSF profile data. All these tests were performed using GraphPad Prism 
version 9.4.1 for Windows 10 (GraphPad Software, San Diego, California 
USA, www.graphpad.com). 

3. Results and discussion 

3.1. Creation and screening of the virtual ligand library 

As shown in Fig. 1, the azachalcone 94–00 was chosen as the initial 
seed structure for the computational design of dual inhibitors of Mpro 
and PLpro. This compound was identified in our previous in silico study 
as a potential inhibitor of Mpro (ΔG − 8.5 kcal/mol by Autodock Vina) 
[44]. However, according to the ALARM NMR and BMC tools of 
ADMETlab 2.0, this ligand has a poor ADMET profile and possesses the 
potential to act as a thiol-reactive compound – an undesirable trait for a 
non-covalent inhibitor (Table S4). Therefore, through a generative and 
screening approach, we sought to discover novel dual inhibitors of Mpro 
and PLpro that exhibited favorable ADMET characteristics. 

Thus, the first LigDream cycle (Fig. 1) generated 100 new structures 
(list in Fig. S1) that were subjected to a comprehensive in silico ADMET 
evaluation, resulting in the selection of a single compound (pyr-
azolopyridazine 89–00) with a favorable predicted pharmacokinetics 
profile. This molecule was used for a second generative cycle with Lig-
Dream to produce 43 novel pyrazolopyridazine structures (including 
compound 89–00; Table S1) for subsequent use as ligands in the 
consecutive docking and molecular dynamics steps. 

3.2. Consecutive docking for identification of dual Mpro/PLpro inhibitors 

To identify prospective high affinity dual inhibitors of Mpro and 
PLpro among the 43 newly generated pyrazolopyridazines (compound 
89–00 and its derivatives), consecutive docking of the ligands into the 
catalytic active sites of the two proteases was performed with GOLD and 
AutoDock Vina. 

Table S1 lists the GOLD ChemPLP docking scores for the 43 ligands. 
Of these, 16 compounds with the highest ChemPLP scores were selected 
for redocking with AutoDock Vina to determine the apparent free en-
ergies of binding (ΔG) [57]. In addition, compounds ML188, GRL0617, 
and 94–00 were included as reference compounds for comparison. 

To quantitatively assess the intrinsic diversity of these 19 ligands, 
Tanimoto similarity coefficients (Tc) for shape (Tc_shape), pharmaco-
phores ("color", Tc_color), and the combination of these two parameters 
(Tc_combi) were calculated as shown in Fig. 2. Compounds 89–00, 
89–07, and 89–40 had the same Tc_color values but differed sufficiently 
in Tc_shape to yield noticeable differences in T_combi. Overall, there 
was a gradient in T_combi values throughout the 89-series of compounds 
ranging from 0.76 to 2.00. In particular, all of the 89-series of com-
pounds had T_combi values greater than those of the three reference 
compounds (0.56–0.61), including the initial compound 94–00. These 
results serve to illustrate and confirm the ability of the workflow 
depicted in Fig. 1 to generate a series of structures distinct from the 
initial structure yet, as shown in Table 1, capable of producing favorable 
docking scores. 

The Vina docking results are shown in Table 1. Excluding the three 
reference compounds, four ligands were selected for more detailed study 
based on their Mpro and PLpro docking scores and favorable ADMET 
properties: 89–00, 89–07, 89–32 and 89–38. 

As shown in Table 1, ligand 89–00 had the same binding affinity as 
the reference inhibitor ML188. With respect to compounds 89–07 and 
89–38, these ligands had the best inhibitory potential (ΔG – 8.7 kcal/ 
mol) in comparison with 89–00 (ΔG – 7.8 kcal/mol) and 89–32 (ΔG – 
8.1 kcal/mol). Moreover, 89–07 and 89–38 had higher in silico binding 
affinities for Mpro than ML188. 

3.3. Docking interactions of selected ligands within the Mpro active site 

Ligands 89–00, 89–07, 89–32 and 89–38 were well accommodated 
within the active site of the Mpro monomer. Moreover, ligands 89–07 
and 89–38 displayed a similar orientation (Fig. 3A). 

Despite the similar orientations of 89–07 and 89–38, it is important 
to note that 89–00, 89–07, 89–32, and 89–38 exhibited different types 
of interactions within the active site – especially with the catalytic dyad 
residues His41 and Cys145 of Mpro (Table 2). For example, ligand 
89–00 formed strong hydrogen bonds with His41 and Gln189 as well as 
a halogen bond with His164. This compound occupied subsites S1–S3 of 
the active site [78]. Furthermore, ligands 89–07 and 89–38 engaged in 
many interactions with active site residues of Mpro (Fig. 1B and C). In 
particular, 89–07 and 89–38 were able to interact with Thr25, Asn142 
and Gly143 to form conventional hydrogen bonds. Moreover, the fluo-
rine atom of ligand 89–07 had strong halogen bonds with Met49 and 
Asp187. Ligand 89–38 displayed a T-shaped pi-pi interaction with His41 
and hydrophobic interactions (pi-sulfur) with Cys44 and Met49. In 
general, pyrazolopyridazines 89–07 and 89–38 occupied subsites S1′, 
S2 and S3 of the Mpro active site. 

3.4. Discovery of potential allosteric sites and modulators 

Using the ProteinPlus web server, four potential allosteric sites 
(pockets P0–P3) with high drug scores (>0.7) were located in the Mpro 
dimer (Fig. 4). It is important to note that the integrity of P1 and P2 is 
crucial for Mpro activity, which appears to be coupled with the 
conformational dynamics of the protease catalytic site [34,79]. Thus, 
when compounds bind to P1–P2, they can disrupt Mpro dimerization, 
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resulting in inhibition of substrate cleavage via allosteric regulation 
[80]. Moreover, recently discovered inhibitors (e.g., AT7519 and pel-
itinib) of allosteric binding sites P1 (in the C-terminal dimerization 
domain) and P2 (between the catalytic domains and the dimerization 
domain) have demonstrated moderate to high antiviral activity in vitro 
[81]. Furthermore, the hydrophobic nature of the residues forming P1 is 
conserved for all human coronavirus Mpro enzymes. This means that 
allosteric modulators of this binding site in SARS-CoV-2 are likely to be 
effective against other coronaviruses as well [81]. 

Global blind docking with AutoDock Vina revealed that compounds 
89–00, 89–27 and 89–40 occupied P1–P2 allosteric pockets, which 

were located outside of the catalytic active sites, thereby identifying 
potential allosteric sites and allosteric modulators. 

According to the docking data, the possible allosteric Mpro modu-
lators 89–00 (ΔG –8.6 kcal/mol) and 89–40 (ΔG –8.2 kcal/mol) were 
accommodated in the P1 binding pocket of chain B protein (Fig. 4). 
Thus, ligand 89–00 formed a strong hydrogen bond with Thr111 (2.34 
Å) and a weaker interaction of the same type with Gln110 (Fig. 5A). 
Furthermore, compound 89–00 was able to interact with Pro293 and 
Val202 (pi-alkyl), and it had a pi-sigma contact with Ile249. Interest-
ingly, the substituted benzene ring of pyrazolopyridazines 89–00 and 
89–40 interacted with Phe294 (pi-pi stacked). For compound 89–40 
(Fig. 5B), a hydrogen bond with Thr292 (2.94 Å) and a halogen bond 

Fig. 3. Docking poses of compounds 89–07 (cyan) and 89–38 (pink) within the active site of Mpro (PDB ID 7L0D). (A) Ribbon view depicted on the left; magnified 
hydrophobicity surface on the right (colors: blue = greatest polarity; red = greatest hydrophobicity; white = intermediate). (B) 2D interactions of 89–07. (C) 2D 
interactions of 89–38. 

Table 2 
Interactions of four selected ligands and a reference compound with the Mpro 
active site.  

Compound Interacting residues (type and distance in Å) 

89–00 His41a (HBb, 2.20, pi-pi T-shaped, 5.23), Met49 (pi-sulfur, 3.78, 4.04), 
His164 (halogen bond, 3.41), Met165 (pi-alkyl, 5.17), Glu166 (pi- 
donor HB, 2.54, pi-anion, 4.60), Gln189 (HB, 2.25) 

89–07 Thr25 (HB, 2.53), His41 (carbon HB, 2.24, alkyl, 5.08), Met49 
(halogen bond, 3.41, pi-alkyl, 4.26, alkyl, 4.93), Asn142 (HB, 2.27), 
Gly143 (HB, 2.29), Cys145 (pi-alkyl, 5.24), Met165 (pi-alkyl, 5.20), 
Asp187 (halogen bond, 3.01, 3.03), Arg188 (carbon HB, 2.18) 

89–32 Cys44 (pi-sulfur, 5.64), Met49 (pi-sulfur, 3.51), Cys145 (pi-sulfur, 
5.50), Met165 (pi-alkyl, 4.22, 4.49), Glu166 (carbon HB, 2.72, pi- 
donor HB, 3.11), Asp187 (carbon HB, 2.91) 

89–38 Thr25 (HB, 2.20), His41 (carbon HB, 2.49, 2.93, pi-pi T-shaped, 5.06), 
Cys44 (pi-sulfur, 5.99), Met49 (pi-sulfur, 5.20, pi-alkyl, 4.53, 5.23), 
Asn142 (HB, 2.22), Gly143 (HB, 2.16), Cys145 (pi-alkyl, 5.11), 
Met165 (pi-alkyl, 4.91, 5.31), Gln189 (carbon HB, 2.64) 

ML188 Thr26 (carbon HB, 2.55), Leu27 (pi-alkyl, 5.32), His41 (pi-pi stacked, 
4.65, pi-alkyl, 4.76), Met49 (pi-sulfur, 5.54, alkyl, 4.83), Phe140 
(carbon HB, 2.56), Leu141 (amide pi-stacked, 4.05), Asn142 (HB, 
2.57), Gly143 (HB, 2.10), Cys145 (pi-alkyl, 3.78), His163 (HB, 1.96), 
Met165 (amide pi-stacked, 4.96), Glu166 (HB, 2.59)  

a Residues in boldface are members of the His41-Cys145 active site dyad. 
b HB = Conventional hydrogen bond. 

Fig. 4. The docking poses of compounds 89–00 (pink, right magnified view), 
89–40 (dark blue, right magnified view) and 89–27 (forest green, left magni-
fied view) within the Mpro dimer (chain A, dark red; chain B, khaki; drug 
pockets: P0 (yellow), P1 (purple), P2 (green), P3 (red). 
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(Pro293, 3.61 Å) were detected. Moreover, this ligand had an interac-
tion with Asp295 (pi-anion, 3.56 Å). 

In the case of 89–27 (ΔG –8.9 kcal/mol), this ligand occupied the P2 
drug pocket of chain A of the Mpro dimer (Fig. 5C). Interestingly, as with 
ligands 89–00 and 89–40, compound 89–27 interacted with Phe294 
through pi-pi stacking (3.76 Å). Furthermore, the tetrazole ring of 
89–27 was able to interact with Gln110 (2.29 Å), Thr111 (2.10 Å) and 
Asp295 (2.98 Å) to form hydrogen bonds. Moreover, weak interactions 

with Thr292, Ile152 and Ile249 were detected for pyrazolopyridazine 
89–27. 

3.5. Docking interactions of selected ligands within the PLpro active site 

The selected ligands 89–00, 89–07, 89–32 and 89–38 had similar 
favorable docking scores and spatial orientations in the PLpro active site 
as the reference ligand, GRL0617 (Table 1 and Fig. 6A). 

Fig. 5. 2D interactions of 89–00 (A), 89–40 (B), and 89–27 (C) within potential allosteric sites of the Mpro dimer.  

Fig. 6. Docking poses of compounds 89–07 (cyan) and 89–38 (pink) within the active site of PLpro (PDB ID 7LBR) and hydrophobicity surface of PLpro substrate 
binding site (magnified view) with 89–07, 89–38 and GRL0617 (in orange) (A) Ribbon view depicted on the left; magnified hydrophobicity surface on the right 
(colors: blue = greatest polarity; red = greatest hydrophobicity; white = intermediate). (B) 2D interactions of 89–07. (C) 2D interactions of 89–38. 
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Interestingly, the pyrazolopyridazinone moieties of ligands 89–00, 
89–07, 89–32 and 89–38 were located in the active site of PLpro, akin to 
the position of the naphthalene ring of GRL0617. Analogously, the 
substituted benzene moieties of these ligands (the benzofuran ring of 
89–38) and GRL0617 were accommodated identically in the active site. 
Despite these similarities, it is noteworthy that compounds 89–00, 
89–07, 89–32 and 89–38 had different interactions with key amino acid 
residues in the PLpro active site (Table 3; Fig. 6B and C). 

All selected ligands interacted with Pro248 (pi-alkyl), Tyr268 (pi-pi 
T-shaped) and Asp164 (pi-anion). Additionally, the ligand 89–32 
formed a hydrogen bond with Asp164. The pyrazolopyridazines 89–07 
and 89–32 each interacted with Gln269 (HB), while ligand 89–38 dis-
played a pi-sigma contact with Gln269. Furthermore, compound 89–07 
also contacted Leu162 and formed a hydrogen bond with Tyr264. 
Moreover, ligand 89–38 additionally interacted with Pro247 (pi-alkyl) 
and this ligand had a more favorable calculated binding affinity to PLpro 
than pyrazolopyridazines 89–00, 89–07 and 89–32. 

3.6. MD simulations for Mpro complexes 

To evaluate the influence of ligand binding on dynamic properties of 
Mpro and PLpro and the stability of the ligand-protein complexes, MD 
simulations were performed. The following parameters were computed: 
radius of gyration of the complex (Rg), root-mean-square-deviation of 
the C-alpha backbone of the protein (RMSD-Cα), RMSD of ligand 
movement after superposing the protein on its reference structure 
(RMSD-Ligand), and the root-mean-square-fluctuation per residue of the 
protein (RMSF). In addition, the binding affinity of the ligands was 
calculated for the last snapshot of each MD simulation using the 
PRODIGY-LIGAND web server. 

For the Mpro complexes, the biologically active dimer form of the 
protein in complex with each of the four selected ligands 89–00, 89–07, 
89–32, and 89–38 as well as the reference compound ML188 was used 
for MD simulations. The MD trajectories are displayed in Fig. 7, and the 
statistical analyses of the mean values of the Rg, RMSD-Cα, and RMSD- 
Ligand parameters are shown in Fig. 8. 

The Rg values of each of the Mpro-ligand complexes remained 
essentially constant throughout the 100 ns simulations (Fig. 7A) indi-
cating that the compactness of the proteins did not substantially change, 
suggesting that the ligands did not dissociate from the complexes. 
Moreover, the mean Rg values of the five complexes were statistically 
identical (Fig. 8A), varying over a small range from 25.88 ± 0.011 Å 

(mean ± SEM) for the 89–00 and 89–07 complexes to 25.92 ± 0.014 Å 
(mean ± SEM) for the 89–32 complex. These values of Rg for Mpro 
dimers in complex with small molecule ligands at 310 K are in excellent 
agreement with previous reports of 26.2 ± 0.15 Å for the apo dimeric 
protein at 300 K [82] and 26.1 ± 0.2 Å at 310 K [82], respectively, as 
well as 25.7 ± 0.3 Å to 26.1 ± 0.2 Å for the Mpro dimer in complex with 
17 different small-molecule ligands at 310 K [82]. 

In like manner to the Rg trajectories, the RMSD-Cα profiles of the 
Mpro complexes were similar throughout the 100 ns simulations 
(Fig. 7B) and had statistically equivalent mean values ranging from 1.58 
± 0.03 to 1.79 ± 0.04 Å (Fig. 8B). These results are in accord with a 
comprehensive MD study of 62 Mpro complexes with reversible ligands 
that exhibited an average RMSD-Cα of 1.79 ± 0.04 Å, whereas the apo 
protein had an RMSD-Ca of 1.81 Å [83]. Thus, the binding of these 
reversible ligands to Mpro had little or no effect on the backbone dy-
namics of this protein. 

In contrast to the Rg and RMSD-Cα results, the RMSD-Ligand tra-
jectories of the pyrazolopyridazine ligands were different from that of 
inhibitor ML188, which maintained consistently low RMSD-Ligand 
values throughout the simulation (Figs. 7C and 8C). The highest 
RMSD values were detected for compound 89–00 after ~25 ns of MD 
simulation. Although this ligand was still located within the active site of 
Mpro with a final ΔG value of − 5.7 kcal/mol and exhibited interactions 
with residues Met49, Met165, Arg188 and Gln189, it did not display any 
post-MD interactions with the active site dyad residues, His41 and 
Cys145 (Table S2). Compound 89–38 appeared to have reached a stable 
state after ~40 ns, but at ~85 ns, its RMSD rose abruptly from 3.0 to 6.9 
Å. Nevertheless, 89–38 remained within the active site and made suf-
ficient residue contacts (including His41 but not Cys145 of the catalytic 
dyad) to yield the second-best binding affinity (ΔG –7.6 kcal/mol) of the 
four test ligands. Ligands 89–07 and 89–32 maintained stable RMSD- 
Ligand values during 100 ns of MD, and their final snapshots revealed 
contacts with both residues of the active site dyad. Moreover, the final 
calculated post-MD binding affinity of 89–07 was the most favorable of 
the four test ligands (ΔG –9.1 kcal/mol) (Table S2). These impressions of 
the RMSD-Ligand trajectories coupled with post-MD binding affinities 
were in agreement with the rank order of the mean RMSD-Ligand values: 
ML188 < 89–07 < 89–38 < 89–32 < 89–00 (Fig. 8C). 

The per-residue RMSF profiles of the A and B chains of Mpro dimer 
ligand complexes are depicted in Fig. S2. Each chain has 305 amino acid 
residues, and the highest RMSF values were observed for the C-terminal 
residue Phe305 of MPro complexes with ML188A (8.40 Å), ML188B 
(5.53 Å), and 89–38B (7.33 Å). Nevertheless, large fluctuations of 
Phe305 are not unusual given that this residue is located at the end of a 
flexible 5-residue C-terminal loop. Otherwise, the overall RMSF profiles 
were highly similar to each other with Spearman correlation coefficients 
between corresponding A and B chains of 0.85–0.93 and between A or B 
chains of different complexes ranging from 0.85 to 0.95 (Fig. S3). 

However, the ligand RMSF values are of particular interest. The 
ligand was bound to the A-chain of the dimer and assigned residue 
number 306. Ligand RMSF values for the Mpro complexes were as fol-
lows (in descending order): 89–00 (4.90 Å), 89–32 (3.00 Å), 89–38 
(2.08 Å), 89–07 (1.43 Å), and ML188 (1.27 Å). Thus, it is noteworthy 
that the rank order of the ligand RMSF values mirrored that of the 
RMSD-Ligand mean values shown in Fig. 8C. Furthermore, as with 
RMSD-Ligand values, smaller ligand RMSF values are better [84]. 

Considering all of the MD simulation results for the complexes with 
Mpro, the best candidates among the four test ligands for further 
consideration as inhibitors of this protease are 89–07, 89–32, and 
89–38. 

3.7. MD simulations for PLpro complexes 

Complexes of the biologically active monomer form of PLpro with 
each of the four selected ligands (89–00, 89–07, 89–32, and 89–38) 
along with the reference inhibitor GRL0617 were used for MD 

Table 3 
Interactions of four selected ligands and a reference compound with the PLpro 
active site.  

Compound Interacting residues (type and distance in Å) 

89–00 Pro248a (pi-alkyl 4.21, 4.80), Tyr273 (HBb, 2.63), Gly163 (halogen 
bond, 3.47, pi-amide, 4.53), Lys157 (HB, 2.65), Asp164 (pi-anion, 
4.13), Tyr268 (pi-pi T-shaped, 4.95, 5.25, 5.07) 

89–07 Glu167 (pi-anion, 4.34), Gln269 (HB, 2.68), Asp164 (pi-anion, 4.02), 
Tyr264 (HB, 1.75, alkyl, 4.28), Gly163 (halogen bond, 2.78, 3.06), 
Leu162 (halogen bond, 2.96, alkyl, 4.23), Pro248 (pi-alkyl, 4.24, 
4.73), Tyr273 (HB, 2.30), Tyr268 (pi-pi T-shaped, 4.81, 5.30, 4.93) 

89–32 Lys157 (HB, 1.89), Gly163 (carbon HB, 2.66, pi-amide, 4.39), Asp164 
(HB, 2.45, pi-anion, 4.00), Tyr273 (HB, 2.32), Pro248 (pi-alkyl, 4.29, 
4.93), Tyr268 (pi-pi T-shaped, 5.13, 4.89, 5.20, HB, 1.99), Gln269 
(HB, 1.84) 

89–38 Pro248 (pi-alkyl, 4.24, 4.57), Pro247 (pi-alkyl, 5.48), Asp164 (pi- 
anion, 4.30), Gly163 (pi-amide, 4.14, 4.34), Lys157 (pi-cation, 3.03), 
Gln269 (pi-sigma, 2.68), Tyr273 (HB, 2.53), Tyr268 (pi-pi T-shaped, 
4.96, 5.32, 5.49) 

GRL0617 Leu162 (alkyl, 4.15), Asp164 (HB, 1.93, pi-anion, 4.36), Pro247 (pi- 
alkyl, 5.28), Pro248 (pi-alkyl, 4.58, 4.36, alkyl, 4.52), Tyr264 (pi- 
alkyl, 3.91, 4.76), Tyr268 (pi-pi T-shaped, 5.09, 5.26, 5.30, carbon HB, 
2.63), Gln269 (HB, 1.83, pi-sigma, 2.58), Tyr273 (pi-alkyl, 5.26)  

a Residues in boldface are important for substrate binding with PLpro [33]. 
b HB = Conventional hydrogen bond. 
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simulations. The MD trajectories are displayed in Fig. 9, and the statis-
tical analyses of the mean values of the Rg, RMSD-Cα, and RMSD-Ligand 
parameters are shown in Fig. 10. 

As can be seen in Fig. 9A, the Rg of the PLpro complex with 89–00 
increased during the 100 ns simulation from 22.3 to 23.8 Å. An increase 
in the Rg of a ligand-protein complex tends to be interpreted as 

dissociation of the ligand from the protein, although both increases and 
decreases in Rg have been reported in comparisons between proteins 
with and without bound ligands [85,86]. Moreover, the Rg value of the 
89–00 complex that was attained toward the end of the simulation was 
within the range of Rg values seen with the other four complexes. In 
addition, the final snapshot of the simulation revealed that the ligand 

Fig. 7. Trajectories (100 ns) from MD simulations of Mpro dimer complexes with ligands 89–00, 89–07, 89–32, 89–38, and reference compound ML188 bound to 
the active site of the dimer A-chain. (A) Rg of dimer complexes. (B) RMSD-Cα of A-chain complexes. (C) RMSD-Ligand: movement of the ligand relative to the A- 
chain. Trajectory colors: magenta, 89–00; green, 89–07; blue, 89–32; dark blue, 89–38; and orange, ML188. 

Fig. 8. Statistical comparisons of mean-value parameters from 100 ns MD simulations of ligand complexes with Mpro dimers. (A) Rg of dimers. (B) RMSD-Cα of A- 
chain complexes. (C) RMSD-Ligand: movement of ligand relative to A-chain. Values are means ± SEM (n = 5 × 20 ns blocks) computed by block averaging to correct 
for time-series autocorrelation. There were no statistically significant differences among all pairwise comparisons of means for Rg or RMSD-Cα (one-way ANOVA, 
Tukey multiple comparisons test, p > 0.05). For RMSD-Ligand values, there were statistically significant differences between 5 pairs of means: *p < 0.05; ***p ≤
0.0005 (one-way ANOVA with Brown-Forsythe and Welch corrections for unequal variances and Dunnett’s T3 multiple comparisons test). Bar colors: magenta, 
89–00; green, 89–07; blue, 89–32; dark blue, 89–38; and orange, ML188. 
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was still within the active site of the protein. Furthermore, Fig. 10A 
shows that the mean Rg value for the 89–00 complex was not statisti-
cally different from the mean Rg values of the other complexes, although 
this was because of the comparatively high variance of the 89–00 
complex and the relatively small differences between the means. 
Nevertheless, the Rg trajectory of the 89–00 complex with PLpro was 
qualitatively distinct from those of the other complexes, and the reason 
for this discrepancy remains unexplained. 

Fig. 9B shows that RMSD-Cα values for the PLpro complex with 
89–00 increased from 1.5 to 4.4 Å during the 100 ns simulation, while 
this parameter maintained a steady average of 1.6 Å for the other 
complexes. Indeed, the mean RMSD-Cα value for the 89–00 complex 
was statistically different from the mean values for the other complexes, 
which did not differ from each other (Fig. 10B). A recent study of 
changes in protein flexibility from ligand binding found that the increase 
in RMSD-Cα values between apo and holo states was less than 0.5 Å for 
90% of the 305 proteins investigated, but 10% of the proteins exhibited 
changes of greater than 2 Å [87]. However, MD simulations of PLpro 
have found RMSD-Cα increases from 2 to 4 Å for the native protein and 
increases from 2 to 5 Å in PLpro-ligand complexes during 100 ns [88]. 
Nonetheless, the erratic RMSD-Cα trajectory of the 89–00 complex 
compared with the others would tend to weigh against selecting this 
ligand for further consideration as a candidate for a PLpro inhibitor. 

The RMSD-Ligand trajectories are shown in Fig. 9C. Both the 89–00 
and 89–07 complexes displayed increases of 2.5 and 3.0 A, respectively, 
during 100 ns. In contrast, apart from a spike in the 89–32 complex at 
~27 ns, the 89–32 and 89–38 complexes maintained relatively steady 
RMSD-Ligand values of 2.8 A. However, the complex with the reference 
compound GRL0617 kept the lowest and most stable RMSD-Ligand 
value of 1.2 A throughout the 100 ns simulation, which compares 
favorably with an RMSD-Ligand value of 2.3 for this complex obtained 
in a recent MD study [89]. 

These observations of the trajectories in Fig. 9C were borne out by 
the statistical comparisons of mean values shown in Fig. 10C, wherein 
the RMSD-Ligand mean value of the GRL0617 complex was statistically 
different from all the other mean values. It was also evident that the 
mean values for the 89–32 and 89–38 complexes were essentially 
identical and less than the values for the 80–00 and 89–07 complexes, 
although these two pairs were not statistically distinct owing to the large 
variances in the 89–00 and 89–07 values. 

Fig. S4 shows the RMSF profiles for the ligand complexes with PLpro. 
This protein has N-terminal and C-terminal loops that would be expected 
to exhibit a high degree of flexibility, and this is readily apparent from 
the RMSF plots. Other residues with relatively high flexibility in all of 
the complexes included Lys191, Thr226, Gly228, Lys229, and Ile315. 
Overall, the RMSF profiles were remarkably similar, with Spearman 

Fig. 9. MD trajectories of PLpro monomer active site complexes with selected ligands 89–00, 89–07, 89–32, 89–38, and reference compound GRL0617 during 100 
ns. (A) Rg of complexes. (B) RMSD-Cα of complexes: movement of the protein backbone. (C) RMSD-Ligand: movement of the ligand relative to the protein. Trajectory 
colors: magenta, 89–00; green, 89–07; blue, 89–32; dark blue, 89–38; and red, GRL0617. 
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correlation coefficients ranging from 0.92 to 0.95 (Fig. S5). 
Apart from the global similarities among the RMSF profiles of the 

complexes, it is important to focus on the ligand RMSF because it would 
be desirable to select compounds with low values of this parameter [90]. 
The ligand RMSF values for the PLpro complexes were as follows (in 
descending order): 89–07 (2.58 Å), 89–32 (1.82 Å), 89–38 (1.76 Å), 
89–00 (1.65 Å), and GRL0617 (0.97 Å). In this case, the rank order of 
the ligand RMSF values did not coincide with that of the RMSD-Ligand 
mean values shown in Fig. 10C because 89–00 was ranked fourth rather 
than first, as occurred in the complex of this ligand with dimeric Mpro. 

Despite the anomalous behavior of the PLpro complex with 89–00 in 
the three trajectories shown in Fig. 9A–C and that of the PLpro complex 
with 89–07 in Fig. 9C, these and the other two ligands were found in the 
active site in the last snapshot from the MD simulation. Moreover, all 
four test ligands had comparable post-MD binding affinities as the 
reference compound GRL0617 (Table S3). Nevertheless, in view of all 
the results from the MD simulations of PLpro complexes, the best of the 
four test ligands for further consideration as inhibitors of this protease 
are 89–32 and 89–38. 

3.8. ADMET results for selected compounds 

It is noteworthy that the predicted ADMET profiles of prospective 
dual Mpro/PLpro inhibitors (89–00, 89–07, 89–32 and 89–38) and 
allosteric modulators of Mpro dimer (89–00, 89–27 and 89–40) were 
significantly better than the profiles calculated for the reference in-
hibitors ML188 and GRL0617 (Tables S4 and S5). In particular, com-
pounds 89–00, 89–07, 89–32 and 89–38 satisfied fundamental 
medicinal chemistry rules (Lipinski Rule, Pfizer Rule, and Golden Tri-
angle) and did not exhibit any undesirable reactivity (PAINS, ALARM 
NMR, BMS, and Chelator Rule) in comparison with 94–00, ML188 and 
GRL0617 (Tables S4 and S5). Moreover, hERG blockade, mutagenicity 
(AMES toxicity), rat oral acute toxicity, and carcinogenicity were not 
predicted for these ligands. However, all compounds (89–00, 89–07, 
89–32, and 89–38) together with the reference inhibitors (ML188 and 
GRL0617) displayed a potential risk of drug-induced liver injury (DILI) 
and human hepatotoxicity (H-HT). DILI and H-HT are common safety 
problems for many marketed drugs, including amoxicillin, diclofenac, 
isoniazid, and methotrexate [91]. Nevertheless, some degree of drug 

toxicity during COVID-19 treatment might be considered acceptable so 
that high doses of antiviral agents could be used for short period of time 
in view of recommendations that proliferation of the SARS-CoV-2 virus 
should be halted within the first few days of infection [12]. 

4. Conclusion 

We have applied a computational workflow that combined an arti-
ficial neural network, LigDream, comprehensive ADMET evaluation, 
quantification of ligand diversity, consecutive molecular docking, and 
MD simulations to generate and characterize new compounds as po-
tential dual inhibitors of the SARS-CoV-2 targets, Mpro and PLpro. An 
important feature of our protocol is that it was designed to find 
reversible noncovalent inhibitors of the viral cysteine proteases rather 
than irreversible covalent inhibitors. This approach identified four lead 
compounds, 89–00, 89–07, 89–32, and 89–38 with predicted high po-
tency directed against the catalytic active sites of the target enzymes, 
favorable drug-like properties, and low mammalian toxicity. Moreover, 
affinities (ΔG) of our compounds determined by AutoDock Vina were in 
the range − 8.1 to − 8.7 kcal/mol for Mpro, which was more favorable 
than the reference inhibitor, ML188 (− 7.9 kcal/mol). Our procedure 
also found three potential allosteric modulators of the Mpro dimer, 
89–00, 89–27 and 89–40, as biocompatible compounds with high pre-
dicted affinities to Mpro in the range − 8.2 to − 8.9 kcal/mol. Similarly, 
the affinities of 89–00, 89–07, 89–32, and 89–38 for PLpro were in the 
range − 9.1 to − 9.7 kcal/mol, which closely approached that of the 
reference inhibitor GRL0617 (− 9.9 kcal/mol). Data from 100 ns all- 
atom MD simulations demonstrated that the most stable complexes of 
Mpro and PLpro were afforded by compounds 89–32 and 89–38. These 
promising in silico results will require validation with in vitro and in vivo 
tests before the lead compounds could be advanced to clinical trials. 
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