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Summary

We develop the scale transformed power prior for settings where historical and current data 

involve different data types, such as binary and continuous data. This situation arises often in 

clinical trials, for example, when historical data involve binary responses and the current data 

involve some other type of continuous or discrete outcome. The power prior, proposed by Ibrahim 

and Chen (2000), does not address the issue of different data types. Herein, we develop a new type 

of power prior, which we call the scale transformed power prior (straPP). The straPP is constructed 

by transforming the power prior for the historical data by rescaling the parameter using a function 

of the Fisher information matrices for the historical and current data models, thereby shifting the 

scale of the parameter vector from that of the historical to that of the current data. Examples are 

presented to motivate the need for such a transformation, and simulation studies are presented to 

illustrate the performance advantages of the straPP over the power prior and other informative and 

non-informative priors. A real data set from a clinical trial undertaken to study a novel transitional 

care model for stroke survivors is used to illustrate the methodology.

Keywords

Bayesian analysis; heterogeneous endpoints; historical data; information borrowing

Correspondence: Joseph G. Ibrahim, Department of Biostatistics, University of North Carolina at Chapel Hill, North Carolina, USA. 
ibrahim@bios.unc.edu.
1E. M. Alt and B. Nifong are co-first authors and contributed equally to this work. Their names are listed in alphabetical order.

Financial disclosure
None reported.

Conflict of interest
The authors declare no potential conflict of interests.

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section at the end of this article.

HHS Public Access
Author manuscript
Stat Med. Author manuscript; available in PMC 2024 January 15.

Published in final edited form as:
Stat Med. 2023 January 15; 42(1): 1–14. doi:10.1002/sim.9598.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1 | INTRODUCTION

The availability and use of historical data has become increasingly common in the design 

and analysis of clinical trials and observational studies covering a wide array of research 

applications. The incorporation of historical data has been a widely discussed topic over 

the past 25 years with a vast literature including the use of hierarchical models and various 

informative priors. One such tool for incorporating historical data into a Bayesian design 

or analysis is the power prior1. The power prior has been used by many researchers in 

applications for the design and analysis of clinical trials and observational studies2,3,4. 

The use of the power prior has also been explored in epidemiological studies and clinical 

trials5,6. A thorough review of the power prior and its variants, with a detailed discussion on 

the theory, and numerous applications of the power prior has been conducted7. Notably, 

the power prior has been modified and adapted in numerous ways to, for example, 

enable the use of historical data in biosimilars trials8, allow for multiple historical data 

sets1,9,10, and facilitate adaptive clinical trial design11,12,13. Additional popular priors that 

incorporate historical data include the robust meta-analytic-predictive (MAP) prior14 and 

the commensurate prior3. A challenging issue that arises in a variety of study designs or 

analyses is when the historical and current data have different data types. For example, 

scenarios arise often in clinical trials in which the historical data may be binary, such as 

response data from a Phase 2 trial, but the current data may be continuous such as with a 

normally distributed outcome in a Phase 3 trial.

The power prior1 and its adaptations are not well equipped to handle this setting since 

the scales of the response variables in the historical and current data may be quite 

different and, as a result, the regression coefficients for the corresponding models may 

have non-comparable magnitudes. To solve this dilemma, the regression coefficients from 

the power prior based on the historical data need to be scaled in such a way so as to 

result in a reasonable prior for the regression coefficients in the current data likelihood. 

To achieve such a transformation, we propose to scale the regression coefficient by the 

matrix square root of the Fisher information matrix via the spectral decomposition (i.e., the 

eigendecomposition). We call this newly scaled power prior the scale transformed power 

prior (straPP). We use the term “historical data” in a general sense. The historical data that 

are incorporated could be for a single arm (e.g., only a control arm) or for multiple arms of a 

study (e.g., treated and control arms). We focus on the latter in this paper. The straPP and its 

generalization, which we refer to as the generalized straPP, are a broad class of priors closely 

related to the power prior and commensurate prior. A key aspect of the power prior is that 

the historical and current data share a common parameter, whereas the commensurate prior3 

assumes the parameter for the current data is normally distributed about the historical data 

parameter.

The rest of this paper is organized as follows. In Section 2, we give a detailed motivating 

example motivating the straPP for a Bayesian analysis. Section 3 gives a brief review of 

existing priors that utilize historical data. Section 4 presents the proposed methodology for 

the straPP in detail, develops the generalized straPP, and discusses connections with the 

commensurate prior, while focusing on the straPP for generalized linear models (GLMs). 

Section 5 presents detailed simulation studies using the straPP and its generalizations under 
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various settings and data types within the class of GLMs. Section 6 presents a real data 

analysis using the straPP and its generalizations to demonstrate the advantages of the straPP 

over other priors. We close the article with some discussion in Section 7.

2 | MOTIVATING EXAMPLE

The Comprehensive Post-Acute Stroke Services (COMPASS) study15 was a two-arm, 

cluster-randomized pragmatic trial designed to evaluate the effectiveness of a novel 

transitional care model (COMPASS care model) compared to usual care in mild-to-moderate 

stroke and transient ischemic attack (TIA) patients across a diverse set of hospitals within 

North Carolina, USA. The study consisted of two phases. In Phase 1 of the COMPASS 

study, 40 hospital units were randomized in a 1:1 allocation scheme to either implement 

the COMPASS care model (i.e., the intervention) or to maintain their usual care practices. 

The primary comparative effectiveness analyses for the COMPASS study were based on 

data from Phase I and can be found in Duncan et al16. During Phase I, the study team 

provided hospitals randomized to the intervention arm with significant support to help with 

implementation of the COMPASS care model. In a second phase (Phase 2; an optional 

extension phase), intervention hospitals attempted to sustain real-world delivery of the 

intervention with minimal support. Moreover, interested usual care hospitals that continued 

into Phase 2 were transitioned to provide the intervention as their standard of care. Thus, 

Phase 2 comparative effectiveness data were considered exploratory and were not published 

with the primary results. One of the exploratory objectives of the COMPASS study was 

to assess whether intervention arm patients who received a specialized electronic care plan 

(eCare plan) had better health outcomes than patients who did not after adjustment for key 

covariates to account for potential selection bias regarding which patients choose to attend 

the clinic visit at which they received a customized eCare plan.

We consider that exploratory objective and, in part motivated by the fact that receipt of 

the eCare plan is a participant-specific (not cluster-specific) variable, we do not address the 

clustered nature of the COMPASS study in this paper. Of note, Phase 2 of the COMPASS 

study added a continuous measure of physical health (the PROMIS Global Health Scale) that 

was not collected in Phase 1. We consider the analysis of Phase 2 patient outcomes based 

on the PROMIS measure from one large hospital that provided the COMPASS care model 

during both phases of the study. This relatively large hospital was selected due to having 

provided the intervention with consistency and high fidelity in both phases of the study. We 

use data from Phase 1 as historical data to inform analysis of the Phase 2 PROMIS data.

Since the PROMIS outcome was not collected for Phase 1 patients, we consider the 

incidence of one or more falls as the Phase 1 outcome. This variable is an indicator 

of whether the participant had at least one fall between hospital discharge and 90 days 

post-stroke (no falls versus at least one fall). As the historical and current outcomes measure 

related concepts (global disability versus global health) but are different scales (e.g., one 

binary, one continuous), these data sets make an ideal case study for comparing performance 

of the straPP to other commonly used informative prior distributions. In fact, we were able 

to investigate this relationship empirically as the incidence of falls outcome was collected 

during Phase 2 of the COMPASS study. Using a simple logistic regression model with 
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incidence of falls as the outcome and the continuous PROMIS measure as the covariate, 

we estimated the area under the Receiver Operating Characteristic (ROC) curve to be 

0.64 indicating fair predictive ability of the incidence of falls for the PROMIS measure. 

Accordingly, the Phase 1 dataset based on incidence of falls may be useful for inference on 

covariate effects for the PROMIS Global Health as measured in Phase 2.

The covariates of interest for our analyses were an indicator for receipt of the eCare plan 

within 30 days of hospital discharge, an indicator for having a history of stroke or TIA, an 

indicator for having non-white race, and categorized NIH stroke scale score (NIHSS; 0 = no 

stroke symptoms, 1–4 = minor symptoms, and ≥ 5 = moderate-to-severe symptoms).

The analyses presented in this paper are for illustration purposes only as they make use 

of data only from complete cases from the aforementioned hospital that participated in the 

COMPASS study. A more sophisticated analysis that incorporates information from patients 

with partially missing covariates and/or missing outcomes is beyond the scope of this paper.

3 | EXISTING PRIORS FOR INCORPORATION OF HISTORICAL DATA

3.1 | The Power Prior

The power prior1 is an informative prior derived from historical data that contain 

information on the same response and covariates as measured in a current study. The 

power prior, denoted πp(·), is a meaningful semi-automatic informative prior for the p × 1 

parameter of interest θ and is given by

πp θ D0 ∝ ℒ θ D0
a0π0(θ), (1)

where ℒ(θ | D0) denotes the historical data likelihood, D0 = (n0, Y0, X0) denotes the 

historical data, n0 denotes the sample size, Y0 denotes the n0 × 1 response vector, and X0 

denotes the n0× p covariate matrix. The distribution π0(θ) is called the initial prior and is 

often taken to be non-informative. The scalar 0 ≤ a0 ≤ 1 is called the discounting parameter 

and its value controls the weight given to the historical data. For example, a value of a0 = 0 

discards the historical data altogether resulting in a prior equal to the initial prior (complete 

discounting) and a value of a0 = 1 weights the historical and current data equally. The 

power prior is robust under many settings1 but does not account for scale differences in the 

response variable for the historical and current data.

3.1.1 | Extensions of the Power Prior—Several extensions and generalizations of 

the power prior have been developed including several that treat a0 as a random variable. 

Additional articles provide information on how to choose a0
17,18. The normalized power 

prior19 models a0 as a random variable, resulting in a joint distribution for a0 and θ, written 

as

πnp θ, a0 D0 = 1
C a0

ℒ θ D0
a0π0(θ)π a0 , (2)
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where C a0 = ∫ ℒ θ D0
a0π0 θ dθ is the normalizing constant for the conditional distribution 

for θ given a0 and π(a0) is a marginal prior for a0.

The partial-borrowing power prior20, provides a useful generalization of the power prior 

described above. This power prior borrows information on a subset of parameters common 

to both the historical and current models. Let θ = (θ1,θ2,θ3), where θ1 is a set of parameters 

common to both models, θ2 is a set of parameters that pertain only to the current data 

model, and θ3 is a set of parameters that pertain only to the historical data model. The 

partial-borrowing power prior is given as

πpb θ D0 ∝ ℒ θ1, θ3 D0
a0π0(θ), (3)

where π0(θ) is an initial prior for all components of θ. This is a flexible extension of the 

power prior since there are many cases where historical information may only be available 

for certain parameters (e.g., parameters associated with a control group).

Additionally, the power prior or normalized power prior can accomodate multiple historical 

data sets21. Forcusing on the power prior, suppose there are K historical data sets, denoted 

D0k for k = 1, … ,K. Let D0 = (D01,…, D0K) and a0 = (a01,…, a0K), then the power prior is 

defined as

πmp θ D0 ∝ ∏
k = 1

K
ℒ θ D0k

a0k π0(θ) . (4)

The development for a normalized power prior for multiple historical data sets is analogous. 

When a0k = a0 for all k, the power prior for multiple data sets effectively pools the historical 

data.

3.2 | Commensurate Prior

Unlike the power prior, the commensurate prior3 allows the model parameters in the 

historical and current data models, denoted ƞ and θ, respectively, to be different. The 

influence of the historical data is then controlled by the commensurability parameter, τ, 

which characterizes the degree to which the historical and current data are comparable. The 

commensurate prior3 can be written as

πc θ D0, η, τ ∝ ℒ η D0 Np θ η, τ−1Ip π0(θ), (5)

where π0(·) and ℒ(θ | D0) are as defined in (1) and Ip is the p × p identity matrix.

4 | THE SCALE TRANSFORMED POWER PRIOR

In this section, we develop the scale transformed power prior (straPP) which can be derived 

through a transformation of the regression coefficients in a power prior. Thus, the straPP is 

explicitly connected to the power prior. It can be viewed as a transformation of the power 

prior that is designed to modify the scale of the historical data model parameter ƞ to better 

align with the current data model. The derivation for the straPP is based on the assumption 
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that the standardized parameter values are approximately equal for the historical and current 

data models and it makes sense to consider such a prior when historical and current data 

have different outcomes, but nonetheless outcomes that measure related characteristics (e.g., 

aspects of physical disability).

Let ƞ and θ denote the parameters for the historical and current data models, respectively. 

Denote the Fisher information matrix for the current data model by I(θ) and consider its 

square root I1/2(θ) obtained via a spectral decomposition, i.e., I1/2(θ) = P(θ)Ʌ1/2(θ)P(θ)′, 

where Ʌl/2(θ) is a diagonal matrix consisting of square roots of the eigenvalues of I(θ) and 

P(θ) is a orthogonal matrix of corresponding eigenvectors. Note that I−1/2(θ) is the square 

root of the asymptotic covariance matrix for the maximum likelihood estimator for θ. The 

quantity I1/2(θ)θ can thus be viewed as a standardized or scaled version of θ. The resulting 

quantity is unitless and the scaling action can be interpreted as converting the parameter 

from the original scale into standard deviation units based on the asymptotic covariance 

matrix. One can of course define the analogous quantities for ƞ. Formally, the assumption of 

equal standardized parameter values can be expressed as

I0
1/2(η)η = I1

1/2(θ)θ, (6)

where I0(·) and I1(·) denote the Fisher information matrix based on the historical data model 

and the current data model, respectively. The solution to (6) is denoted by ƞ = g(θ) for some 

function g(θ). In order to rescale the power prior in (1) by applying the transformation in 

(6), one would have to solve for the historical data model parameter vector. One can take the 

power prior, indexed by parameter ƞ ≡ g(θ), and apply the transformation to obtain a prior 

for θ that is rescaled to match the current data model. The straPP, denoted πs(·), is then

πs θ D0 ∝ ℒ g(θ) D0
a0π0(g(θ)) dg(θ)

dθ ,

where ƞ = g(θ), a0 and π0(·) are as described in Section 3.1, and |dg(θ)/dθ| is the 

determinant of the Jacobian matrix for the transformation. The expression for the Jacobian 

matrix can be found in Appendix A of the Supporting Information. The fact that the 

transformation in (6) is locally one-to-one follows directly from the implicit function 

theorem22. As a result, propriety of the power prior implies propriety of the straPP. 

Establishing propriety of the power prior for GLMs and survival models has received 

significant treatment in the literature23,24,21, among others. By locally one-to-one, we mean 

that the mapping η I0
1/2(η)η will not generally be one-to-one for the full domain of ƞ for 

all models. We discuss the implications of the transformation being only locally one-to-one 

in Appendix B of the Supporting Information.

When the expression in (6) can be solved for ƞ, analysis using Markov Chain Monte Carlo 

methods implemented in standard software can be used to perform analysis with the straPP 

(e.g., Hamiltonian Monte Carlo in rstan25). This is still the case when cannot be solved 

for ƞ but the procedure is slightly more involved. Full details on model fitting using the 

straPP are given in Appendix C of the Supporting Information. This includes an efficient 

procedure that can be applied when the expression in (6) can be solved for θ but not ƞ, 
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termed complementary sampling, and a procedure that can be applied when the expression 

cannot be solved for either parameter.

When a0 = 0 and π0(·) is a uniform improper prior, the straPP will be an improper prior 

and its use may result in an improper posterior since the kernel of the straPP is simply the 

determinant of the Jacobian matrix. To avoid this complexity, we simply define the straPP 

to be equal to the initial prior when a0 = 0. The intended purpose of the straPP is for cases 

where one would want to incorporate historical data to some degree in the analysis of the 

current data. Thus, the case where a0 = 0 is of no practical relevance.

Lastly, it is straightforward to develop the straPP for multiple historical data sets. However, 

since the straPP transformation is a function of the historical data covariates, the covariate 

matrices for the data sets must be stacked in order to have a single, well-defined 

transformation. We discuss how to develop the straPP for multiple historical data sets in 

Appendix D of the Supporting Information.

4.1 | The Normalized straPP

As an alternative to choosing a fixed value of a0, one can develop a normalized straPP. The 

normalized straPP can be derived by applying the transformation in (6) to a normalized 

power prior. The normalized straPP, denoted πns(θ, a0 | D0), is given by

πns θ, a0 D0 = 1
C a0

ℒ g(θ) D0
a0π0(g(θ))π a0

dg(θ)
dθ , (7)

where, in this scenario, the normalizing constant is calculated before the scale 

transformation, such that

C a0 = ∫ ℒ η D0
a0π0(η)dη .

For computational simplicity, the power prior can be formulated using a normal 

approximation to the historical data likelihood7. Such a power prior is referred to as an 

asymptotic power prior. Under the normal approximation, the normalizing constant for a 

normalized asymptotic power prior has a closed form, greatly simplifying computations. For 

our implementation of the normalized straPP, we develop the prior based on a normalized 

asymptotic power prior.

4.2 | Partial-Borrowing with the straPP

One may wish to utilize the straPP to borrow information for a subset of components in the 

parameter vector. Let the p × 1 vector θ be partitioned into two vectors such that θ = (θl, θ2), 
where θ1 is r × 1 and θ2 is (p - r)×1. Suppose we would like to specify a straPP that borrows 

information on θ1 but does not borrow information on θ2. To arrive at a partial borrowing 

straPP, we integrate over the parameters for which information will not be borrowed and 

further include an initial prior for the parameters only in the new data model. Specifically, 

the partial-borrowing straPP is given by
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πpbs θ D0 = ∫ πs θ1, θ2 dθ2 π0 θ2 , (8)

where θ2 represents the parameters induced the straPP transformation but on which 

information will not be borrowed. The initial prior π0(θ2) therefore pertains to the 

parameters θ2 only informed by the current data model. In practice, the integration in (8) is 

conducted implicitly in the MCMC scheme, not analytically.

The partial-borrowing straPP enables use of the straPP in a variety of settings. Perhaps the 

most intuitive example is for situations where it is not appropriate to borrow information on 

the intercept parameter for the current data model. For example, the partial-borrowing straPP 

may be desirable when the historical response data is binary and the current response data is 

normal. In this case, the intercept terms will often have no logical connection even though 

covariate effects are related. Another instance where the partial-borrowing straPP may be 

preferred is the case where it is of paramount interest to borrow information on a treatment 

effect parameter, but borrowing information on nuisance parameters in the regression model 

is avoided simply to add a degree of robustness provided the current data alone are sufficient 

to estimate the other covariate effects.

4.3 | The Generalized Scale Transformed Power Prior (Gen-straPP)

The straPP is derived under the assumption that the standardized parameter values for the 

historical and current data models are equal. Such an assumption leads to a reasonable 

transformation to scale the parameter in a power prior when the historical data model is 

not the same as that of the current data. Nonetheless it is important to be able to conduct 

sensitivity analyses of the core assumption of the straPP. Thus, it is useful to develop 

a generalization of the straPP that provides a degree of robustness when the assumption 

of equal standardized parameter values does not hold. Towards this goal, we develop a 

generalized scale transformed power prior (Gen-straPP), in which we specify

I0
1/2(η)η = I1

1/2(θ)θ + c0, (9)

where c0 is a p × 1 vector that allows component-specific deviations from the assumption of 

equal standardized parameter values for ƞ and θ. We denote the transformation as η = gc0(θ). 

We note that c0 = 0 corresponds to the straPP. In practice, the most natural choice would 

be to take c0 to be a random vector and assign it a prior distribution. Therefore, we suggest 

taking c0 to be a random vector and assign it a normal prior, i.e., c0 ~ Np(0, ω0Ip), where 

the variance parameter ω0 is given a standard half-normal hyperprior. The Gen-straPP can 

be derived from the power prior in (1) using the transformation in (9) as

πgs θ, c0, ω0 D0 ∝ ℒ gc0(θ) D0
a0π0 gc0(θ)

dgc0(θ)
dθ π0 c0, ω0 , (10)

where π0(c0, ω0) denotes the joint prior for c0 and ω0. The transformation to obtain the 

Gen-straPP is a combination of (9) and an identity transformation for c0. It is straightforward 
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to show the determinant of that full-rank transformation is equal to the determinant shown in 

(10). Extending the Gen-straPP for partial-borrowing is equally straightforward.

The Gen-straPP is closely related to a commensurate prior formulated on the standardized 

parameter values. To see this, note that the Gen-straPP transformation in (9) can be re-

written as

I1
1/2(θ)θ = I0

1/2(η)η − c0 .

Let θ* = I1
1/2(θ)θ denote the standardized current data model parameter and η* = I0

1/2(η)η
denote the standardized historical data model parameter. For c0 ~ Np(0,ω0Ip) and given 

ƞ*, the standardized current data model parameter satisfies θ* | ƞ* ~ Np(ƞ*, ω0Ip). This 

is precisely the form of a commensurate prior and thus the hyperparameter ω0 is closely 

related to the commensurability parameter in a commensurate prior. In the context of the 

Gen-straPP, commensurability pertains to the standardized parameter values.

4.4 | The straPP for Generalized Linear Models

For the remainder of the paper, we assume that outcomes for the historical and current 

data arise from the class of generalized linear models (GLMs). Without loss of generality, 

we focus on development of the straPP (conditional on dispersion parameters) and note 

that with minor modifications one can similarly develop the partial-borrowing straPP, 

Gen-straPP, or partial-borrowing Gen-straPP. When discussing GLMs, in a departure from 

previous notation, we represent the parameters for the historical data model as ξ0 = (β0, 

ϕ0) and current data model as ξ1 = (β1, ϕ1), where β0 and β1 are the regression parameter 

vectors and ϕ0 and ϕ1 are the scalar dispersion parameters.

Let k index the historical (k = 0) and current (k = 1) data models, Y k
T = yk1, …, yknk  be the 

nk × 1 response vector, Xk be the nk × p covariate matrix (with intercept) with xkI
T  denoting 

the covariate vector for the ith observation, and ξk = (βk, ϕk) be the GLM parameters. The 

likelihood contribution for the ith case for dataset k can be written as

f ykI ξk = exp ϕk ykIℎk xkI
T βk − bk ℎk xkI

T βk − ck ykI − 1
2sk ykI, ϕk , (11)

where hk(·) is the link function, and bk(·), ck(·), and sk(·) are known functions based on the 

particular GLM family member. For the canonical link function, the p × p Fisher information 

matrix for the regression parameters based on the likelihood associated with (11) is given as

Ik ξk X0 = ϕkX0
TV k βk X0, (12)

where Vk(βk) = diag {νki(βk)}, with υkI βk = b̈k ℎk x0I
T βk  for i = 1, …,nk. Here diag 

{vki(βk)} denotes a diagonal matrix with the (i, i) element as (vki(βk)) and b̈k represents the 

second derivative of the function bk(·) taken with respect to its scalar argument.
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Consider a situation in which we only wish to borrow information on the regression 

parameters. Based on the general form of (12), the transformation leading to the straPP 

for GLMs is given by

I0
1/2 ξ0 X0 β0 = I1

1/2 ξ1 X0 β1 . (13)

Solving for β1, we denote the transformation implied by (13) as greg (ξ1, ϕ0|x0). Note that 

in (13), we develop the straPP by computing the Fisher information matrices for the current 

and historical data models using the covariate matrix X0 associated with the historical data. 

This is done to ensure the effective sample size for the straPP is equal to that of the power 

prior from which it is derived and to allow the straPP to be constructed using information 

entirely derived from the historical data (e.g., outcome and covariates) which is appealing. 

The straPP for GLMs can be written as

πs β1, ϕ0 ϕ1, D0 ∝ ℒ greg ξ1, ϕ0 X0 , ϕ0 D0
a0π0 greg ξ1, ϕ0 X0 , ϕ0

dgreg ξ1, ϕ0 X0
dβ1

,
(14)

where π0 (greg (ξ1, ϕ0|X0), ϕ0) is the inital prior for ξ0 and ϕ0. Similar to above 

developments, the transformation to obtain the partial-borrowing straPP for GLMs is a 

combination of (13) and identity transformations for ϕ0 and ϕ1. It is straightforward to show 

the determinant of that full-rank transformation is equal to the determinant in (14). The 

expression for the Jacobian matrix where both the historical and current data models have 

the canonical link can be found in Appendix E of the Supplemental Materials.

4.5 | The Linear Model Special Case

For illustrative purposes, we consider a special case in which both the historical and current 

data arise from linear regression models with known variances (i.e., σ0
2 and σ1

2 are known), 

henceforth referred to as the normal-normal case. When variances are known, ξk = βk 

and so, for ease of exposition, we simply write β0 and β1 to represent the complete 

parameter vector for the historical and current data models, respectively. This simple 

example is helpful for pedagogical reasons as an elegant closed-form can be derived for 

the straPP which provides insight into its rescaling properties. For the linear model, the 

Fisher information matrix in (12) reduces to Ik βk X0 = σk
−2X0

TX0.where ϕk = σk
−2 is the 

inverse variance. Based on this, the transformation leading to the straPP in (6) reduces to 

β0/σ0 = β1/σ1, which nicely illustrates the equality of parameter values once scaled by the 

standard deviations for the associated outcomes. In this simple setting, both the power prior 

and the straPP can be shown to be normal distributions, with power prior as

β1
PPN X0

TX0
−1X0

TY 0,
σ0

2

a0
X0

TX0
−1 . (15)
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For deriving the straPP, one can understand the scale transformation as a 

variable transformation on the regression parameter of the power prior for the 

historical data. We can write the power prior for the historical parameter as 

β0 N X0
TX0

−1X0
TY 0, σ0

2/a0 X0
TX0

−1
. The straPP transformation β1 = (σ1/σ0)β0 is a 

function of the historical parameter, thus the current regression parameter is also distributed 

normally with mean (σ1/σ0)E(β0) and variance σ1
2/σ0

2 Var β0 . We have

β1
straPPN σ1

σ0
X0

TX0
−1X0

TY 0,
σ1

2

a0
X0

TX0
−1 . (16)

One can see that the mean for the power prior in (15) is equal to the maximum likelihood 

estimate of β based on the historical data, which we denote as β0. Therefore, the mean for 

the straPP is equal to σ1/σ0 β0. Of equal importance, the variance of the straPP is equal to 

the variance of the power prior apart from the former being a function of σ1
2 and the latter σ0

2. 

Thus, the information contained in the straPP is essentially recalibrated to be a function of 

the variance associated with the current data model instead of the historical data model.

4.5.1 | Properties of the straPP for the Linear Model—For the normal-normal case 

when the assumption of the straPP transformation holds, the posterior mean based on an 

analysis with the straPP can be shown to be unbiased as a point estimator in the frequentist 

sense (see Appendix F of the Supporting Information). It follows that the posterior mean 

based on an analysis with the (unscaled) power prior is biased. However, the rescaling 

property of the straPP can result in a prior with less precise information about the parameter 

(e.g., when σ1 > σ0) and thus the variance of the posterior mean from an analysis with the 

straPP can exceed that of the power prior. This implies a trade-off between the bias and 

variance of the posterior mean point estimators, which becomes apparent when comparing 

their mean-squared error (MSE). Theorem 1 gives conditions under which the posterior 

mean based on the straPP has a smaller MSE than the posterior mean based on the power 

prior.

Theorem 1. Let β1j denote the (j + 1)th element of β1(j =0,… ,p - 1). Further βs, 1j and β p, 1j
denote the posterior mean point estimators for the straPP and power prior, respectively. For 

the normal-normal case, when β0 = g(β1) (i.e., the relationship of the straPP transformation 

holds), the straPP estimator βs, 1j has a lower MSE than the power prior estimator β p, 1j
under the following condition:

Var β s, 1j − Var β p, 1j

Percent Bias β p, 1j
2 ≤ β1j

2 . (17)

In general, the percent bias of β p, 1j depends on β1j. The proof of Theorem 1 can be found in 

Appendix F of the Supporting Information.
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5 | SIMULATION STUDIES

In this section, we present and discuss results from a collection of simulation studies 

designed to evaluate the performance of the straPP compared to the normalized straPP and 

Gen-straPP, as well as to the power prior, normalized power prior, commensurate prior, and 

use of a reference non-informative improper prior. The purpose of these simulations is to 

illustrate that the straPP and its variations have improved performance compared to other 

priors. Our comparison against the power prior, normalized power prior, and commensurate 

prior is to demonstrate empirically that these priors are not appropriate unless the data types 

(i.e., models) for the current and historical data are the same. Though this point is perhaps 

obvious to the reader, it is nonetheless helpful to see how poorly such priors perform in 

terms of bias-variance tradeoff.

In Section 5.1, we present simulation studies for the normal-normal case described in 

Section 4.5, where both the historical and current data models are linear regression models 

with known variances. In Section 5.2, we present simulation studies for a case where 

the historical data follow a logistic regression model and the current data follow a linear 

regression model with known variance, which we denote the binary-normal case. We 

generated 5,000 historical and current data sets for each unique parameter combination. 

For each simulated data set for Section 5.2, we used Hamiltonian Monte Carlo methods in 

rstan25 to obtain 25,000 posterior samples after 5,000 burn in.

5.1 | Simulation Studies for the Normal-Normal Case

For the normal-normal case, we performed simulation studies using parameter values that 

obey the assumption of the straPP transformation (e.g., β0 = g(β1)). We then simulated the 

historical data and current data based on the corresponding linear regression models. Thus, 

for this simulation, we are effectively evaluating the performance of the straPP compared to 

the alternative priors for the case where the straPP transformation assumption holds.

For the normal-normal case, the percent bias of the posterior mean estimator for the 

treatment effect based on the power prior (i.e.,β p, 11) does not depend on the true treatment 

effect (i.e., β11). As a result, one can calculate the exact threshold, denoted as β11* , where the 

MSE for the posterior mean estimators based on the straPP and power prior are equal, as

β11* = ±
Var βs, 11 − Var β p, 11

 Percent Bias β p, 11
= ±

2 n1σ0
2 + a0n0σ1

2

a0n0 σ0 − σ1
n1 + a0

2n0
n1 + a0n0

2 − σ0
2 n1σ0

2 + a0
2n0σ1

2

n1σ0
2 + a0n0σ1

2 2 .

We performed two sets of simulation studies for the normal-normal case. In both sets of 

simulations, the following were considered: n0 = 50, n1 = 100, a0 = 0.5, β10 = 1, and β11 ∊ 
{0.0,0.09,…, 1.71, 1.8}. For the first set of simulation studies, we considered a case where 

the historical data variance exceeded that of the current data (i.e., σ0 = 3 > σ1 = 1). For 

the second set of simulation studies, we reversed the relationship between the variances. 

The values of the historical data model parameters were then identified by solving β0 = 

(σ0/σ1)β1.
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Figure 1 panels (a)-(d) present the results of the first set of the simulation studies and panels 

(e)-(h) present the results from the second set. For the first set of simulation studies, since 

the rescaling action of the straPP leads to more precise information about the parameter in 

the current data model, the theoretical threshold for MSE equivalence between the power 

prior and straPP is never crossed and it can be seen that the straPP has uniformly better 

performance than the power prior and the uniform improper prior. For the second set, where 

the variance of the historical data is less than that of the current data, the rescaling action 

of the straPP results in a prior that provides more accurate inference (e.g., less bias in the 

posterior mean) but also less precision on average (i.e., larger variability in the posterior 

mean). For this case, there is a tradeoff in terms of MSE with the straPP having superior 

MSE only for values of β11 that exceed β11* = 0.9364. Nonetheless, the straPP still provides 

more accurate information even if the MSE of the posterior mean is not always superior 

to that of the power prior. Furthermore, the coverage probability of the straPP remains 

approximately 0.95, while that of the power prior decreases greatly as the true value of 

β11 increases. Additional simulation studies were performed using other inputs. Importantly, 

the results presented here are indicative of the general behavior of the straPP with the only 

material difference between simulations being that the threshold for MSE equality between 

the straPP and the power prior varies depending on the particular inputs used for simulation.

5.2 | Binary-Normal Case Simulation

For the binary-normal case, we consider the case where the parameters in the historical 

and current data models satisfy the assumption of the straPP transformation. The primary 

purpose of this simulation is to compare the straPP to the normalized (asymptotic) straPP. 

Additionally, the power prior, normalized power prior, and a non-informative reference prior 

were included for further comparison.

Unlike the normal-normal case, the form of I1
−1/2I0

1/2 β0  does not simplify and thus no 

elegant relationship between the parameters can be seen. We considered the following 

inputs: n0 = 100, n1 = 100, a0 = 0.5, β00 = −0.5, σ1 = 2, and β01 ∊ {0.0,0.1,…, 1.9,2.0}. The 

values of the current data model parameters were then identified by solving β1 = g−1(β0). 

Note that the value of the parameters for the historical data model were chosen so that 

0.38 ≤ p0, p1 ≤ 0.82 and are thus consistent with our recommendations in Appendix B 

of the Supporting Information for when a straPP may be appropriate. This constraint was 

implemented for the added purpose of ensuring the simulated data sets from the logistic 

model had sufficient variability in the outcome across treatment groups to avoid instability 

issues in model fitting. More complete details on prior specifications can be found in 

Appendix H of the Supporting Information.

Figure 2 panels (a)-(d) present results comparing performance characteristics of the straPP, 

normalized straPP, power prior, normalized power prior, and reference prior. Focusing first 

on MSE, one can see that the MSE (panel c) for the straPP and normalized straPP is 

smaller than for the other priors over the full range of β11. This is largely attributable to 

the reduction in the sampling variability of the posterior mean estimator (panel a). The 

normalized straPP admits the least biased point estimator among the set of priors that borrow 

information from the historical data. The straPP appears to have non-negligible bias for all 
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values of β11, but less bias than the power prior and normalized power prior when β11 > 

1.25. It is important to note that there is no theoretical guarantee that the posterior mean 

estimator will be unbiased (as there was in the normal-normal case). The fact that bias 

increases with β11 is related to the straPP transformation being less appropriate for extreme 

success probabilities as described in Appendix B of the Supporting Information.

6 | ANALYSIS OF THE COMPASS STUDY DATA

For analysis of the COMPASS data, we use incidence of falls as the Phase 1 outcome 

data (i.e., historical data) and the continuous PROMIS outcome as the Phase 2 outcome 

data (i.e., current data). The analysis assumes that the historical patient outcomes are 

independently distributed according to a logistic regression model and the current patient 

outcomes are independently distributed according to a linear regression model. As with 

any real data analysis, the true value of the variance parameter for the linear regression 

model is not known and thus we appropriately treat that parameter as random. The focus 

of this analysis is restricted to borrowing information on covariate effects as there is 

no rationale for borrowing information on the intercept parameters. Thus, information 

borrowing priors are based on partial-borrowing. For the purposes of comparison, we 

analyzed the COMPASS data using the straPP, Gen-straPP, power prior, commensurate 

prior, and a non-informative reference prior. As in the simulations, we consider use the 

partial-borrowing power prior and the partial-borrowing commensurate prior to highlight 

that these priors are not appropriate in this context. The initial priors for the power and 

commensurate priors were taken as in Section 5.2. All analyses were performed using 

Hamiltonian Monte Carlo with rstan25. For each prior, a total of 25,000 MCMC posterior 

samples were obtained after a burn in of 5,000 samples. To compare the overall quality of 

models fit based on the set of selected priors, we used the deviance information criterion26 

(DIC), where DIC a0 = 2E Dev ξ1 D1, D0, a0 − Dev ξ1 , where ξ1 = E ξ1 D1, D0, a0  and 

Dev ξ1 = − 2∑I = 1
n log f y1I x1I, ξ1 . Lower values of DIC indicate better fit.

For this illustration, we focus on the covariate effect associated with receipt of the 

COMPASS eCare plan, a key component of the intervention. The regression model included 

an indicator for receipt of the COMPASS eCare plan, an indicator for having a history of 

stroke or TIA, NIHSS score, and an indicator for having non-white race. After removing 

observations with missing values for the covariates of interest, the historical data sample size 

was 244 and the current data sample size was 385.

Table 1 presents the DIC value for different choices of a0 for the straPP, Gen-straPP, and 

power prior. For each prior, the DIC value roughly increases in a0 though the magnitude 

of increase is most substantial for the power prior. For the values of a0 considered by the 

authors, a0 = 0.1 was the optimal choice for the Gen-straPP and power prior and a0 = 0.25 

for the straPP. Though beyond the scope of this paper, in sample size determination contexts, 

the value of a0 may also be chosen a priori to ensure high Bayesian power and a well 

controlled Bayesian type I error rate27. Here, we simply take the optimal value from Table 1 

to use for analysis of the COMPASS data.
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Table 2 presents the DIC, posterior estimates, ratio of posterior variances (used as a measure 

of relative effective sample size), and 95% highest posterior density (HPD) intervals based 

on an analysis with each of the selected priors. We define the ratio of posterior variances as 

the posterior variance of the covariate effect for a given prior, divided by the corresponding 

posterior variance from an analysis based on the straPP. Posterior summaries for the 

intercepts and variance parameter for the linear regression model can be found in Appendix I 

of the Supporting Information.

In Table 2, analysis with the Gen-straPP and straPP resulted in the smallest DIC when 

compared to analyses with other priors. This suggests that the rescaling action of the straPP 

family is useful for translating the information on covariate effects from the incidence of 

falls outcome to the continuous PROMIS outcome. Aside from the general performance 

of the priors as measured by DIC, we also investigated the posterior estimates for the 

eCare Plan effect of interest. Compared to the straPP, power and commensurate priors, 

the posterior mean effect based on the Gen-straPP is much closer to the value based 

on the reference prior. While the posterior variance is reduced for analysis based on the 

straPP family of priors compared to the reference prior, the degree of variance reduction is 

substantially less than that based on the power and commensurate priors. These properties 

coupled with the higher DIC for the power and commensurate priors illustrate why the 

Gen-straPP may be more appropriate for this context than the other priors.

7 | DISCUSSION

In this paper, we developed the straPP to provide a mechanism for informative prior 

elicitation using historical data when the historical and current data types are different. The 

straPP is developed based on an assumption that parameter values between the models for 

the historical and current data are equivalent after appropriate rescaling. The Gen-straPP was 

developed to provide robustness to violations of the underlying assumption of the straPP. 

Additional research is needed to evaluate the extent to which the Gen-straPP can provide 

sufficient robustness across different GLMs (e.g., poisson, negative binomial, and gamma 

GLMs). Though we have developed the straPP and Gen-straPP as transformations of a 

power prior, the transformation could be applied to any prior (e.g., a robust mixture prior).

As is discussed in Appendix B of the Supporting Information, use of the straPP can only 

be advised when the historical data model regression parameters are consistent with the 

subspace of the overall parameter space where the straPP transformation is one-to-one. For 

example, applying the straPP to binary historical data with extreme success probabilities is 

not advised in general. Additional research will be needed to facilitate use of the straPP 

family of priors more broadly in these extreme contexts.

The straPP family of priors were developed specifically for univariate GLMs. In future 

work, the authors plan to extend development to allow for historical and/or current 

data models with time-to-event outcomes (e.g., proportional hazards models). Developing 

the straPP for time-to-event data poses several new challenges not addressed in this 

paper, including dealing with right-censoring and modeling higher dimensional nuisance 

parameters (e.g., baseline hazard). Additionally, the authors plan to develop Bayesian 

Alt et al. Page 15

Stat Med. Author manuscript; available in PMC 2024 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sample size determination methodology for use with the straPP and its generalizations in 

the design of clinical trials.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Panels (a)-(d) present the average log variance, bias, log MSE, and coverage probability for 

the posterior mean of β11, respectively, as a function of the true value of β11 plotted on 

the x-axis for the case where σ0 = 3,σ 1 = 1 for the scale transformed power prior, power 

prior, and uniform improper prior. Panels (e)-(h) present the same information for the case 

where σ0 = 1, σ1 = 3. straPP, scale transformed power prior; PP, power prior; UIP, uniform 

improper prior.
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FIGURE 2. 
Panels (a)-(d) present the average log variance, bias, log MSE, and coverage probability for 

the posterior mean of β11, respectively, as a function of the true value of β11 plotted on the 

x-axis for the straPP, normalized straPP, power prior, normalized power prior, and reference 

prior. straPP, scale transformed power prior; NstraPP, normalized straPP; PP, power prior; 

NPP, normalized power prior; RP, reference prior.
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TABLE 1

DIC for the Gen-straPP, straPP and PP with Various Values of a0

a 0

Model 0.10 0.25 0.50 0.75 1.00

Gen-straPP 2815.38 2815.65 2816.38 2816.82 2816.93

straPP 2815.38 2815.37 2817.25 2819.23 2821.30

PP 2816.44 2819.01 2822.20 2823.83 2824.92

Gen-straPP, generalized scale transformed power prior; straPP, scale transformed power prior; PP, power prior.
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TABLE 2

Posterior Estimates for the COMPASS Data

eCare Plan History of Stroke Minor NIHSS Moderate-Severe 
NIHSS Non-white

Model a 0 DIC Mean 
(SD) RPV 95% 

HPD
Mean 
(SD) RPV 95% 

HPD
Mean 
(SD) RPV 95% 

HPD
Mean 
(SD) RPV 95% 

HPD
Mean 
(SD) RPV 95% 

HPD

Gen-
straPP 0.10 2815.38 0.80 

(0.92) 1.17 (−1.01, 
2.60)

−0.97 
(1.13) 1.17 (−3.13, 

1.30)
−1.29 
(1.05) 1.08 (−3.34, 

0.78)
−3.54 
(1.16) 1.48 (−5.85, 

−1.35)
−1.61 
(1.55) 1.98 (−4.65, 

1.51)

straPP 0.25 2815.37 0.47 
(0.85) 1.00 (−1.21, 

2.14)
−0.54 
(1.05) 1.00 (−2.52, 

1.56)
−1.05 
(1.01) 1.00 (−3.04, 

0.92)
−2.79 
(0.95) 1.00 (−4.63, 

−0.89)
−1.64 
(1.10) 1.00 (−3.35, 

1.03)

RP – 2816.65 1.14 
(0.97) 1.29 (−0.78, 

3.02)
−1.05 
(1.22) 1.36 (−3.43, 

1.36)
−1.29 
(1.10) 1.18 (−3.46, 

0.87)
−4.27 
(1.31) 1.89 (−6.83, 

−1.70)
−2.10 
(2.08) 3.56 (−6.20, 

1.97)

PP 0.10 2816.44 0.46 
(0.76) 0.80 (−1.04, 

1.96)
−0.25 
(0.96) 0.83 (−2.17, 

1.57)
−0.53 
(0.80) 0.63 (−2.12, 

1.02)
−2.80 
(1.17) 1.51 (−5.14, 

−0.58)
−2.02 
(1.84) 2.77 (−5.75, 

1.41)

COM – 2818.47 0.53 
(0.84) 0.97 (−1.01, 

2.28)
−0.31 
(0.96) 0.83 (−2.32, 

1.41)
−0.25 
(0.86) 0.73 (−2.04, 

1.36)
−2.01 
(1.25) 1.72 (−4.55, 

0.23)
−1.45 
(1.34) 1.47 (−4.23, 

1.08)

RPV, ratio of posterior variances; Gen-straPP, generalized scale transformed power prior; straPP, scale transformed power prior; RP, reference prior; 
PP, power prior; COM, commensurate prior.
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