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Inflammatory microbes and genes as potential biomarkers of
Parkinson’s disease
Shiqing Nie1,2, Jichen Wang1,2, Ye Deng 2,3, Zheng Ye 4 and Yuan Ge 1,2✉

As the second-largest neurodegenerative disease in the world, Parkinson’s disease (PD) has brought a severe economic and medical
burden to our society. Growing evidence in recent years suggests that the gut microbiome may influence PD, but the exact
pathogenesis of PD remains unclear. In addition, the current diagnosis of PD could be inaccurate and expensive. In this study, the
largest meta-analysis currently of the gut microbiome in PD was analyzed, including 2269 samples by 16S rRNA gene and
236 samples by shotgun metagenomics, aiming to reveal the connection between PD and gut microbiome and establish a model
to predict PD. The results showed that the relative abundances of potential pro-inflammatory bacteria, genes and pathways were
significantly increased in PD, while potential anti-inflammatory bacteria, genes and pathways were significantly decreased. These
changes may lead to a decrease in potential anti-inflammatory substances (short-chain fatty acids) and an increase in potential pro-
inflammatory substances (lipopolysaccharides, hydrogen sulfide and glutamate). Notably, the results of 16S rRNA gene and shotgun
metagenomic analysis have consistently identified five decreased genera (Roseburia, Faecalibacterium, Blautia, Lachnospira, and
Prevotella) and five increased genera (Streptococcus, Bifidobacterium, Lactobacillus, Akkermansia, and Desulfovibrio) in PD.
Furthermore, random forest models performed well for PD prediction based on 11 genera (accuracy > 80%) or 6 genes (accuracy >
90%) related to inflammation. Finally, a possible mechanism was presented to explain the pathogenesis of inflammation leading to
PD. Our results provided further insights into the prediction and treatment of PD based on inflammation.
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INTRODUCTION
Parkinson’s disease (PD) is an incurable, progressive, and chronic
neurodegenerative disease characterized by the formation of
Lewy bodies (mainly formed by misfolded α-synuclein) and the
loss of dopaminergic neurons in the substantia nigra1. More than
6 million individuals worldwide were diagnosed with PD. PD alters
dopaminergic, noradrenergic and serotonergic neurons in the
brain, causing a drop in dopamine levels and premotor and non-
motor symptoms, including akinesia, rigidity, balance difficulties,
tremor, as well as neuropsychiatric, cognitive, autonomic and
sensory disturbances. These non-motor symptoms can appear
years or even decades before motor symptoms appear, but are
often unrecognized2, resulting in PD patients not receiving timely
treatment. Although PD has brought great medical and social
burdens, its specific pathogenesis is still unclear. Numerous
measurements have been used to diagnose PD and mainly
include positron emission tomography, cerebrospinal fluid tests,
and clinical symptoms3. However, positron emission tomography
is quite costly and the reproducibility and reliability of the
cerebrospinal fluid tests have been suspected. Therefore, it is
imperative to further explore the pathogenesis of PD and find
reliable and cheap biomarkers.
In recent years, it has been proposed that the human

gastrointestinal microbiota is one of the most important
pathogenic mechanisms of many neurodegenerative diseases4,5.
Gut microbiota encodes millions of genes and produces
thousands of metabolites, affecting the metabolism of the
host4,6,7. Substantial evidence suggests a bidirectional interaction
between the gastrointestinal microbiota and the central nervous

system, known as the “gut–microbiota–brain axis”8. Multiple
“gut–microbiota–brain axis” pathways exist, including molecules
with neuroendocrine activity produced by microbes (such as
gamma-aminobutyric acid and serotonin) and the gut microbial
community influenced by the central nervous system8. These
connections form a feedback loop between human physiology
and the state of the microbial community. In recent years, the gut
microbiota has been proven to play a vital role in the progression
of PD in animal models through the gut–microbiota–brain axis9,10.
Multiple studies have described prodromal symptoms (gastro-

intestinal motility disorders) affecting the quality of life of patients
with PD, including delayed gastric emptying and chronic
constipation11. Intestinal symptoms (e.g., constipation) often
precede motor symptoms, indicating a possible pathogen in the
gut of PD patients. Based on neuropathology, Braak et al.12

suggested that PD may be caused by an enteric pathogen that
can cross the intestinal mucosal barrier and enteric neurons,
and ultimately enter the central nervous system via the vagus
nerve. The hallmarks of PD, Lewy bodies and misfolded α-
synuclein proteins, were found in both the central and enteric
nervous systems13. The transport of α-synuclein in the
gut–microbiota–brain axis and the newly discovered vagal path-
way may induce or accelerate the progression of PD11. Removing
the vagus nerve appears to reduce the risk of PD14,15. In a
landmark study, Sampson et al. demonstrated that the micro-
biome itself can trigger or delay the motor symptoms of PD in
mice9. Microbiota may facilitate α-synuclein diffusion, since the
gut microbiota can secrete extracellular amyloid, and proteins
such as PrPSc, Tau, and α-synuclein can spread in the body like
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prions16. Aggregation-prone proteins such as α-synuclein and Tau
spread throughout the body during microbial colonization, biofilm
formation and infection17. In PD patients, several indicators of
symptom severity were positively correlated with microbial alpha
and beta diversity indices18. The above evidence suggests that
dysbiosis of gastrointestinal microbiota may provide an interest-
ing clue to explore the pathogenesis of PD and become a new
diagnostic and therapeutic target.
We hypothesized that PD patients in different countries and

regions share common microbial and metabolic characteristics. In
this study, the bacterial communities and metabolic pathways of
PD were characterized by collecting massive open-access 16S
rRNA gene and shotgun metagenomic data from extensive
studies. Our goal is to understand the underlying microbial
community and metabolic patterns in the gut of PD patients, then
reveal the pathogenesis of PD and construct a model to
predict PD.

RESULTS
Changes in bacterial communities
After quality control, nine datasets (A1–9) including 2269 16S
rRNA gene amplicon samples (1373 PD and 896 healthy controls)
and two datasets (M1-2) including 236 shotgun sequencing
metagenomic samples (122 PD and 114 healthy controls) were
collected by searching the keywords “Parkinson” and “microbes”
in the National Center for Biotechnology Information (NCBI) SRA
database and Google Scholar (Fig. 1 and Supplementary Table 1).
The resulting merged operational taxonomic unit (OTU) table
contained 3847 taxa from 2269 16S rRNA gene samples
(Supplementary Table 2). To explore whether the composition of
the gut bacteria differed between the PD patients and healthy
control, firstly, three α-diversity indexes (Shannon, Simpson,
Pielou) were calculated, and Principal coordinates analysis (PCoA)
was performed. The results (Supplementary Fig. 1) showed that
there was no significant difference in α-diversity (0.89 > p > 0.62,
Wilcoxon rank-sum test) and β-diversity (p= 0.72, analysis of
similarities) between PD and Healthy control.
To explore the potential taxon co-occurrence pattern in PD,

Spearman’s correlations between the microbial taxa (OTU) were

calculated and visualized based on the combined dataset (A1–9).
There was an obvious difference in the network structure between
PD and healthy control (Fig. 2 and Supplementary Fig. 2). The
results revealed a less number of nodes and links in the PD
network (Supplementary Table 3). After removing nodes with few
connections (<5), the network of healthy control contained four
main modules while PD had only three (Fig. 2). The nodes in the
network were dominated by Enterobacteriaceae, Bacteroidaceae
and Prevotellaceae. It is worth noting that Prevotellaceae (Pre-
votella) did not appear in the PD network (Fig. 2).
At the genus level, the relative abundances of 23 genera

(Fig. 3a) were significantly different between healthy control and
PD in at least three datasets (p < 0.05, Wilcoxon rank-sum test).
Amplicon dataset 7 (A7) can not be analyzed separately for
difference statistics because it only contains PD samples. These 23
genera also share the same variance in the combined dataset
(A1–9) except Collinsella, Ruminococcus, Dorea, Shigella, and
Anaerostipes (Supplementary Fig. 3). Five genera (Roseburia,
Faecalibacterium, Blautia, Lachnospira, and Prevotella) are well-
known producers of short-chain fatty acids (SCFAs) in the gut19,20,
and their abundances were significantly reduced in PD. These five
genera may be associated with anti-inflammation in PD.
Streptococcus21 is an opportunistic pathogen, and its relative
abundance was significantly increased in PD. Three genera
(Bifidobacterium22, Lactobacillus23, and Akkermansia24) are probio-
tics, but their abundances were significantly increased in PD
patients. Desulfovibrio25 predominates among intestinal sulfate-
reducing bacteria with the ability to produce hydrogen sulfide
(H2S), and its abundance was significantly increased in PD. These
five genera may be associated with pro-inflammation in PD. It may
seem ironic that these probiotics were elevated in PD patients, but
they may also act as opportunistic pathogens and even cause
damage in immunocompromised individuals under certain con-
ditions22–24. SCFAs are anti-inflammatory under certain conditions,
while H2S promotes intestinal inflammation. Except for these ten
genera, there seemingly are no reports related to PD in other
genera. The results above suggested that inflammation may
play a key role in the pathogenesis of PD. Previous studies have
similarly shown a strong link between PD and inflammation-
associated bacteria26,27. Therefore, metabolic pathways related to
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Fig. 1 Study design. Nine datasets (A1–9) including 2269 16S rRNA gene samples and two datasets (M1-M2) including 236 shotgun
metagenomic samples were collected from 11 studies. Taxonomy was inferred from 16s rRNA gene based on the operational taxonomic unit
(OTU), the function was inferred from shotgun sequencing, and the genome was obtained by binning (metagenome-assembled genomes).
Finally, the biomarker was found using machine learning.
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inflammatory metabolism and the ten potential inflammation-
related genera mentioned above were further analyzed.

Significant changes in inflammatory metabolic pathways
Functional annotation was performed using HUMANn3 based on
the metagenomic combined dataset (M1–2), and then potential
inflammatory metabolism-related pathways and genes were
selected for further analysis. By reviewing the literature on Google
Scholar with “Parkinson” and “inflammation” as keywords, four
commonly reported metabolic pathways (SCFAs, sulfate reduction,
lipopolysaccharide, and glutamate) related to intestinal inflamma-
tion were identified18,19. SCFAs resist intestinal inflammation,
while sulfate reduction, lipopolysaccharide, and glutamate pro-
mote intestinal inflammation. The genes of these four metabolic
pathways were determined through the MetaCyc database28.
Finally, 7958 genes (UniRef90) for these four metabolic pathways
were extracted from the results of HUMANn3. The transcripts per
million (TPM) abundances29 of genes belonging to the same
metabolic pathway were summed as the abundance of that
metabolic pathway.
The TPM abundances of 63 genes were significantly changed

(p < 0.01, Wilcoxon rank-sum test, Supplementary Fig. 3b) in the
combined dataset (M1–2). Among them, 19 SCFAs genes were
significantly decreased, and all sulfate reduction (4), lipopolysac-
charide (4) metabolism and glutamate metabolism (18) genes
were increased in PD. Moreover, the SCFAs pathway was
significantly decreased, while the sulfate reduction, lipopolysac-
charide and glutamate metabolism pathways were increased in
PD (p < 0.01, Wilcoxon rank-sum test, Fig. 3b).
HUMANn3 provided the correspondence between genes and

microorganisms, which allows us to analyze the source of genes29.
The source of the genes of the four metabolic pathways was
shown in Fig. 4 and Supplementary Table 4 at the genus level in
the metagenomic combined dataset (M1-2). Bacteroides, Faecali-
bacterium, Prevotella, and Alistipes had the greatest contribution to
the four metabolic pathway genes. 128 genera can provide SCFAs
metabolism genes, including Roseburia, Faecalibacterium, Blautia,
Lachnospira, and Prevotella. 114 genera can provide glutamate
metabolism genes, 89 genera can provide lipopolysaccharide
metabolism genes, and 73 genera can provide sulfate reduction
genes, including Streptococcus, Bifidobacterium, Lactobacillus,

Akkermansia, and Desulfovibrio. It is worth noting that Roseburia
not only provided a large number of SCFAs genes, but its
contribution to SCFAs genes decreased (p < 0.05, Wilcoxon rank-
sum test) in PD, from 1.5% in healthy control to 0.9% in PD, and
the contribution of Desulfovibrio to sulfate reduction genes was
significantly increased (p < 0.05, Wilcoxon rank-sum test), from
0.04% in healthy control to 1% in PD (Fig. 4 and Supplementary
Table 4).

Genome reconstruction
To further explore the correspondence between genes and
microorganisms, binning analysis was performed. Binning yielded
654 metagenome-assembled genomes (MAGs) with high-quality
(completeness > 80%, contaminate < 5%, 652 bacterial MAGs and
2 archaeal MAGs) from the combined dataset (M1-2), including 13
phyla (Fig. 5a and Supplementary Table 5). Most MAGs are
Firmicutes_A (318) and Bacteroidota (116), and most Bacteroidota
MAGs had high relative abundance. For the combined dataset
(M1-2), the relative abundances of 242 MAGs were significantly
different between PD and healthy groups (p < 0.05, Wilcoxon rank-
sum test), and the number of pro-inflammatory and anti-
inflammatory genes contained in each MAG is shown in
Supplementary Fig. 4 and Supplementary Table 5.
As shown in Fig. 5b, 17 MAGs related to inflammation were

significantly different between PD and healthy groups (p < 0.05,
Wilcoxon rank-sum test). The results of MAGs analysis (Fig. 5b)
were generally consistent with amplicon analysis (Fig. 3a) that
the relative abundances of potential anti-inflammatory MAGs
were significantly decreased in PD in at least one dataset (M1
and M2) and potential pro-inflammatory MAGs were significantly
increased.

Predicting PD with inflammatory microbes and genes
The above results have demonstrated that the relative abun-
dances of potential inflammation-related microorganisms and
genes in PD changed significantly. These differential microorgan-
isms and genes were then used to build classification models
through three machine learning methods (logistic regression (LR),
support vector machines (SVM), and random forests (RF)), and the
receiver operating characteristic (ROC) curve and the area under
the curve (AUC) were used to evaluate the model performance.
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Fig. 2 Co-occurrence networks. Co-occurrence networks were calculated based on Spearman correlations at the operational taxonomic unit
(OTU) level. The more connections, the larger the node (degree). Only strong (r > 0.7) and significant (p < 0.05) correlations are shown in the
figure and nodes with few connections (<5) were removed. a Healthy controls. b Patients with Parkinson’s disease (PD). Nodes were colored by
family.
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Based on the 32 genera (Supplementary Fig. 3a) which
significantly changed in PD, the classification model with high
accuracy can be obtained (Fig. 6a), and the performance of RF
(AUC= 0.99, Accuracy= 97%) was better than that of SVM
(AUC= 0.80, Accuracy= 72%) and LR (AUC= 0.72, Accuracy=
66%). Based on the 63 genes (Supplementary Fig. 3b) which
significantly changed in PD, the classification model with high
accuracy also can be obtained (Fig. 6b), and the performance of RF
(AUC= 0.99, Accuracy= 99%) was better than that of SVM
(AUC= 0.88, Accuracy= 80%) and LR (AUC= 0.90, Accuracy=
82%). Therefore, RF was chosen for further analysis.
Considering that it is necessary to minimize the measured

indicators to reduce the cost in the actual diagnosis process, the
model was further optimized. Firstly, the MeanDecreaseGini
index of the 32 genera and the 63 genes was calculated. The
larger the MeanDecreaseGini, the more important it is to the
model. Then, the genes were sorted according to MeanDecrea-
seGini from large to small (Supplementary Fig. 5), and different
numbers of genera or genes from the front were selected for
modeling. Ultimately, the optimal model was obtained based on
11 genera or 6 genes (Supplementary Fig. 6). The optimized
models (Fig. 6c, d) had good performance on both the training
set (AUC= 1, Accuracy= 100%, based on 11 genera or 6 genes)
and the test set (AUC= 0.869, Accuracy= 80.7%, based on 11
genera; AUC= 0.889, Accuracy= 91.7%, based on 6 genes).

The importance of each variable in the optimal model is shown
in Supplementary Fig. 7.

DISCUSSION
This study is the largest meta-analysis of the gut microbiome in PD
to date, which provided for the first time an integrative analysis of
16S rRNA gene and shotgun metagenomic data on PD and a
detailed exploration of how alterations in gut bacterial composi-
tion and function affect PD. Firstly, there was no significant
difference in bacterial alpha and beta diversity between PD
patients and healthy controls (Supplementary Fig. 1). Since the
samples in this study came from various countries and regions, the
difference may be masked by some confounding factors such as
dietary habits, region, gender, sampling method, etc23. However,
the co-occurrence networks (Fig. 2 and Supplementary Fig. 2)
showed that the co-occurrence network of PD was obviously
changed. Of note, Prevotella was only present in the network of
healthy control after removing the nodes with few connections
(<5). In addition, Fig. 3a and Supplementary Fig. 3a showed that
the relative abundances of potential anti-inflammatory bacteria
were decreased and potential pro-inflammatory bacteria were
increased in PD.
Therefore, we hypothesized that inflammation is a factor

contributing to PD. Then, the genes of metabolic pathways
associated with inflammation were further analyzed. Here, SCFAs
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Fig. 3 Differences in microorganisms and metabolic pathways between healthy controls and patients with Parkinson’s disease (PD).
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significant differences in transcripts per million (TPM) abundance. Metagenomic datasets (M1–2). SCFAs: short-chain fatty acids. The error bar
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metabolism was a potential anti-inflammatory metabolic pathway,
and potential pro-inflammatory metabolic pathways include
lipopolysaccharide, H2S and Glutamate metabolism. Our results
showed that (Supplementary Fig. 3b and Fig. 3b) more than half of
the potential anti-inflammatory genes and pathways were
significantly decreased in PD, while that of all the potential pro-
inflammatory genes and pathways were significantly increased.
Furthermore, the gene source and binning analysis (Figs. 4 and 5)
clarified which microorganisms provided these genes at the genus
and genome level. These results further demonstrated that the
significantly altered gut microbes mentioned above indeed have
potential anti- or pro-inflammatory functions. Finally, the optimal
RF models were obtained with high accuracy (>80%) to
distinguish PD from healthy control based on the 11 genera or
the 6 genes related to inflammation. Interestingly, the model
based on the 6 genes outperformed the model based on the 11
genera (Fig. 6). However, the diagnosis of PD remains a problem
since many clinical characteristics of PD overlap with other
neurodegenerative diseases30.
SCFAs31,32 are the most common gut microbial metabolites, of

which over 95% are composed of butyrate, propionate and
acetate. SCFAs have numerous physiological functions such as
manipulating the maturation of microglia (immune effector cells)
in the central nervous system, strengthening intestinal epithelial

cells, and reducing inflammation risk19. SCFAs also can bind to G
protein-coupled receptors such as GPR41, GPR109A and GPR43,
and exert anti-inflammatory effects by activating regulatory
T cells33. Previous studies also demonstrated that the SCFAs-
producing bacteria were reduced in PD32. A study in Germany
showed that PD patients had reduced SCFAs in their feces34.
Reduced SCFAs (i.e., butyrate, acetate, and propionate) in feces
were also found using both a targeted gas chromatography
platform and an untargeted nuclear magnetic resonance meta-
bolomics platform35. In this study, five potential SCFAs producers
(Roseburia, Faecalibacterium, Blautia, Lachnospira, and Prevotella)
were decreased in PD, which was consistent with previous
studies19,20,32. However, the change of Prevotella in PD was
controversial in previous literature. For example, the previous
meta-analysis19,32 reported that most studies found a decreased
Prevotella in PD, but opposite results were also obtained in some
studies. Wallen et al.23 claimed that this contradiction may be due
to the use of different taxonomic classifiers in different studies
(Supplementary Table 1). To avoid this contradiction, the same
taxonomic classifier was used for the nine amplicon datasets in
this study.
Lipopolysaccharide is a component of the outer wall of Gram-

negative bacteria. Bacterial lipopolysaccharide was proven to alter
miRNA expression in macrophages, resulting in a cascade of
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inflammatory responses22. This process will lead to mitochondrial
dysfunction, iron accumulation, dopamine depletion, and neuroin-
flammation that may further drive the development of PD36.
Lipopolysaccharide can also lead to toll-like receptor (TLR)
activation, causing gut and brain inflammation and barrier
deficiency in PD. PD mouse models indicated that lipopolysac-
charide can result in a loss (34%) of dopamine neurons and a
heavy pro-inflammatory response through glial activation and
increased TNF-α, IL-10, IL-6, and IL-120. Pietrucci et al.37 also
reported a high level of lipopolysaccharide synthesis in PD, which
is consistent with the findings of this study. However, it should be
noted that not all bacteria that produce lipopolysaccharides will
promote inflammation. Therefore, in this study, these bacteria
which increased in PD and contain lipopolysaccharides synthesis
genes were thought to have the potential to promote inflamma-
tion in PD. However, it is worth noting that these bacteria can not
be considered as “classical intestinal pro-inflammatory bacteria”,
because there was no direct evidence to prove that they have a
pro-inflammatory effect. Similarly, the other changed bacteria
mentioned in this paper can not simply be considered as “classic
inflammation-associated bacteria”, such as Lactobacillus and
Bifidobacteria.
As a gas neurotransmitter, H2S is produced by sulfate reduction

of certain gut microbes (such as Desulfovibrio), which can affect
neuronal signaling at low concentrations and be severely toxic at

high concentrations25. High concentrations of H2S can help to
release mitochondrial cytochrome c into the cytoplasm, where the
cytochrome can then form α-synuclein free radicals, ultimately
triggering the aggregation of α-synuclein38. In addition, H2S can
increase the level of iron in the cytoplasm, which will further lead
to α-synuclein aggregation. High concentrations of H2S also can
inhibit intestinal motility and cause constipation, serious central
nervous system dysfunction and even death39. H2S can reduce
disulfide bonds in the mucosal layer of the enteric epithelium,
thereby disrupting the intestinal barrier40,41. Desulfovibrio is the
dominant sulfate reduction bacteria in the human gut25, also
producing lipopolysaccharide and Fe3O4. Desulfovibrio has the
capacity to reduce ferric iron to ferrous iron by the periplasmic
[FeFe]-hydrogenase, which is present in almost all Desulfovibrio,
and thus can produce Fe3O4

42. Exposed Fe3O4 nanoparticles have
been proven to stimulate α-synuclein aggregation43. Of note,
multiple lines of evidence in this study (Figs. 3, 4 and 5) have
repeatedly confirmed that Desulfovibrio can provide sulfate
reduction genes and its relative abundance is significantly
increased in PD which was consistent with the previous study25.
Glutamate acts as an excitatory neurotransmitter, causing

excitatory responses44. Glutamate is the richest excitatory
neurotransmitter in the human brain, which is 1000 times higher
than other important excitatory neurotransmitters such as
serotonin, dopamine, and norepinephrine45. Excessive glutamate
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induces overstimulation of glutamate receptors and increases
intracellular Na+ and Ca2+ concentrations, which can directly lead
to neuronal damage and cell death. Inflammation is known to
induce glutamate excitotoxicity, and a high level of glutamate will
cause elevated harmful amino acid metabolite (phenylacetylglu-
tamine) that further exacerbate inflammation46. For these reasons,
glutamate synthesis was defined as a potential pro-inflammatory
pathway in the present study. However, this does not imply that
glutamate is a formal inflammatory factor.
The combination of a mucus layer composed of mucins with

the gut microbiota is considered as a gut biofilm. The gut biofilm
can prevent intestinal damage, thereby preventing intestinal
permeability. Decreased Blautia, Roseburia, and Faecalibacterium
in this study (Fig. 3 and Supplementary Fig. 3) are commensal
bacteria involved in gut biofilm24. Increased Akkermansia (Figs. 3
and 5) which has been reported47 may lead to intestinal
permeability, as this genus requires mucus for energy, leading
to biofilm disruption. Defects in the gut barrier increase the risk
of systemic exposure to inflammatory microbial products such as
lipopolysaccharide18. In addition, increased lipopolysaccharide
and decreased lipopolysaccharide-binding protein were
detected in the blood, supporting the existence of a defect in
the intestinal barrier48.
Growing research supported inflammation as a hallmark of

PD49,50. Raised numerous inflammatory molecules in the brain and
blood were founded in PD patients1,49. Excess inflammatory
microbial products (such as lipopolysaccharides) may cause
damage to the intestinal barrier, further leading to systemic
inflammation51. Compared with healthy controls, PD patients had
higher levels of zonulin and alpha-1-antitrypsin, markers of
intestinal permeability. Researchers found that the longer the
course of PD, the less anti-inflammatory bacteria and more

pathogenic bacteria20. High-level intestinal inflammation can
activate glial cells and enteric neurons, and lead to α-synuclein
misfolding and aggregation31.
Based on the above analysis, we proposed a potential model to

elucidate how inflammation contributes to PD (Fig. 7). In the gut
of PD patients, the changed bacteria may lead to a decrease of
anti-inflammatory factors (such as SCFAs) and an increase of pro-
inflammatory factors (such as lipopolysaccharide, H2S and
glutamate), causing intestinal inflammation and intestinal barrier
damage. Intestinal barrier defect induces leakage of the micro-
biota and its metabolites (such as lipopolysaccharide, H2S and
glutamate) into the body, prompting the production of inflam-
matory cytokines and pathological α-synuclein, further causing
blood-brain barrier deficiency. These microorganisms and their
metabolites can cross the blood-brain barrier through the humoral
system, resulting in microglia and astrocytes activation and brain
neuroinflammation9. Pathologic α-synuclein may be transmitted
to the brain through the vagus nerve or other pathways14,15,47.
These inflammatory factors, pathological α-synuclein, and micro-
bial metabolites lead to the dysfunction and even death of
dopaminergic neurons, eventually causing PD.
In conclusion, we presented the largest-to-date meta-analysis of

the microbial community in the gut of PD, including 16S rRNA
gene and shotgun metagenomic data simultaneously. The results
showed that potential pro-inflammatory bacteria and genes in PD
were significantly increased, while potential anti-inflammatory
bacteria and genes were significantly reduced. These changes may
result in decreased levels of SFCAs, which may have anti-
inflammatory effects, and increased levels of lipopolysaccharides,
H2S and glutamate, which may have pro-inflammatory effects.
Furthermore, RF models can predict PD with high accuracy based
on 11 genera (>80%) or 6 genes (>90%) associated with
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inflammation. Finally, we proposed a potential mechanism to
clarify how inflammation contributes to PD. We believe that
inflammation may be a future therapeutic target for PD.

METHODS
Data collection
After quality control (for details, see below), metadata related to PD
from 7 countries was collected from 11 studies with 2269 16S rRNA
gene amplicon samples (1373 PD and 896 healthy controls) and
236 shotgun sequencing metagenomic samples (122 PD and 114
healthy controls) by searching the keywords “Parkinson” and
“microbes” in the National Center for Biotechnology Information
(NCBI) SRA database and Google Scholar (Fig. 1). Raw data in this
study were obtained from two open-access databases: The European
Nucleotide Archive and NCBI SRA database. Details of metadata are
provided in Supplementary Table 1, such as BioProject number,
country, database, primers, sequencing platform, etc. For the nine 16S
rRNA gene studies, four different primer pairs (515F:806R; 314F:806 R;
520F:907R; and 341F:785R) were identified from the metadata, using
the V3-V4, V4, and V4-V5 regions to produce amplicons. However,
only four of the nine 16S rRNA gene studies we collected provided
some confounding factors. Therefore, this study did not control for
confounders in our subsequent analysis.

16S rRNA gene data processing
According to previous research52,53, adapter, barcodes, and low-
quality reads (quality score below 20) were screened using Cutadpt
v3.454 and paired-end reads were joined using VSEARCH v2.755. To

avoid the interference caused by different sequencing regions, the V4
region of all 16S rRNA gene data was extracted using Cutadpt v3.4
with the primer set 520F-785R. Reads <150 bp or samples with fewer
than 10,000 reads were removed before OTU clustering. After quality
control, all reads were mapped to Greengenes database 13.8 with
97% identity using VSEARCH v2.7 to create the OTU table and assign
taxonomy to reference sequences based on the taxonomic informa-
tion in the Greengenes database52. The Greengenes database is
comprised of full-length sequences which can further reduce the
biased result from different 16 S rRNA gene regions. The OTUs that
only appeared in less than one-tenth of all samples were deleted to
address PCR biases.

Shotgun data processing
The quality control process of shotgun data was the same as
above. Besides, human reads were removed using KneadData
software (https://huttenhower.sph.harvard.edu/kneaddata) with
the default parameters. Functional profiling was performed with
HUMANn329 using clean reads with default settings based on the
UniRef90 database. The associations between genes and micro-
organisms were obtained from the result of HUMANn3.
MEGAHIT v1.2.9 was used to assemble the clean reads into

contigs with the parameters (--min-contig-len 500, --presets meta-
sensitive)56. Contigs larger than 1500 bp were automated binned
by MetaWRAP v1.3.2 (Binning module) with the parameters
(--metabat2 --maxbin2 --concoct) to MAGs57. dRep v1.4.358 was
used to evaluate the completeness and contamination of MAGs.
MAGs were first dereplicated using dRep v1.4.3 with the
parameters (-comp 80 -con 5), and only high-quality MAGs

Fig. 7 The potential pathogenesis of Parkinson’s disease based on inflammation. Changes in bacterial abundance may lead to decreased
anti-inflammatory substances, such as short-chain fatty acids (SCFAs), and increased pro-inflammatory substances (Lipopolysaccharide,
Glutamate, H2S), resulting in the accumulation of pathological α-synuclein (α-syn), increased inflammatory cytokines, intestinal inflammation
and intestinal barrier defects. These substances may reach the brain through the vagus nerve or humoral system, and may eventually cause
Parkinson’s disease (PD).
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(completeness > 80% and contamination < 5%) were selected for
further analysis. Open reading frames were predicted from MAGs
using Prodigal v2.6.3 with default parameters59, and genes were
assigned to the UniRef90 database for functional annotation using
Diamond v2.0.660 with an e-value cutoff of 10−5. The taxonomic
classifications of MAGs were inferred using GTDB-Tk v1.561 with
default parameters. The Maximum-likelihood phylogenetic tree
was generated using the IQ-TREE v1.6.1262 based on the 120
bacterial (122 archaeal) concatenated ribosomal proteins
extracted by GTDB-Tk v1.5 and visualized using Evolview363.
Bootstrap values were calculated based on 1000 replicates.

Statistical analysis
Group differences in taxonomy and gene profile were analyzed
using the Wilcoxon rank-sum test. In this study, the results of all
multiple comparisons with p < 0.05 were considered statistically
significant, using the Benjamini-Hochberg (BH) method for p-value
correction. The correlations among OTUs were calculated using R
based on Spearman’s rank correlation (r > 0.7 and p < 0.05). The
OTUs that only appeared in less than one-tenth of all samples
were removed before the calculation of correlations. Co-
occurrence networks were established using Gephi v0.9.264. PCoA
was performed using the R package “vegan” based on the Bray-
Curtis distance and analysis of similarities (ANOSIM) was used to
determine whether the difference is significant after PCoA.

Model building based on machine-learning
To better distinguish PD patients from healthy controls, three well-
established machine-learning algorithms (i.e., LR, SVM, and RF52)
were performed using tenfold cross-validation by R to construct
models using the abundances of genus or genes. In the process of
model construction, the combined amplicon (A1–9) or metage-
nomic (M1–2) data were first divided into ten parts. Then nine
parts (training set) were randomly selected and used for model
construction, and then the remaining independent part (test set)
was used for model validation. After that, the ROC curve and AUC
were used to evaluate the model performance. The importance of
each feature in the model was assessed by the R package
“randomForest”. Then, the features were sorted by importance,
and different numbers of features were selected for modeling to
determine the most concise model. The detailed code and
documentation for model building are available on GitHub
(https://github.com/Yuange-lab/Shiqing-Nie).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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