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Targeted A-to-G base editing of chloroplast 
DNA in plants

Young Geun Mok1,3,4, Sunghyun Hong1,3,4, Su-Ji Bae1, Sung-Ik Cho1,2 & 
Jin-Soo Kim    1,3 

Chloroplast DNA (cpDNA) encodes up to 315 (typically, 120–130) genes1, 
including those for essential components in photosystems I and II and the 
large subunit of RuBisCo, which catalyses CO2 fixation in plants. Targeted 
mutagenesis in cpDNA will be broadly useful for studying the functions of 
these genes in molecular detail and for developing crops and other plants 
with desired traits. Unfortunately, CRISPR–Cas9 and CRISPR-derived 
base editors, which enable targeted genetic modifications in nuclear 
DNA, are not suitable for organellar DNA editing2, owing to the difficulty 
of delivering guide RNA into organelles. CRISPR-free, protein-only base 
editors (including DddA-derived cytosine base editors3–8 and zinc finger 
deaminases9), originally developed for mitochondrial DNA editing in 
mammalian cells, can be used for C-to-T, rather than A-to-G, editing in 
cpDNA10–12. Here we show that heritable homoplasmic A-to-G edits can be 
induced in cpDNA, leading to phenotypic changes, using transcription 
activator-like effector-linked deaminases13.

To demonstrate targeted A-to-G editing in plant organelles using tran-
scription activator-like effector (TALE)-linked deaminases (TALEDs), 
which are composed of custom-designed TALE DNA-binding arrays, 
split DddAtox originating from Burkholderia cenocepacia and an engi-
neered deoxyadenosine deaminase (TadA-8e) derived from the Escheri-
chia coli TadA protein, we first chose three chloroplast genes (rrn16, 
psbA and psaA) in lettuce (Lactuca sativa) (Fig. 1a and Extended Data 
Fig. 1). Mutations in these genes give rise to resistance to antibiotics 
(rrn16 encoding 16S ribosomal RNA)14 or herbicide (psbA)15 and to 
an albino phenotype (psaA)12. We co-transfected in vitro transcripts 
(mRNA) encoding TALEDs with a plastid transit peptide (PTP) of the 
Arabidopsis RecA1 protein into lettuce protoplasts and measured 
base editing frequencies using targeted deep sequencing at day 7 
post-transfection (Fig. 1b–g). As expected, two TALED pairs (L–1397N 
(left-side TALE fused to the amino-terminal half of DddAtox split at 
Gly1397) + R–1397C–AD (right-side TALE fused to the carboxy-terminal 
half of DddAtox split at Gly1397 and the TadA-8e adenine deaminase) 
and L–1397C–AD + R–1397N) targeted to the rrn16 site induced A-to-G 
conversions with editing frequencies of up to 46% without causing 

C-to-T conversions (Fig. 1b,c). Adenines in the spacer region between 
the two TALE-binding sites were edited more efficiently than those 
positioned outside the region. Two TALED pairs (L–1397N + R–1397C–
AD and L–1397C–AD + R–1397N) targeted to the psbA site also induced 
A-to-G conversions with editing frequencies of up to 25%. Bystander 
A-to-G edits (A-26) were also induced outside of the spacer region 
with a frequency of 21% by the L–1397N + R–1397C–AD pair (Fig. 1d), 
which could have been caused by relatively poor affinity of the left-side 
TALE array (L) for the target DNA. At the psaA target site, two TALED 
pairs (L–1397N + R–1397C–AD and L–1397C–AD + R–1397N) induced 
A-to-G conversions in lettuce protoplasts with editing frequencies 
of up to 51% (Fig. 1f). Unexpectedly, C-to-T conversions (C2) were 
also induced with up to 3.5% efficiencies (Fig. 1f), suggesting that 
uracil-glycosylase-inhibitor-free split TALEDs could induce C-to-T edits 
in addition to A-to-G edits (albeit less efficiently) in chloroplasts, unlike 
in mammalian mitochondria.

We next chose three Arabidopsis chloroplast genes (psaA, rbcL and 
rrn16S) to investigate whether TALED-mediated edits in chloroplast 
DNA (cpDNA) could be stably maintained in whole plants. We obtained 
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(A8 and A9, underlined in Fig. 2a). As a result, seven transformants 
showed an albino phenotype to varying degrees. Two plantlets with 
almost complete albino phenotypes failed to grow (Extended Data Fig. 
3b). As shown with lettuce protoplasts (Fig. 1f,g), C-to-T conversions 
were also observed, with editing frequencies of up to 98% (#2, C2) in 
these T1 plants (Extended Data Fig. 3c). Interestingly, unlike psaA T1 
#1 and #2 plants showing a wild-type morphology without an albino 

T1 transformants using a transfer DNA binary vector encoding a TALED 
pair specific to each gene under the control of the RPS5A promoter and 
the 35S terminator11 (Extended Data Fig. 2). Targeted deep sequencing 
showed that A-to-G base editing was induced at multiple positions with 
frequencies of up to 99% in 16 of 20 T1 plants transformed with the 
psaA-targeted TALED pair (Extended Data Fig. 3a). Among the 16 edited 
transformants, 15 plants had mutations that disrupted the start codon 
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Fig. 1 | TALED-mediated cpDNA editing in lettuce protoplasts. a, TALED pairs 
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phenotype, the psaA T1 #3 plant was mosaic, with green, chimaeric and 
pale-green leaves. Pale-green traits were also observed in stems and 
siliques (Fig. 2b). In particular, the editing frequencies of an adenine 
(A8) in the start codon were 0.1%, 31% and 95% in green, chimaeric and 
pale-green leaves, suggesting that albinism was caused by the disrup-
tion of the psaA gene via adenine base editing (Fig. 2a,b). The other 
five chimaeric T1 plants (#16–20) also showed A-to-G conversions 

at this position (A8), with frequencies that ranged from 52% to 78% 
(Extended Data Fig. 3a). Two T1 (#9 and #10) plantlets with the highest 
editing frequencies (97% and 99%) at this position died prematurely. 
These results demonstrate that nearly homoplasmic (~99%) adenine 
editing can be obtained in Arabidopsis T1 transformants using TALEDs 
expressed under the control of the RPS5A promoter, which is active at 
an early embryonic stage in meristem regions16.
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We next analysed rbcL-targeted T1 plants. The rbcL gene encodes 
the large, catalytic subunit of RuBisCo, the enzyme catalysing CO2 
fixation in chloroplasts1. A-to-G conversions were induced at several 
positions in the spacer region with editing frequencies of up to 99.3% 
in a total of six T1 transformants with chimaeric leaves (Fig. 2c and 
Extended Data Fig. 4). C-to-T conversions were rarely induced at two 
positions in a 5′-TC-3′ context (C5 and C10) in these plants. These muta-
tions gave rise to alterations in amino acid sequences around His294 
(underlined in Fig. 2c), an amino acid residue absolutely conserved 
among all members of the RuBisCo superfamily. Apparently, the result-
ing RuBisCo proteins were poorly active, resulting in partial albinism. 
In addition, we obtained a total of 37 T1 plants with the rrn16S-targeted 
TALED. Among these, 35 plants were base edited with frequencies that 
ranged from 1.3% to 99.8% (Fig. 2d and Extended Data Fig. 5), demon-
strating that homoplasmic mutations can be induced in whole plants 
using TALEDs.

Next, we investigated whether TALED-induced edits in cpDNA were 
inherited in the next generation. We harvested T2 seeds from the #3 
psaA-edited T1 plant and grew T2 progenies on half-strength Murashige 
and Skoog (MS) media under long-day (16 h of light and 8 h of dark) 
conditions for 14 days to confirm phenotypic alterations. Interestingly, 
T2 plants showed diverse phenotypes and genotypes (Fig. 3a,b). Tar-
geted deep sequencing showed that A8 in the start codon was almost 
completely (99%), partially (8.6%) and poorly (0.44%) edited in albino 

(#3-1), chimaeric (#3-2) and wild-type-like (#3-3) plants, respectively  
(Fig. 3b), suggesting that the disruption of the initiation codon 
gave rise to albinism. Furthermore, we were able to obtain 
spectinomycin-resistant plants after T2 seeds of rrn16S-edited T1 lines 
were sown in half-strength MS medium containing spectinomycin, 
an antibiotic that inhibits protein synthesis (Fig. 3c). Interestingly, 
A3, which had been minimally edited in T1 plants with an average 
editing frequency of 0.47 ± 0.19%, was almost completely (99%) con-
verted to guanine in several T2 plants resistant to spectinomycin (Fig. 
3d). No other mutations, in addition to A3-to-G conversions, were 
induced at >1.0% frequencies in a total of 13 spectinomycin-resistant, 
rrn16S-edited #9 T2 lines (Extended Data Fig. 6), suggesting that A3 
editing was responsible for the drug resistance. We also found that two 
spectinomycin-resistant T2 plants (#9-1 and 3) were transgene-free (Fig. 
3e), indicating that the A3-to-G edit was induced in T1 plants and that 
the insertion of multiple copies of transgene is not required to induce 
homoplasmic editing. Note also that transgene-free, cpDNA-edited 
plants can be exempt from genetically modified organism regula-
tions17,18. Taken together, these results demonstrate that base edits 
induced by TALEDs in cpDNA are transmitted to the next generation.

Last, we profiled the off-target activity of the TALEDs targeted to 
the psaA and rrn16S sites in T1 plants using whole-genome sequencing 
(Fig. 4). We were able to confirm on-target edits in each sample and 
to identify several A-to-G or C-to-T mutations with low conversion 
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frequencies that ranged from 1.0% to 4.4% in the chloroplast genome. 
Most of these single-nucleotide conversions, relative to the reference 
chloroplast genome, were also observed in the negative control (Col-
0), suggesting that they represent naturally occurring heteroplasmy 
rather than TALED-induced off-target edits. Note also that a few of the 
single-nucleotide variations with low heteroplasmic fractions found in 
Col-0 were not detected in T1 plants or vice versa. These results show 
that TALEDs induce on-target edits specifically without substantial 
unlinked off-target mutations in cpDNA.

The TALED-mediated organellar base editing described in this 
study has a number of advantages over plastid transformation via 
homologous recombination using a targeting vector. First, organellar 
base editing is more broadly applicable, not limited to certain plant 
species amenable for plastid transformation. Second, homoplasmic 
editing can be achieved in a single round of Agrobacterium-mediated 
transformation, as shown in this study. In contrast, multiple rounds of 
marker selection and regeneration are required to obtain homoplasmy 
using plastid transformation. Third, no transgenes are integrated in 
plastid DNA with organellar base editing. In contrast, plastid transfor-
mation involves the targeted integration of a selectable marker gene 
into plastid DNA, which cannot be removed by breeding.

In summary, we developed plant-optimized TALEDs for A-to-G base 
editing in cpDNA in protoplasts and whole plants. In particular, targeted 
adenine editing in chloroplast genes using Agrobacterium-mediated 
transformation gave rise to heritable homoplasmic mutations, leading 

to phenotypic changes in Arabidopsis. Unlike in human mitochondrial 
DNA, uracil-glycosylase-inhibitor-free TALEDs catalysed C-to-T (in addi-
tion to A-to-G) conversions at some but not all positions in the context 
of a 5′-TC-3′ motif in cpDNA. It will be important to investigate whether 
TALEDs yield different editing outcomes in mammalian mitochondria 
and in plant chloroplasts, possibly because of the differences in mis-
match DNA repair systems, and to develop TALEDs catalysing A-to-G 
conversions exclusively (without C-to-T conversions) in plants. TALEDs, 
together with DddA-derived cytosine base editors, can now induce 
targeted A-to-G and C-to-T base editing in plant organellar DNA, which 
could pave the way for enhancing the efficiency of photosynthesis and 
CO2 fixation in plants, contributing to agricultural innovations and 
carbon neutralization.

Methods
Plasmid construction
TALE arrays were designed to target rrn16S, psaA, psbA and rbcL fol-
lowing the approach used in previous reports4,5,10,13,19. PCR amplicons 
encoding the TALE array, DddAtox split and ABE8e, generated using 
PrimeSTAR GXL DNA Polymerase (TAKARA), were cloned into pRPS5A–
CTS digested with SmaI and KpnI (NEB) using Gibson assembly (NEB). 
Specifically, the left-side and right-side TALED sequences were cloned 
into pRPS5A–CTS–35S terminator–AatII–PmeI vector and AatII–
pRPS5A–CTS–35S terminator–PmeI, respectively. The left-side and 
right-side TALED constructs were transcribed in vitro, and the resulting 
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mRNAs were used for lettuce protoplast transfection. For Arabidopsis 
transformation, the left and right TALED vectors were digested with 
AatII and PmeI (NEB) and ligated using T4 DNA ligase (NEB) (Extended 
Data Fig. 2). The assembled plasmids were chemically transformed into 
E. coli DH5ɑ, and plasmids from the surviving colonies were analysed 
by the Sanger sequencing method. The TALE binding sequences are 
listed in Supplementary Table 1. The primers for PCR amplification 
are listed in Supplementary Table 2. The plasmids used in this study 
and their annotated DNA sequences are available from Addgene (ID 
189639–189652).

Lettuce protoplast isolation and transfection
Lettuce (Lactuca sativa cv. Cheongchima) seeds were sterilized by 
immersing them in 70% ethanol for 30 s and then in a 0.4% hypochlo-
rite solution for 15 min prior to washing them three times in distilled 
water. The sterilized lettuce seeds were germinated on half-strength 
MS medium supplemented with 2% sucrose at 25 °C under 16 h of light 
and 8 h of dark. Protoplast isolation and transfection were performed 
as described in a previous report10.

mRNA in vitro transcription
For use as in vitro transcription templates, DNA templates were ampli-
fied using PrimeSTAR GXL DNA Polymerase (TAKARA). The mRNAs 
were synthesized and purified using an in vitro mRNA synthesis kit 
(Enzynomics). We used 40 μg of each type of transcript for protoplast 
transfection. The primers for DNA template PCR amplification are listed 
in Supplementary Table 2.

Plant transformation and transformant selection
A. thaliana Columbia-0 (Col-0) plants were transformed by floral dip-
ping with Agrobacterium tumefaciens strain GV3101 as described in a 
previous report20. After transformation, Arabidopsis T1 seeds were 
plated on half-strength MS medium containing 1% sucrose, 20 mg l−1 
phosphinothricin and 250 mg l−1 cefataxim. All transgenic plants were 
grown at 23 °C under long-day conditions (16 h of light and 8 h of dark).

Targeted deep sequencing
Total DNA was isolated from cultured cells at day 7 post-transfection10 
and true leaves from selected plants using a DNeasy Plant Mini kit (Qia-
gen). On-target sites were amplified through a primary PCR, a secondary 
PCR and a third PCR to generate deep sequencing libraries using TruSeq 
HT Dual index-containing primers and PrimeSTAR GXL DNA Polymerase 
(TAKARA). Illumina MiniSeq paired-end sequencing systems were used 
to sequence the libraries. The base editing frequencies are presented as 
percentages of sequencing reads containing base conversions among 
total sequencing reads. The program used to analyse the frequency of 
edits is available at https://github.com/ibs-cge/maund. The PCR primer 
sequences are shown in Supplementary Tables 3 and 4.

Genotyping of T2 plants
Total DNAs were isolated from true leaves from T2 plants using a 
DNeasy Plant Mini kit (Qiagen). The regions of interest were amplified 
from total DNAs using PrimeSTAR GXL DNA Polymerase (TAKARA), 
after which the PCR amplicons were analysed on a 1% agarose gel. The 
PCR primer sequences are shown in Supplementary Tables 2 and 4.

Next-generation sequencing
For analysis of off-target effects, single nucleotide polymorphisms 
were called in the plastid genomes using sequencing data from total 
DNA. First, paired-end libraries were prepared from total DNA using a 
TruSeq DNA PCR-Free Kit (Illumina) for Atpsa #1 and Atrrn16S #1 and 
#6 and a TruSeq Nano DNA Kit (Illumina) for Atpsa #3 (chimaeric and 
pale-green leaf samples) and Col-0. Sequencing was performed with an 
Illumina HiSeq X Ten platform. To analyse the next-generation sequenc-
ing data from whole-chloroplast-genome sequencing, we followed 

the methods in a previously published report11. Paired-end reads were 
mapped to reference sequences (AP000423.1) using BWA (v.0.7.17) (ref. 
21) in single-ended mode. We filtered out mapped reads with mapping 
identities ≤99%. Single nucleotide polymorphisms were then called 
using pysam (v.0.18.0) (ref. 22). Finally, we listed the positions of variants 
with A-to-G and C-to-T conversion rates ≥1% with read depths ≥5,000.

Reporting summary
Further information on research design is available in the Nature Port-
filio Reporting Summary linked to this article.

Data availability
The DNA sequencing data have been deposited in the National Center 
for Biotechnology Information (NCBI) Sequence Read Archive (SRA) 
database with BioProject accession code PRJNA858174. The protein 
sequences of the TALE arrays and TadA-8e are provided in the Sup-
plementary Information. Any other additional data are available in the 
Supplementary Information. Source data are provided with this paper.

Code availability
Source code (https://github.com/ibs-cge/maund, created by BotBot 
Inc.) was used to calculate base editing frequencies from targeted 
deep sequencing data.
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Extended Data Fig. 1 | TALED pairs designed to target psbA and psaA chloroplast genes in lettuce. The TALE-binding sites are shown in blue. CTS, Chloroplasts 
target signal; NTD, N-terminal domain; CTD, C-terminal domain, 1397 N and 1397 C, split DddAtox half; AD, adenine deaminase (ABE8e).
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Extended Data Fig. 2 | TALED of chloroplast target constructs assembly 
schematic. Each TALED pairs were cloned into a different T-vector: Left TALE(L-
1397N) cloned into RPS5Apro-CTS-35Ster-Aat II-Pme I T-vector and Right TALE 
(R-1397C-AD) cloned into Aat II-RPS5Apro- CTS-35Ster-PmeI. After digesting each 

vector with Aat II and Pme I, Aat II-RPS5Apro-CTS-Right TALE-1397C-AD-35Ster-PmeI 
was ligated to a vector with pRPS5Apro-CTS-Left TALE-1397N-35Ster-Aat II-Pme I, 
and the TALED pair was cloned into one vector. 1397 N and 1397C-ABE8.0 (ABE8e), 
which intersected in Left TALE and Right TALE, were also constructed.

http://www.nature.com/natureplants


Nature Plants

Letter https://doi.org/10.1038/s41477-022-01279-8

Extended Data Fig. 3 | Analysis of AtpsaA T1 plants. Editing frequencies (a) 
and phenotypes (b) and allele frequencies (c) of psaA targeted T1 plants. The 
TALE binding regions are shown in green, and analyzed nucleotides are shown 

in numbers. The adenine of the desired target for base editing is indicated in red 
underline. Edited bases were represented by red (c). The base conversion rates 
were measured by targeted deep sequencing.
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Extended Data Fig. 4 | Analysis of AtrbcL T1 plants. Editing frequencies (a) and 
allele frequencies (b) of rbcL targeted T1 plants. The TALE binding regions are 
shown in green, and analyzed nucleotides are shown in numbers. The adenine of 

the desired target for base editing is indicated in red underline. Edited bases were 
represented by red (b). The base conversion rates were measured by targeted 
deep sequencing.
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Extended Data Fig. 5 | Analysis of Atrrn16S T1 plants. Editing frequencies of rrn16S targeted T1 plants. The TALE binding regions are shown in green, and analyzed 
nucleotides are shown in numbers. The base conversion rates were measured by targeted deep sequencing.

http://www.nature.com/natureplants


Nature Plants

Letter https://doi.org/10.1038/s41477-022-01279-8

Extended Data Fig. 6 | Analysis of Atrrn16S T2 plants. Editing frequency of rrn16S-targeted T2 plants with spectinomycin (10 mg l-1) resistance and sensitivity. The 
TALE binding regions are shown in green, and analyzed nucleotides are shown in numbers. The base conversion rates were measured by targeted deep sequencing.
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Data collection The MiniSeq system (Illumina) was used to perform targeted deep sequencing. The  HiSeq X Ten platform (Illumina) was used whole 
chloroplast genome sequencing.

Data analysis Source code (https://github.com/ibs-cge/maund) was used to determine based editing frequencies from targeted deep sequencing data. For 
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All data supporting the findings of this study are available in the paper, Extended Data and Supplementary Information. Source data are provided with this paper. 
DNA sequencing data were deposited in the Sequence Read Archive (SRA) database of the National Center for Biotechnology Information (NCBI) with the BioProject 
accession code PRJNA858174. BioProject accession code is release on Oct. 12, 2022.
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Sample size For transfection experiments, approximately 500,000 lettuce protoplasts were used in each experiment. At least 63 T1 plants and 37 T2 plants 
for each targeted genes were analyzed by targeted deep sequencing. No statistical method was used to predetermine sample size. These 
sample size was maximum number of plants that we could handle in the growth rooms.

Data exclusions No data were excluded from the analyses.

Replication The protoplasts experiments were performed from individual biological replicates (n=3). All attempts at replication were successful. 

Randomization Protoplast samples were randomly collected from a large pool of lettuce protoplasts for each transfection.

Blinding Blinding was not required because all analyses including targeted deep sequencing and phenotyping by antibiotics and molecular methods 
could be carried out without making any subjective judgements. 
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