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Summary

Ambient RNA contamination in single-cell and single-nuclei RNA sequencing (snRNA-seq) is 

a significant problem, but its consequences are poorly understood. Here, we show that ambient 

RNAs in brain snRNA-seq datasets have a nuclear or non-nuclear origin with distinct gene set 

signatures. Both ambient RNA signatures are predominantly neuronal and we find that some 

previously annotated neuronal cell types are distinguished by ambient RNA contamination. We 

detect pervasive neuronal ambient RNA contamination in all glial cell types unless glia and 

neurons are physically separated prior to sequencing. We demonstrate that this contamination 

can be removed in silico and show that a previous single-nuclei RNA-seq based annotation of 

immature oligodendrocytes are glial nuclei contaminated with ambient RNAs. After ambient 

RNA removal, we detect rare, committed oligodendrocyte progenitor cells not annotated in most 

previous adult human brain datasets. Together, these results provide an in-depth analysis of 

ambient RNA contamination in brain single-nuclei datasets.
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In brief

Caglayan et al. examine brain single nuclei datasets and uncover signatures of neuronal 

contamination in glia that mask rare cell types and lead to improper cell annotation. The authors 

show how to reduce this contamination by using either in silico approaches or physical separation 

of cell types.

Introduction

Single-nuclei RNA-sequencing (snRNA-seq) experiments involve nuclei isolation and 

subsequent capture of each nucleus in a single droplet containing a unique cell barcode. 

However, this capture process can also encapsulate freely floating transcripts, resulting 

in contamination of the endogenous expression profile. These extraneous transcripts have 

been previously referred to as ‘ambient RNAs’ (Luecken and Theis, 2019; Young and 

Behjati, 2020). Since ambient RNAs are expected to be primarily derived from more 

abundant cell types, ambient RNA contamination in less abundant cell types can result 

in a considerably skewed endogenous expression profile. Thus, failure to account for 

ambient RNA contamination can result in biological misinterpretation, especially in cell 

types with less abundant transcripts. Many previous studies have not removed ambient RNA 

contamination from the endogenous expression profiles of their datasets; therefore, it is 

possible that ambient RNA contamination constitutes an important problem that has led to 

misinterpretations in the downstream analyses. In our study, we address this possibility be 

reanalyzing several previously published datasets.

In addition to contaminating the endogenous expression profiles of nuclei, ambient RNAs 

are also captured in droplets that do not capture nuclei. These droplets are referred to as 

‘empty droplets’ (Lun et al., 2019; Macosko et al., 2015). Interestingly, empty droplets do 

not always show a clear separation from the non-empty droplets in terms of unique read 

counts, underscoring the high levels of ambient transcripts that are captured in most single-

nuclei (and single-cell) preparations (Lun et al., 2019). The lack of clear separation between 

empty and non-empty droplets based on read counts makes it difficult to justify using a 

read count based cutoff (also called UMI -unique molecular identifier- cutoff). A UMI cutoff 

can lead to mis-calling of empty droplets as non-empty droplets or mis-calling of certain 

cell types that contain fewer transcripts than others as empty droplets (Luecken and Theis, 
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2019). Recent tools have addressed this problem by distinguishing non-empty and empty 

droplets by using other metrics such as expression profile and nuclear fraction (Heiser et al., 

2021; Lun et al., 2019; Muskovic and Powell, 2021). However, the composition of empty 

droplets is tissue-dependent and the specific composition of empty droplets for a given tissue 

is often not explored. Without proper understanding of the transcriptional composition of 

empty droplets, it can be difficult to decide whether a given cluster of cell barcodes are 

empty droplets or non-empty droplets that captured real nuclei / cells.

Taken together, ambient RNAs pose two challenges: contamination of the endogenous 

profile of real nuclei /cells and ambiguous separation of empty and non-empty droplets. 

With respect to these two issues, contamination in real nuclei / cells has received less 

attention. Several recently developed tools are specifically designed to remove ambient 

RNA contamination from real nuclei / cells; however, their utilization has been limited 

(Fleming et al., 2019; Yang et al., 2020; Young and Behjati, 2020). Additionally, while 

these tools aim to be effective across different tissues, the genetic signatures of ambient 

RNA contamination differ between tissue types. Thus, it is also important to characterize 

the overrepresented genes in the ambient RNA population of a given tissue type. This will 

aid both the interpretation of previously published datasets as well as assess the effects of 

ambient RNA contamination removal tools for specific tissues by evaluating the levels of 

ambient RNA population before and after the removal of contamination. In this study, we 

focus on snRNA-seq studies from brain tissue, one of the most frequently profiled tissues 

using this technique due to its high cellular heterogeneity (Bakken et al., 2021; Jakel et 

al., 2019; Nagy et al., 2020; Velmeshev et al., 2019). Brain tissue is also a good model to 

understand the effects of ambient RNA contamination since neurons are more abundant and 

contain more transcripts than glia in the adult mammalian cortex (Ruzicka et al., 2020). 

Therefore, ambient RNA profiles from snRNA-seq studies of brain should be biased for 

neurons. We hypothesize that this bias may contribute to both empty droplets with neuronal 

signatures as well as distinctive neuronal read contamination in non-neuronal cell types.

Here, we analyzed ambient RNA signatures from human brain snRNA-seq datasets (Table 

S1) by retaining additional cell barcodes that are typically removed due to low UMI 

counts. We found two types of ambient RNAs separated by their intronic read ratio: 

non-nuclear ambient RNAs with low intronic reads and nuclear ambient RNAs with high 

intronic reads. Comparisons with nuclei-sorted datasets revealed that non-nuclear ambient 

RNA can be cleared by physical nuclei sorting. We show that the ambient RNA signature 

is predominantly neuronal in origin, and all glia are contaminated with ambient RNAs. 

Ambient RNA contamination in glia was removed in datasets depleted of neurons (NeuN-

sorted datasets; NeuN-SDs) before droplet capture (Hodge et al., 2019). As an in-silico 
alternative, we used CellBender (Fleming et al., 2019) and subsequent subcluster cleaning, 

which also removed detectable ambient RNA contamination from glia. Re-analysis of the 

oligodendrocyte lineage trajectory after ambient RNA removal revealed that previously 

annotated immature oligodendrocytes are likely glial nuclei contaminated with ambient 

RNA. Instead, we found a rare, transient cell type named COPs (committed oligodendrocyte 

progenitor cells), which were previously described in an adolescent mouse dataset (Marques 

et al., 2016) but not described in most human snRNA-seq datasets with few exceptions 

(Jakel et al., 2019; Perlman et al., 2020). Together, our results provide an in-depth analysis 
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of ambient RNA contamination in single-nuclei brain datasets and reveal misinterpreted 

results that can be explained by ambient RNA contamination.

Results

Both nuclear and non-nuclear ambient RNAs confound cell type annotation

Studies of adult brain tissue have repeatedly shown greater number of transcripts present in 

neurons compared to glia (Ruzicka et al., 2020). Interestingly, several snRNA-seq studies 

reported some neuronal cell types (e.g. Neu-NRGN and Neu-mat in Figure 1A) that have 

fewer transcript counts than other neurons (Ruzicka et al., 2020; Velmeshev et al., 2019). 

We also noticed that Neu-NRGNs had higher mitochondrial reads than other neuronal cell 

types (Velmeshev et al., 2019) (Figure 1B). Since this dataset was generated by nuclei 

isolation, but not nuclei sorting (purification of DAPI+ nuclei with flow cytometry), we 

refer to it as non-sorted dataset 1 (NSD1). Considering the possibility of non-nuclear 

transcript contamination in nuclei-based sequencing, cell barcodes with high non-nuclear 

contamination should contain lower intronic read ratios since intronic reads will not be 

present in non-nuclear transcripts. We thus hypothesized that Neu-NRGNs and Neu-mat 

may be represented by cell barcodes with a high amount of such non-nuclear transcript 

contamination in NSD1. To test this hypothesis, we calculated the intronic read ratio per 

cell barcode (see methods) and found that Neu-NRGN but not Neu-mat displayed markedly 

lower intronic read ratios compared to other cell types (Figure 1C). To test whether these 

cell types are similar to normally discarded cell barcodes with low UMI counts, we then 

clustered an excess number of cell barcodes that contained low UMI counts together with 

the annotated cell barcodes from the original publication. To identify annotated cell barcodes 

that cluster with low UMI cell barcodes, we focused on the clusters that were largely, but 

not fully, filtered out (>75% filtered) in the original publication and named them “ambient 

clusters” (Figure 1D–E). We found that Neu-NRGN cell barcodes predominantly clustered 

with the ambient clusters while other cell types were almost absent in ambient clusters, 

except for Neu-mat (Figure 1F). If Neu-NRGN cell barcodes are indeed highly contaminated 

with non-nuclear ambient RNA, they should also be depleted of long non-coding RNAs 

(lncRNAs), which are retained in the nucleus (Guo et al., 2020). Indeed, Neu-NRGN 

barcodes contained fewer lncRNAs than other neurons (Figure 1G). An interesting example 

is MALAT1, which has elevated expression in the brain (Bernard et al., 2010) and was 

depleted among Neu-NRGN cell barcodes relative to other cell types (Figure 1H). Together 

these results indicate that Neu-NRGN cell barcodes contain high non-nuclear ambient RNA 

contamination and are unlikely to represent intact nuclei.

We hypothesized that non-nuclear ambient RNA can be removed by fluorescence activated 

nuclei sorting (FANS). To test this, we analyzed another cortical snRNA-seq dataset, named 

sorted dataset 1 (SD1), in which the authors performed nuclei sorting (purification of DAPI+ 

nuclei with flow cytometry) (Lake et al., 2018). This sample preparation contrasts with 

the previous dataset (NSD1) we discussed that performed nuclei isolation but not nuclei 

sorting by flow cytometry (Figure 1). Since a low intronic read ratio indicates the presence 

of non-nuclear transcripts, we then determined the intronic read ratio in both datasets to 

assess whether non-nuclear transcripts are removed by nuclei sorting. As expected, NSD1 
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displayed a low intronic read ratio in cell barcodes with low UMI counts since these cell 

barcodes are primarily associated with ambient RNAs (Figure 2A). In contrast, we found 

that the intronic read ratio did not markedly change with increasing UMI counts in SD1 

(Figure 2B). We then assessed ambient RNA signatures after the removal of non-nuclear 

ambient RNA and found ambient clusters in SD1 (Figure 2C–D). Interestingly, SD1 ambient 

cluster markers were highly and distinctly enriched in the Neu-mat markers from NSD1 

(Figure 2E). We also observed significant enrichment of SD1 ambient cluster markers in 

other neuronal cell type markers although it was markedly less compared to Neu-mat. Co-

clustering of SD1 ambient clusters and NSD1 cell types also grouped SD1 ambient clusters 

and Neu-mat cell barcodes together (Figure 2F). Overall, these results indicate that Neu-mat 

cell barcodes carry an unusually high nuclear ambient RNA signature and Neu-NRGN cell 

barcodes are distinctly contaminated with non-nuclear ambient RNA. These results also 

reveal that nuclei sorting, but not nuclei isolation alone, effectively removes non-nuclear 

ambient RNA; however, nuclei sorting cannot remove nuclear ambient RNA. Therefore, we 

named NSD1 ambient RNA markers as ‘non-nuclear ambient markers’, and SD1 ambient 

RNA markers as ‘nuclear ambient markers’ (Table S2). We selected a combination of the top 

500 nuclear ambient markers and the top 500 non-nuclear ambient markers (logFC > 1 & 

FDR < 0.05) for the subsequent enrichment analyses.

To provide independent support for these results, we then analyzed a second snRNA-seq 

cortical human dataset that did not include nuclei sorting (non-sorted dataset 2, NSD2, see 

Methods and Table S1) and a cortical human dataset that was generated after nuclei sorting 

(sorted dataset 2, SD2) (Tran et al., 2021). We reproduced a similar pattern of increasing 

intronic read ratio with increasing UMI in the NSD2, whereas this was not observed in 

SD2 (Figure S1A–B). We then similarly identified ambient clusters from the NSD2 dataset 

(Figure S1C). The intronic read ratio distribution in ambient clusters was bimodal and 

we divided the clusters into two categories: cell barcodes with high intronic read ratio 

(High-Intron-CB) and cell barcodes with low intronic read ratio (Low-Intron-CB) (Figure 

S1D). In line with the previous results, genes overrepresented in Low-Intron-CB were highly 

enriched in non-nuclear ambient RNA markers whereas High-Intron-CB were enriched in 

nuclear ambient RNA markers (Figure S1E).

Signatures and sources of non-nuclear and nuclear ambient RNAs

To better understand the ambient RNA marker genes, we performed gene ontology 

enrichment and found that non-nuclear ambient RNA markers are enriched for genes 

involved in ribosomal, mitochondrial, and synaptic functions, whereas nuclear ambient RNA 

markers are enriched for genes related to synaptic function (Figure S2A–B; Table S3). 

As previously hypothesized (Thrupp et al., 2020), we asked whether non-nuclear ambient 

RNAs are enriched in genes comprising synaptosomes, which are also marked by ribosomal, 

mitochondrial and synaptic activity (Hafner et al., 2019). Using the top 500 markers in 

each ambient RNA group, we found that non-nuclear ambient RNAs are more enriched 

than nuclear ambient RNAs for transcripts of both vGLUT1-depleted (originating from 

postsynapse + soma) and vGLUT1-enriched (originating from presynapse) synaptosome 

markers (Hafner et al., 2019) (Figure S2C). Since nuclear ambient RNAs also showed 

significant association and were enriched in overall synaptic function but not ribosomal and 

Caglayan et al. Page 5

Neuron. Author manuscript; available in PMC 2023 December 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mitochondrial function (Table S3), we then hypothesized that nuclear ambient RNAs are 

derived from highly expressed genes captured in neuronal nuclei. Indeed, nuclear ambient 

RNAs largely overlapped with genes that are highly expressed in neurons (Figure S2C). We 

note that this also explains the significant enrichments between neuronal cell type markers 

and nuclear ambient RNA markers that we observed (Figure 2E). We also observed that the 

top non-nuclear ambient RNA and nuclear ambient RNA markers were also distinct, further 

underscoring that ambient RNAs are derived from different sources (Figure S2C).

Ambient RNA contamination of glial nuclei can be removed in silico

Given that neuronal genes are overrepresented in both ambient RNA types, we then 

hypothesized that ambient RNA contamination can make the transcriptomic profile of 

glial cell types appear more neuronal-like. As sorting for nuclei that do not express the 

neuronal marker NeuN (referred to as NeuN-) prior to droplet capture should remove 

neuronal ambient RNAs, we compared sorted datasets (SDs) and non-sorted datasets (NSDs) 

with three NeuN- sorted snRNA-seq datasets (NeuN- SD) (Bakken et al., 2021; Hodge 

et al., 2019; Sadick et al., 2022). We identified genes significantly overrepresented in the 

four exemplar datasets (SD1, SD2, NSD1, NSD2) compared to the three NeuN- sorted 

datasets in 6 major cell types: excitatory and inhibitory neurons, oligodendrocytes, OPCs 

(oligodendrocyte progenitor cells), astrocytes and microglia (Table S4). We called these 

genes “NeuN- depleted genes”. For each comparison, we then selected the top 500 NeuN- 

depleted genes and performed enrichment for ambient RNA markers. Despite the neuronal 

signature of ambient RNA markers, their enrichments within the NeuN- depleted genes were 

consistently significant in all glial cell types across the studies (Figure 3A–B). Notably, the 

association of ambient RNA markers and NeuN- depleted genes was consistently less in 

neuronal cell types than in glia (Figure 3A–B). Together these results show that glial nuclei 

in cortical snRNA-seq are likely contaminated with neuronal ambient RNAs.

Our findings suggest that neuronal ambient RNAs contaminate glial nuclei unless samples 

are sorted to remove neuronal nuclei prior to droplet capture. To further test our finding, 

we used a dataset that employed two sorting strategies: one that depleted neurons (NeuN- 

and LHX2+ sorting also referred to as NeuN- SD3 in our comparisons) and one that 

did not deplete neurons (SOX9+ sorting) (Sadick et al., 2022) (Figure S3A–C). In line 

with our hypothesis, ambient RNA markers appeared less ‘expressed’ across glial nuclei 

in the dataset with neuron depletion (Figure S3D), and genes less represented in the 

neuron depleted dataset were significantly enriched in ambient RNA markers (Figure S3E). 

We note that two ambient RNA markers we exemplify (CSMD1 and RALYL) showed 

similar expression patterns between the two datasets. These genes are likely endogenously 

expressed in OPCs as high expression levels are detectable across the other NeuN- SDs 

(Bakken et al., 2021; Hodge et al., 2019), underscoring the importance of distinguishing 

ambient RNA contamination from endogenous transcripts per cell type. Together, these 

results provide further proof of neuronal ambient RNA contamination in the cortical snRNA-

seq datasets.

Ambient RNA contamination within droplets that contain real nuclei is a general problem in 

snRNA-seq experiments and various tools exist to remove ambient RNA contamination 
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(Fleming et al., 2019; Yang et al., 2020; Young and Behjati, 2020). To assess the 

performance of these tools in the analyzed datasets, we used NeuN- SDs as the ground 

truth and asked which tool will lower the percentage of reads explained by ambient RNA 

markers to the levels observed in NeuN- SDs in glial cell types. We applied SoupX (Young 

and Behjati, 2020), DecontX (Yang et al., 2020) and CellBender (Fleming et al., 2019) with 

default parameters on each dataset. Overall, we observed a lower percentage of ambient 

RNA in NeuN- SDs compared to other datasets where no removal was performed (Figure 

S4). Among the three ambient RNA removal tools, CellBender was consistently better 

at reducing the ambient RNA contamination levels across the datasets (Figure S4A–D). 

Comparison of all NeuN- SDs and ambient RNA removal tools in glial cell types showed 

that there was no significant difference between the NeuN- SDs and CellBender results in 

terms of the percentage of reads explained by ambient RNA markers (Figure S4E). We 

highlight this in oligodendrocytes from SD1 that show low levels of SYT1, CSMD1 and 

KCNIP4 after CellBender similar to NeuN- SDs, while DecontX and SoupX treated datasets 

display substantial levels of contamination (Figure S4F). Together, these results show that 

CellBender performs better than DecontX and SoupX to remove neuronal ambient RNA 

contamination from glial nuclei.

We next asked whether CellBender can fully remove ambient RNA contamination. For each 

dataset, we calculated the enrichments between ambient RNA markers and genes depleted 

in NeuN- SD1 (chosen as these genes have the lowest ambient RNA percentage in glial 

cell types among all NeuN- SDs) before and after applying CellBender (Figure S4A–D). 

Focusing on the oligodendrocytes (from SD1), we found that CellBender substantially 

reduced ambient RNA contamination (Figure 3C). However, enrichment was still significant, 

indicating that ambient RNA contamination was not fully removed. To investigate this, 

we next subclustered oligodendrocytes and found that markers of a small subcluster were 

highly enriched in ambient RNAs (Figure 3D–E). Removing this subcluster fully removed 

detectable ambient RNA contamination from oligodendrocytes (Figure 3C, F) and increased 

correlation with NeuN- sorted oligodendrocytes (Figure 3G). We then applied this procedure 

to each glial cell type per dataset and found that there was little to no contamination after 

CellBender and additional subcluster cleaning (Figure 3H). The removed subclusters had 

a consistently lower intronic read ratio in datasets that did not undergo nuclei-sorting, in 

line with the expectation that ambient RNA contamination contains non-nuclear reads unless 

nuclei are physically sorted (Figure S5A). Indeed, nuclei-sorted datasets contained similar 

intronic read ratios between removed subclusters and other nuclei. (Figure S5B). We note 

that SD2 contained fewer number of nuclei compared to the other datasets and did not 

demonstrate robust subclusters; thus, we omitted subcluster cleaning for SD2.

While neuronal nuclei are also expected to be contaminated with ambient RNAs, NeuN 

based sorting is not helpful in revealing ambient RNA contamination in neuronal nuclei 

since ambient RNAs are dominated by neuronal signatures. To assess the levels of ambient 

RNA contamination in neuronal nuclei, we leveraged the lower intronic read ratio of 

relatively more contaminated nuclei in the non-sorted datasets (Figure S5A). To reveal 

this association for all nuclei, we calculated a non-nuclear ambient RNA percentage and 

assessed its association with a non-intronic read ratio. Both measures are expected to 

be higher in ambient RNA contaminated nuclei. Indeed, we observed high correlations 
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between the two metrics for all cell types (Figure S6A–C, E). In line with the previous 

results, ambient RNA contamination was decreased by CellBender and further removed 

by subcluster cleaning in all glial cell types (Figure S6A–B). Strikingly, CellBender 

did not reduce ambient RNA contamination from the neurons (Figure S6C, E). As 

expected, non-nuclear ambient RNA markers NRGN and CHN1 levels were higher in more 

contaminated neuronal nuclei whereas nuclear-retained MALAT1 levels were lower (Figure 

S6D, F). Contamination patterns were similar among the previously annotated neuronal 

subtypes of NSD1, indicating that ambient RNA contamination in neurons is a cell-type 

agnostic problem and, unlike glia, is not accounted for by CellBender (Figure S7A–B). 

Other ambient RNA contamination removal tools were also more effective in glia than 

neurons, indicating a general deficiency in the current methods to remove ambient RNA 

contamination from the dominant cell type in the tissue (Figure S7C–D).

To test the effect of ambient RNA removal on all genes, we then assessed the correlation 

of all expressed genes between a given dataset and a NeuN- sorted dataset. We found that 

ambient RNA removal consistently increased overall correlations, indicating that ambient 

RNA removal results in better reproducibility between datasets (Figure 3I). Neurons were 

also similarly correlated with the NeuN+ sorted dataset before and after CellBender (Figure 

S5C). These results indicate that ambient RNA contamination in glia can be effectively 

removed with CellBender and subcluster cleaning without undesired effects on the overall 

gene expression profile.

Ambient RNA contamination is also detected in a mouse brain snRNA-seq dataset

To assess if ambient RNA contamination is similar in mouse cortical snRNA-seq data, we 

generated snRNA-seq datasets from the frontal cortex of four P56 (postnatal day 56) mice. 

Similar to human datasets, the intronic read ratio was less in cell barcodes with low UMI 

counts (Figure S8A) and ambient clusters were distributed bimodally with Low-Intron-CB 

and High-Intron-CB (Figure S8B–C). Low-Intron-CB markers were also enriched in non-

nuclear ambient RNAs whereas High-Intron-CB markers were enriched in nuclear ambient 

RNAs (Figure S8D). We similarly ran CellBender and performed subcluster cleaning on 

glial cell types. Both steps selectively removed the ambient RNA signature from all glial cell 

types (Figure S8E). Thus, we conclude that ambient RNA types and contamination of glial 

cell types by neuronal ambient RNAs are not specific to human brain datasets.

In-situ hybridization reveals no overlap of ambient RNA markers and glia

Since ambient RNA contamination arises from the RNAs released from dissociated cells and 

nuclei, we hypothesized that assays carried out using intact tissue should reveal considerably 

lower expression of neuronal ambient markers in glia. To test this, we used probes to an 

oligodendrocyte marker (Mog) and three ambient RNA markers (Rbfox1, Snap25, Syt1) and 

performed pairwise single molecule fluorescent in-situ hybridization (smFISH) on cortical 

slices from adult mice. Indeed, we found almost no overlap between any of the three 

ambient RNA markers and Mog (Figure S9A–D; Table S5). In contrast, the snRNA-seq from 

mouse frontal cortex indicated that >75% of nuclei contained reads from all three markers 

in the oligodendrocytes (Figure S9E). This prevalent contamination was abolished after 

the ambient RNA removal process (CellBender + subcluster cleaning) (Figure S9E). These 
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results provide further support for the prevalence of neuronal ambient RNA contamination in 

glial snRNA-seq nuclei.

Previously annotated immature oligodendrocytes are glia contaminated with ambient 
RNAs

Glia can express genes that are typically associated with neuronal function. For example, 

OPCs can make synapse-like contacts with axons and express glutamatergic receptors that 

bind to neurotransmitters secreted by neurons, affecting oligodendrocyte maturation in vitro 

(Fields, 2015; Luse and Korey, 1959; Wake et al., 2011). We also found that glutamatergic 

receptors functionally studied in oligodendrocyte maturation (e.g. GRIA2, GRIA4, GRM5 in 

OPCs (Fields, 2015; Kougioumtzidou et al., 2017; Wake et al., 2011)) remain present in our 

analysis after ambient RNA removal (Figure S10A). However, such ambiguity in cell-type 

expression patterns raises the possibility that neuronal ambient RNA contamination in glia 

might have been implicated with biological function in previous snRNA-seq studies. For 

example, the snRNA-seq study that generated SD1 identified “immature oligodendrocytes”, 

which were marked by greater expression of many neuronal genes, but many marker 

genes of this cell type annotation were not independently validated (Lake et al., 2018). 

Based on our findings, we considered the alternative possibility that this excessive neuronal 

gene expression signature is ambient RNA contamination. In line with this interpretation, 

we found that ~80% (46 out of 58) of immature oligodendrocyte markers overlapped 

with the top 200 most abundant ambient RNA markers (Figure 4A). Using the gene-cell 

matrix from the original publication, we reconstructed the lineage trajectory between 

OPC-OL (Figure 4B). Cell barcodes between OPC and OL (‘transitioning cells’) showed 

high enrichment for both immature oligodendrocyte and ambient RNA markers (Figure 

4B–C) and these cell barcodes were removed during our subcluster cleaning procedure 

(Figure 4D). These cell barcodes displayed similar UMI counts compared to OPC and OL 

indicating that they are also not glia-neuron doublets (Figure 4E). Since CellBender reduces 

ambient RNA contamination, we also assessed the OPC-OL trajectory after CellBender, 

which revealed a less continuous trajectory compared to the original dataset (Figure 4F). 

Similar to the original dataset, cell barcodes between OPC and OL were removed during 

subcluster cleaning (Figure 4G). We performed smFISH experiments to examine whether 

cells expressing the annotated immature oligodendrocyte markers (GRIN2A and SYT1) also 

express an oligodendrocyte lineage marker (OLIG2). We found essentially no overlap of 

expression of these genes in human cortical samples (Figure S9F–G; Table S5). In contrast, 

there was ~10% overlap of these markers in the SD1 snRNA-seq dataset (Figure S9H). 

Together, these results indicate that the OPC-OL pseudotime trajectory is driven by ambient 

RNA contamination rather than biological differentiation of oligodendrocytes.

We hypothesized that ambient RNA contaminated nuclei can be detected as transitioning 

cells between any two glial cell types in pseudotime analysis as all glial nuclei are 

expected to contain neuronal ambient RNA contamination in a brain gray matter preparation. 

Therefore, we generated a pseudotime analysis between OPC and AST (astrocytes) and 

found similar ‘transitioning cells’ (Figure S10B–D). Since OPCs can achieve multipotency 

under certain conditions (Chamling et al., 2021; Sim et al., 2011; van Bruggen et al., 2017), 

we could not exclude the possibility that this could be a real biological function (i.e. OPCs 
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differentiating into astrocytes). For a definitive answer, we tested two non-oligodendrocyte 

lineage cell types, AST and MIC (microglia), which also revealed similar ‘transitioning 

cells’ that were highly enriched in both ambient RNA and immature oligodendrocyte 

markers and were effectively removed by our ambient RNA removal process (Figure 

S10E–G). Given that immature oligodendrocytes also lack known markers of COPs or 

premyelinating oligodendrocytes (Pre-OL) (e.g. BCAS1, ENPP6, GPR17 (Hughes and 

Stockton, 2021)) (Figure S10H), our results indicate that nuclei previously annotated as 

immature oligodendrocytes in several snRNA-seq studies are not transitioning cells but 

rather glia with high contamination of neuronal ambient RNA.

Ambient RNA removal reveals rare cell type in adult human brain snRNA-seq datasets

Initial single cell studies on the adolescent mouse oligodendrocyte lineage identified COPs 

and NFOLs (newlyformed oligodendrocytes) as transitioning OL cells (Marques et al., 

2016). This work established marker genes including Gpr17, which peaked in COPs, was 

reduced in NFOLs and was absent in mature OLs (Marques et al., 2016). A study in 

human induced pluripotent stem cell derived OPC culture also showed that GPR17 regulated 

OL maturation in human cells (Merten et al., 2018). However, few single-cell RNA-seq 

studies in adult human brain have identified these populations (Fernandes et al., 2021; Jakel 

et al., 2019). Since these studies used different annotation labels and marker genes, it is 

also unclear whether transitioning oligodendrocytes are consistent across human datasets. 

Robust annotation of these cells in human datasets is crucial to understand the role of the 

oligodendrocyte lineage in neurological diseases (Akay et al., 2021; Jakel et al., 2019; Nagy 

et al., 2020; Phan et al., 2020).

To determine whether we can identify COPs after ambient RNA removal, we subclustered 

OPCs. GPR17+ COPs were detectable and clustered separately than OPCs in NSD1, NSD2 

and SD1 (Figure 4H, Figure S11A, C). In SD2, plotting of COP markers in the UMAP 

space revealed a small population of nuclei with high expression of COP markers, although 

they did not cluster separately due to the low number of nuclei in this dataset (Figure 

S11E). Importantly, COPs were significantly depleted within the transition zone of the 

pseudotime plot (Figure 4I), further indicating that previous pseudotime analyses were 

driven by ambient RNA contamination rather than demonstrating biological underpinnings 

of oligodendrocyte maturation. To validate the identity of COPs, we then plotted genes 

known to be associated with COPs or Pre-OLs (BCAS1 (Fard et al., 2017), GPR17 (Chen 

et al., 2009), FYN (Sperber and McMorris, 2001)) as well as genes that are upregulated 

in Pre-OLs but are also expressed in OLs (TFEB (Sun et al., 2018), ENPP6 (Xiao et 

al., 2016)). We found that BCAS1, GPR17 and FYN selectively marked COPs and TFEB 
and ENPP6 were upregulated in COPs compared to OPCs consistently across the datasets 

(Figure 4J, Figure S11B, D, E). Overall, 58 out of the 211 (27%) top markers of COPs 

were shared between at least two datasets (Figure 4K). To highlight previously undescribed 

markers for COPs in adult human brain, we then found the most specific COP markers 

compared to both OPCs and OLs which – in addition to GPR17, BCAS1, FYN – revealed 

TNS3 (Marques et al., 2016), SH3RF3, EPHB1, CRB1, SIRT2 and ARHGAP5 as additional 

potential markers for future studies of oligodendrocyte biology in human brain (Figure 

4L; Table S6). Given that we could detect similar COP populations in all datasets, we 
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also re-analyzed a previous study that identified COPs in adult human brain white matter 

(Jakel et al., 2019). Surprisingly, in the original annotation, COP markers did not have 

higher expression in COPs than OPCs (Figure S12A). Clustering OPCs and COPs revealed 

a subpopulation of nuclei that were very similar to COPs in other human datasets by 

their marker gene expression levels (‘COPs-New’) (Figure S12B–C). To assess whether 

previously annotated COPs (‘COPs-Old’) can be ambient RNA contamination, we also 

checked expression levels of neuronal genes. This revealed high expression of both ambient 

and non-ambient neuronal genes, indicating ‘COPs_Old’ might be OL-neuron doublets 

rather than ambient RNA contamination (Figure S12C). Indeed, COPs-Old displayed similar 

UMI count levels to neuronal cell types, in contrast to ambient RNA driven clusters which 

contained lower UMI count levels (Figure 1A, 4E, and S12D). These results provide further 

evidence of the extreme rarity of COPs in human brain datasets, which can be masked by 

technical artifacts.

Stepwise guideline for detection and removal of ambient RNAs

Our results show that a combination of existing tools and careful analysis can remove 

ambient RNA contamination and improve the biological relevance of results. To illustrate 

our approach in a more direct way, we present a stepwise guideline that outlines the major 

steps important in our analysis (Figure 5). While ambient RNA removal tools aim to 

be a one-step solution for this problem, we advise researchers to identify ambient RNA 

populations and their markers genes in their own dataset, which is achievable using common 

methods (Figure 5, Steps 1–4). This can then be used to assess whether a specific cell 

population is marked by high ambient RNA contamination which may not have been 

removed or cleaned of ambient RNAs by the specialized tools (e.g. CellBender, Figure 

5, Steps 5–7). Taken together, we show pervasive contamination of glia by neuronal ambient 

RNAs, successfully remove them using available methods which reveals underappreciated 

biology of transitioning oligodendrocytes in adult human brain. We also provide a stepwise 

guideline outlining our integrated approach to tackle ambient RNA contamination in single-

nuclei datasets from brain tissue.

Discussion

Here, we provide an in-depth examination of ambient RNAs in brain snRNA-seq datasets. 

We identify nuclear and non-nuclear ambient RNAs with different gene signatures, and find 

that previously annotated neuronal cell types have high contamination of ambient RNAs 

(Ruzicka et al., 2020; Velmeshev et al., 2019). We then show that the high prevalence of 

neuronal reads in ambient RNAs contaminate glia, but can be effectively removed using 

CellBender and additional subcluster cleaning. These results are not unique to the human 

brain and are reproducible in mouse cortical snRNA-seq data. We also show that immature 

oligodendrocytes previously identified in snRNA-seq datasets are artifacts of neuronal 

ambient RNA contamination. After ambient RNA removal, we can identify populations 

of COPs in all human brain snRNA-seq datasets and highlight both known and previously 

undescribed markers of COPs. Finally, we provide a stepwise guideline of ambient RNA 

marker identification and removal.
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Our findings suggest that single-nuclei isolation does not entirely remove non-nuclear 

reads. The presence of cell barcodes with high proportions of non-nuclear reads indicates 

that cytoplasmic mature RNAs also contribute to contamination during nuclei isolation. 

We found that marker genes of non-nuclear reads significantly overlap with mRNAs 

that localize to synaptosomes (Figure S2) and the non-nuclear ambient RNAs are largely 

abolished when the intact nuclei are physically sorted by FANS (Figure 2B and S1B). While 

these results indicate that non-nuclear reads are likely derived from all cell types, it is also 

possible that mature mRNAs can be carried over into droplets by the endoplasmic reticulum 

that is still attached to the nucleus after isolation or sorting. Therefore, some non-nuclear 

reads may be derived from the same cell as the captured nucleus.

We leveraged the intronic read ratio difference between the empty and non-empty droplets 

to reveal that previously annotated cell clusters (Neu-NRGNs) contain high levels of non-

nuclear ambient RNA contamination and are likely empty droplets (Figure 1C). However, 

non-nuclear contamination measured by intronic read ratio is not sufficient to identify all 

healthy nuclei / cells. For example, a recent study highlighted the distinction of damaged 

cells and empty droplets that only contain ambient RNA (Muskovic and Powell, 2021). The 

authors noted that damaged cells contain similar intronic read ratio (i.e. nuclear fraction) 

to real cells, but they display lower UMI counts compared to other cells with similar 

annotation. Similarly, we find that the Neu-mat cluster has lower UMI counts compared to 

other neurons despite having a similar intronic read ratio, indicating that this cluster likely 

contains damaged nuclei (Figure 1A, C). Additionally, we observe that while empty droplets 

have lower intronic read ratios, these ratios are still substantially higher than zero, indicating 

that nuclear reads also contribute to ambient RNAs (Figure 1C, 2A). Finally, intronic read 

ratio is not an indicator of empty droplets in datasets that underwent nuclei sorting by flow 

cytometry since this procedure only removes non-nuclear ambient RNAs (Figure 2B). In 

nuclei-sorted datasets (e.g. SDs in this study), empty droplets can be better identified by 

assessing a given cluster’s enrichment for the ambient RNA markers (Figure 2E). We offer 

several functions to find ambient RNA markers for this purpose (Figure 5, steps 1–4).

In addition to empty droplets, ambient RNAs can contaminate all non-empty droplets. We 

focused on contamination in glial nuclei as they contain fewer transcripts than other cell 

types in the brain. We found that ambient RNA markers were underrepresented in the glial 

nuclei from studies that physically separated neurons and glia, indicating that some reads 

mapping to neuronal genes in datasets without neuron-glia separation are not representative 

of neuronal endogenous expression (Figure 3A–B). To remove the neuronal ambient RNA 

contamination in glia, we utilized CellBender (Fleming et al., 2019) and subsequent 

detection of subclusters with ambient RNA contamination. Together, these methods removed 

neuronal ambient RNA contamination from glial nuclei and improved correspondence with 

NeuN- sorted datasets (Figure 3C–I). Based on these results, we recommend two approaches 

for cortical snRNA-sequencing experiments: 1) physical separation of glia from nuclei (e.g. 

by FANS) or 2) in silico cleaning of neuronal ambient RNA contamination. Our approach 

for the in silico cleaning involves two steps: using a formal ambient RNA removal tool 

(CellBender) and subsequent removal of contaminated subclusters that are not successfully 

cleaned of ambient RNAs after CellBender (Figure 3C–E). We show that failure to remove 

ambient RNA contamination can have important consequences such as misannotation of 
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contaminated glial nuclei as immature oligodendrocytes (Lake et al., 2018). Importantly, 

CellBender alone did not remove all ambient RNA contamination, and the remaining 

contaminated nuclei were positioned between OPCs and oligodendrocytes in the pseudotime 

trajectory (Figure 4B–G). We thus recommend utilizing both CellBender and subsequent 

subcluster cleaning to account for ambient RNA contamination. We provide a stepwise 

guideline for the in-silico approach we have taken to remove ambient RNA contamination 

from glial cell types (Figure 5).

Neuronal reads are abundant within the ambient RNA population, making ambient RNA 

contamination in glial cell types distinct from the endogenous gene expression of glial 

nuclei. In contrast, ambient RNA contamination in neurons is difficult to separate from the 

endogenous neuronal gene expression and cell barcodes with a higher percentage of ambient 

RNA markers may be biologically relevant. As an unbiased method, we used the positive 

correlation of non-intronic read ratio and ambient RNA percentage across cell barcodes as 

a measure of contamination in NSDs. This revealed that neither CellBender nor other tools 

(DecontX and SoupX) could substantially reduce ambient RNA contamination in neuronal 

cell types (Figure S6C–F, 7). While the cell barcodes with high contamination can be 

manually removed, determining a threshold for removal would be arbitrary and could reduce 

the number of nuclei retained for analysis. Currently, we suggest caution in interpreting 

“novel” neuronal cell types and cell states even if the common ambient RNA removal tools 

are applied. Our study shows that ambient RNA contamination in neurons can be assessed 

by using metrics such as intronic read ratio (if the dataset has non-nuclear ambient RNAs) 

and the percentage of ambient RNA markers identified from the same dataset or similarly 

prepared datasets from similar tissues.

We showed that analysis of nuclei from the oligodendrocyte lineage after ambient RNA 

removal revealed COPs in all independent datasets. While COPs have been identified before 

(Marques et al., 2016; Perlman et al., 2020), many studies did not annotate them (Nagy 

et al., 2020; Ruzicka et al., 2020; Sadick et al., 2022; Tran et al., 2021; Velmeshev et al., 

2019). This could be hindered by both ambient RNA contamination and the rarity of COPs 

in adult brain. COPs are ~0.04% of cells in adult brain (NSD2 samples from 30–80 years 

old) and ~0.3% of cells in the adolescent brain ((NSD1 samples from 4–22 years old). We 

also showed that previously annotated COPs in adult human brain white matter are likely 

OL-neuron doublets and real COPs are detectable and similarly rare (~0.1% of all cells) 

(Figure S11). In line with this, live cell imaging in the mouse brain showed that ~80% of 

transitioning oligodendrocytes rapidly undergo cell death, which should result in a transient 

and rare cell population (Hughes et al., 2018). A carbon dating study of human genomic 

DNA in oligodendrocytes also showed low levels of oligodendrogenesis in adulthood, which 

further supports the rarity of transient cells in adult human brain (Yeung et al., 2014). 

Despite being rare, COPs are critical to examine since oligodendrocyte maturation is altered 

in both neurological diseases (de Faria et al., 2021; Phan et al., 2020) and human evolution 

(Miller et al., 2012; Zhu et al., 2018). Thus, ambient RNA removal is important for accurate 

analysis of underrepresented cell types. Another recent study also uncovered that glial 

cell types respond to enzymatic dissociation during single-cell and single-nucleus library 

preparation and confound the transcriptomic profile (Marsh et al., 2022). Here, we show that 

all glial cell types are also contaminated with neuronal ambient RNA transcripts, causing 
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misinterpretation of glial single-cell analysis. Together, these results indicate that both data 

generation and data analysis of glial cell types should be revisited and updated.

STAR Methods

RESOURCE AVAILABILITY

Lead contact—Further requests for resources should be directed to and will be fulfilled by 

the lead contact, Genevieve Konopka (genevieve.konopka@utsouthwestern.edu).

Materials availability—This study did not generate new unique reagents.

Data and Code Availability—Raw fastq files of mouse single-nuclei RNA-seq dataset 

are accessible in GEO with accession number: GSE198640. Re-analyzed processed matrices 

are accessible in GEO with accession number: GSE198951. All analysis codes are available 

in our github page: https://github.com/konopkalab/Ambient_RNA_In_Brain_snRNAseq

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human cortical tissue—Human postmortem posterior cingulate cortex samples were 

provided by the NIH NeuroBioBank. 17μm tissue sections were sectioned for the in-situ 

hybridization experiment detailed in the methods. Tissues from both adult (age range 45–75) 

males and females were used in the experiments. Demographic information of the samples is 

listed in Tables S1 and S5.

Mouse cortical tissue—All experiments were performed according to procedures 

approved by the UT Southwestern Institutional Animal Care and Use Committee. Mouse 

frontal cortex samples were collected for the single-nuclei RNA-sequencing and in-situ 

hybridization as detailed in the methods. Adult (postnatal day 56) male and female wildtype 

C57BL/6J mice were used in the experiments. Mice were maintained on a 12-hr light on/off 

schedule. Detailed information of the samples is listed in Table S1.

METHOD DETAILS

Preprocessing and count matrix generation—Datasets were downloaded from 

NCBI-GEO database (Table S1). Within the datasets, we only used the cells generated 

from cortical brain tissue. Specifically, NSD1 was from prefrontal and anterior cingulate 

cortex (n = 41 samples from anterior cingulate cortex and prefrontal cortex), NSD2 was 

from posterior cingulate cortex (n = 4 samples), SD1 was from prefrontal (n = 13) and 

visual cortex (n = 24), and SD2 was from anterior cingulate cortex (see below for final 

sample size). Barcode correction and filtering was done using umi_tools whitelist (retained 

top 20,000–80,000 cell barcodes per sample depending on the dataset to keep the ambient 

cell barcode population) and umi_tools extract (Smith et al., 2017). Alignment was done 

using STAR aligner (Dobin et al., 2013) with the reference genomes of GRCh38 (for the 

human datasets) or GRCm38 (for the mouse dataset). featureCount was used to count reads 

mapping to gene body only for uniquely mapping reads (Liao et al., 2014), and umi_tools 
count was used to create the count matrix. Count matrix using only intronic reads were 

similarly obtained using featureCount on a custom gtf that only contained introns (created 

Caglayan et al. Page 14

Neuron. Author manuscript; available in PMC 2023 December 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/konopkalab/Ambient_RNA_In_Brain_snRNAseq


using construct_introns from gread package in R (Srinivasan, 2016)). Intronic read ratios 

were then calculated per cell barcode by taking the ratio of the number of UMI counts 

mapping to introns and the number of UMI counts mapping to the gene body.

For DAPI+ sorted datasets, a Spearman’s rank correlation between UMI counts (log10) and 

intronic read ratio was computed for each sample. Only the samples with correlation lower 

than the correlation coefficient of 0.05 were considered sorted and used for further analysis. 

This criterion retained all samples in the SD1 study (Lake et al., 2018) and one sample 

(Br5400_sACC) in the SD2 study (Tran et al., 2021).

For ambient RNA cleanup, CellBender was used on the raw matrix of gene counts with 

default parameters (Fleming et al., 2019).

Single-nuclei library preparation—We processed 4 c57BL/6J P56 mice (2 males and 

2 females). Mice were rapidly decapitated and brains were quickly removed. The isolated 

brain was quickly transferred to an ice-cold coronal brain section mold (Braintree Scientific, 

BS-A 5000) and washed with ice-cold 1X PBS (Cytiva, SH30256.01). The boundary of the 

olfactory bulb and frontal cortex was aligned to the first indentation where the first razor 

blade (Fisher Scientific, 12–640) was inserted to remove the olfactory bulb. The second 

razor blade was inserted into the third indentation. The coronal sections matched with 

coronal numbers 22–36 in the Allen Brain Atlas: Mouse Reference Atlas, Version 2 (2011). 

We then removed the subcortical region from this section and separated the left and right 

hemisphere samples into different Eppendorf tubes. The tubes were flash frozen in liquid 

nitrogen.

The nuclei isolation procedure was modified from our previous work (Ayhan et al., 2021). 

The frozen section from the left hemisphere was transferred to a Dounce homogenizer with 

2ml of ice-cold Nuclei EZ lysis buffer (Sigma-Aldrich, NUC101). We then inserted pestle 

A for 23 strokes followed by pestle B for 23 strokes on ice. The homogenized sample 

was transferred to a 15ml conical tube. We added 2ml of ice-cold Nuclei EZ lysis buffer 

and incubated on ice for 5min. Nuclei were collected by centrifuging at 500 g for 5min 

at 4C. We discarded the supernatant and added 4ml of ice-cold Nuclei EZ lysis buffer to 

resuspend nuclei. We then repeated the incubation and centrifuge steps and resuspended the 

nuclei in 200ul of nuclei suspension buffer: 1X PBS, 1% BSA (ThermoFisher, AM2618), 

and 0.2 U/ul RNAse inhibitor (ThermoFisher, AM2696). Finally, the nuclei suspension 

was filtered twice through Flowmi Cell Strainers (Bel-Art, H13680–0040). We mixed 10ul 

of nuclei suspension with 10ul of 0.4% Trypan Blue (Gibco, 15-250-061) and loaded 

this suspension on a hemocytometer (SKC, DHC-N015) to determine the concentration. 

10,000 nuclei/sample were used to prepare snRNA-seq libraries using 10X Genomics Single 

Cell 3′Reagent Kits v3 (Zheng et al., 2017). Libraries were sequenced by the McDermott 

Sequencing Core at UT Southwestern on a NovaSeq 6000.

Tissue processing, single-nuclei RNA-seq library preparation and sequencing for the NSD2 

dataset was performed as previously described (Ayhan et al., 2021).
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Ambient cluster analysis—To retain cell barcodes that predominantly contain ambient 

RNAs, we kept two times more cell barcodes than the original publication per sample. 

For datasets generated in this study, we retained two times more cell barcodes than the 

number of nuclei targeted. Therefore, the final count matrix included both the cell barcodes 

that mostly represented real nuclei (and were annotated as real cell types in the published 

datasets) and newly retained cell barcodes that mostly represented empty droplets. Since 

not all newly retained cell barcodes are predominantly ambient RNAs (e.g. they could 

be doublets, or low quality nuclei of various cell types), we then performed clustering to 

identify clusters that contained high numbers of newly retained cell barcodes and clustered 

distinctly compared to annotated cell types per dataset. The following methods from Seurat 

v3 (Stuart et al., 2019) were used to perform and visualize clustering: normalization 

(SCTransform), dimensionality reduction (RunPCA), batch correction (RunHarmony, 

default parameters), k-nearest neighbors (FindNeighbors) on batch corrected dimensions 

and clusters identification by shared nearest neighbors (FindClusters). UMAP embedding 

was then computed for visualization in 2D space (RunUMAP). Clusters that were largely 

composed of newly retained cell barcodes (>75%) were annotated as ambient clusters. 

We note that 75% is unusually high since only 50% of the newly retained barcodes were 

originally filtered out in the previous publication.

To identify ambient cluster marker genes, we ran DGE (differential gene expression) 

analysis using pseudobulk edgeR (Chen et al., 2016). Briefly, counts were aggregated per 

sample and pseudobulk DGE was run with pseudoBulkDGE function (method = ‘edgeR’) in 

the scran package (Lun et al., 2016). Ambient cluster markers were identified with logFC > 

0.3 and FDR < 0.05 cutoffs.

Enrichment of ambient cluster markers with annotated cell types was done using a Fisher’s 

exact test from the GeneOverlap package (Shen L, 2020). The total number of expressed 

genes were used as background (we followed this strategy for all Fisher’s exact test 

enrichments).

Comparison with NeuN- datasets—To find differentially expressed genes in each 

dataset compared to the NeuN- sorted datasets, we first identified 6 major cell types in 

all datasets: excitatory neurons, inhibitory neurons, oligodendrocytes, OPCs, microglia and 

astrocytes. Using pseudobulk DGE (see above) in matched cell types, we then identified 

differentially expressed genes with significantly higher number of reads than in the given 

NeuN- sorted dataset. This was performed separately for each NeuN- sorted and other 

datasets. For the NeuN- sorted dataset and SD2 comparisons we used Wilcoxon rank sum 

test (FindMarkers function from Seurat) since we retained only one sample from this dataset 

(see Preprocessing and Count Matrix Generation).

For enrichment with ambient cluster markers, we selected the top 500 differentially 

expressed genes (ranked by logFC) among the NeuN- depleted genes in each comparison 

(logFC > 1 and FDR < 0.05). Similarly, the top 500 ambient RNA markers were selected 

from both nuclear ambient RNA and non-nuclear ambient RNA markers. Enrichment 

analyses were performed as above.
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Ambient RNA removal with CellBender, DecontX and SoupX—All ambient RNA 

removal tools were run with the default parameters and according to the instructions. For 

CellBender (Fleming et al., 2019), the input was the raw gene – cell barcode count matrix. 

For DecontX (Yang et al., 2020), the input was the filtered matrix as recommended (Yang 

et al., 2020). For SoupX, both the filtered and raw matrices were given as input (Young and 

Behjati, 2020).

Subcluster cleaning of glia after CellBender—To subcluster glia after CellBender, 

we used the annotation provided in the original publication and processed each glia 

cell type separately per study. For the datasets generated in this study, we performed 

clustering as described and annotated glia based on established marker genes (e.g. MBP, 

PCDH15, APBB1IP, SLC1A3). Clustering was done similarly as above and marker genes 

of subclusters (identified using the default parameters in Seurat’s FindAllMarkers (Stuart 

et al., 2019) function were tested for enrichment of ambient RNA markers using a Fisher’s 

exact test. For this, we selected the top 500 (by logFC) ambient RNA markers from both 

nuclear and non-nuclear ambient RNA lists and combined them. We removed the subclusters 

with distinctly high levels of enrichment of ambient RNAs (FDR < 0.001 and odds ratio 

> 3) compared to other subclusters. All steps of ambient RNA contamination removal are 

outlined in Figure 5. We also showcase our mouse snRNA-seq dataset and provide analysis 

scripts that match each step in the stepwise guideline in our github page: https://github.com/

konopkalab/Ambient_RNA_In_Brain_snRNAseq

Assessment of ambient RNA contamination signatures in glia—To compare 

ambient RNA contamination in glia after each type of analyses, we first found cell barcodes 

common between annotated cell barcodes in each original publication and the retained cell 

barcodes after CellBender. We then only retained common cell barcodes in all downstream 

analyses that compared the original dataset and analyses that included ambient RNA 

contamination removal (Figure 3). This was to ensure that only gene expression levels were 

different and the enrichments are not driven by cell barcode differences between analyses. 

However, we note that the analysis with CellBender + subcluster cleaning contained 

fewer cell barcodes as ambient RNA rich subclusters were removed after CellBender. To 

test ambient RNA marker enrichment, we first found differentially expressed genes with 

significantly greater number of reads than in the NeuN- sorted dataset per cell type per 

dataset (logFC > 1 and FDR < 0.05). These gene lists were then tested for enrichment of 

ambient RNA markers (the combined top 500 genes were used as before) using a Fisher’s 

exact test.

To test whether the global gene expression profile is altered after these different analysis 

methods, we found genes expressed in at least 5% of cells per cell type per dataset to remove 

lowly expressed genes. We then kept the genes that survive this threshold in all datasets and 

performed a Spearman rank correlation between each dataset and the NeuN- sorted dataset 

using the average log expression of genes in the normalized matrix.

In-situ hybridization and image quantification—Flash-frozen human postmortem 

cortical BA23 samples (n=3) and mouse whole brains (n=2) were embedded in Tissue-

Tek CRYO-OCT Compound (#14-373-65, Thermo Fisher Scientific). We sectioned tissue 
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at −20C to 17μm on Superfrost Plus Microscope slides (#12-550-15, Thermo Fisher 

Scientific). Fluorescent in situ hybridization (FISH) was performed using RNAScope® 

Multiplex Fluorescent Reagent Kit v2 assay for fresh frozen tissue (#323100, Advanced 

Cell Diagnostics) with the additional step of 0.05% Sudan Black B incubation at 

room temperature for 10 minutes after application of DAPI to quench autofluorescence. 

Species-specific probes were used for human: Hs-GRIN2A-C1 (485841), Hs-OLIG2-

C2 (424191-C2), Hs-SYT1-C3 (525791-C3) and mouse: Mm-Syt1-C1 (491831), Mm-

Rbfox1-C1 (519911), Mm-Snap25-C1 (516471), Mm-Mog-C2 (492981-C2) respectively. 

Opal fluorophores 520 (FP1487001KT, Akoya Biosciences), 570 (FP1488001KT, Akoya 

Biosciences) and 620 (FP1495001KT, Akoya Biosciences) were used to label C1, C2, and 

C3 channel respectively for the gene-specific probes after signal amplification.

We captured images from cortical areas of human and mouse by using a Zeiss LSM 710 

at x20 magnification in the UT Southwestern Neuroscience Microscopy Facility. Maximum 

intensity projection images were generated from 13 slices of a Z stack. We randomly 

sampled 2–4 cortical areas (488×488 μm) from each brain section for both human and 

mouse to manually quantify the number of cells (DAPI 405 nm), neurons (GRIN2A, Syt1, 

Rbfox1, and Snap25, 488 nm; SYT1, 594 nm), and oligodendrocytes (OLIG2 and Mog, 555 

nm). We then calculated the fraction of neurons, oligodendrocytes, and overlap between the 

two cell types.

Pseudotime analysis—To be consistent with SD1 (Lake et al., 2018), we used the 

DiffusionMap function from destiny (Angerer et al., 2016) only on the visual cortex samples 

to build pseudotime trajectories between OPC-OL or between other pairs of glial cell types 

using the matrix provided by the authors. Diffusion maps were created with parameters 

n_pcs=100 and k=100. The first two eigenvectors of diffusion maps were plotted for 

visualization. To identify markers of ‘transitioning’ cell barcodes, we found the middle 

cell barcode based on the first eigenvector (DM1) and labeled 200 cell barcodes around 

the middle cell barcode as ‘transitioning cells’. The remaining two groups of cell barcodes 

were labeled by their original annotation label (e.g. OPC). We then found marker genes 

for each of these pseudotime groups (FDR < 0.05 and logFC > 0.25 using FindMarkers in 

Seurat (Stuart et al., 2019)) and ran enrichment with ambient RNA markers and immature 

oligodendrocyte markers identified in SD1 using a Fisher’s exact test.

OPC subcluster analysis—To identify potential transitioning OPCs, we separately 

subclustered OPCs from three different datasets: SD1 (Lake et al., 2018), NSD1 (Velmeshev 

et al., 2019), and NSD2 (GEO accession: GSE198951) after CellBender and subcluster 

cleaning based on high ambient RNA contamination. We further removed subclusters 

with high expression of markers from two distinct major cell types as potential doublets. 

Committed oligodendrocyte progenitors (COPs) were identified by high expression of 

GPR17 (as previously established (Marques et al., 2016)) among other markers (e.g. 

BCAS1, FYN).

To identify subclusters of Jäkel et al. (Jakel et al., 2019), we performed dimensionality 

reduction and clustering on cells with the annotation of ‘OPCs’ and ‘COPs’ using Seurat 

v3 as described above. We then identified ‘COPs-New’ by the established marker genes 
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(BCAS1, FYN, GPR17). For the heatmaps, all mature oligodendrocytes were combined and 

annotated as ‘OL’. Normalized and log transformed expression levels for each gene was 

then z-transformed across 4 cell type annotations (OPC, COP-New, COP-Old, OL). For the 

UMI counts plots, we retained the original labels for neuronal cell types. Both control and 

multiple sclerosis samples were used and no additional cell filtering (other than subsetting 

by annotation) was applied for all analyses.

Identification of COP Marker Genes—Genes upregulated in COPs compared to OPCs 

were identified using the FindMarkers function from Seurat. Significant genes (FDR < 0.05 

and expressed in >10% of COPs) were ranked by their avg_logFC and the top 100 genes per 

dataset were selected.

To highlight genes specific to COPs compared to OPCs and OLs, we found the percentage 

of nuclei that expressed at least one read of each significant gene. We then computed 

the difference of percentages between both COPs-OPCs and COPs-OLs. We then took the 

intersection of the top 20 genes with the greatest difference in favor of COPs in both 

comparisons. This was repeated for all three datasets. Genes that marked COPs in at least 

two datasets were reported as COP markers within the oligodendrocyte lineage in human 

brain (Table S5)

Other enrichments—Gene ontology (GO) enrichment of ambient RNA signatures was 

done using the clusterProfiler package in R (Yu et al., 2012) with all expressed genes used as 

the background. The full table of GO results is available in Table S3.

To test enrichment of ambient RNA markers with vGLUT1-Depleted and vGLUT1-Enriched 

genes from Hafner et al. (Hafner et al., 2019), we first converted the mouse gene symbols 

to human gene symbols using SynGO (Koopmans et al., 2019). Fisher’s exact tests were 

performed as before.

To overlap ambient RNAs with highly represented genes in neurons in snRNA-seq datasets, 

we identified the top-represented genes among all neurons by taking the mean of each gene 

across all cell barcodes annotated as neurons separately in both SD1 and NSD1 (except 

for Neu-NRGNs and Neu-mat). The intersection of the top 500 genes in both datasets (403 

genes) was used to overlap with ambient RNA markers.

Quantification and statistical analysis—All analysis-specific quantifications and 

statistics can be found in their corresponding method section. Individual statistics (e.g 

adjusted p-value, odds ratio, fold change) for each comparison can be found in the figure 

legends and on the figures. Sample sizes of the snRNA-seq dataset can be found in the 

methods. Unless otherwise stated, all samples from the associated publication were retained 

for the analyses of this study. Sample sizes of the in-situ hybridization experiment can 

also be found in the methods and the figure legends. We did not conduct a separate 

benchmarking for the selection of the statistical analyses, however we strived to select the 

most up to date and benchmarked methods (e.g we favored pseudobulk methods instead of 

the single-cell based methods for the differential gene expression analyses (Squair et al., 

2021)).
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

1. Ambient RNA in single nuclei genomic data cause conspicuous 

contamination in glia

2. Ambient RNA contamination can be mitigated by physical sorting or in silico 

methods

3. Previously annotated immature oligodendrocytes are ambient RNA 

contaminated glia

4. Ambient RNA removal reveals unannotated COPs in all adult human brain 

datasets
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Figure 1. Neu-NRGNs are comprised of non-nuclear ambient RNAs.
(A) Log10 transformed UMI counts per neuronal cell type in NSD1. Cell types with 

unusually low UMI count are shown in red. (B) Mitochondrial read percentage per neuronal 

cell type in NSD1. Cell types with significantly higher mitochondrial read percentage are 

shown in red (Wilcoxon rank sum test. P-value < 0.05). (C) Intronic read ratios of all cell 

types in NSD1. (D) UMAP representation after co-embedding of same numbers of published 

(blue) and filtered cell barcodes (red) (dataset: NSD1). (E) Clusters that are >75% composed 

of filtered cell barcodes are highlighted and named ambient clusters (dataset: NSD1). (F) 
Bar plot of the percentage of cell barcodes in ambient clusters per cell type. Red: ambient 

clusters, blue: other clusters. (G) Heatmap of normalized, log-transformed and z-scored 

expression levels of lncRNAs across cell types. The means of all lncRNAs were taken before 

calculating z-scores. (H) tSNE plot of the normalized and log transformed expression level 

of MALAT1 in all nuclei in NSD1.

Caglayan et al. Page 25

Neuron. Author manuscript; available in PMC 2023 December 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Non-nuclear and nuclear ambient RNAs are distinct from each other.
(A-B) Intronic read ratio across increasing UMI count in (A) NSD1 and (B) SD1. UMI 

counts are divided into intervals of 100 from 100–2000. (C) UMAP representation after co-

embedding of the same numbers of published (blue) and filtered cell barcodes (red) (dataset: 

SD1). (D) Clusters that are >75% composed of filtered cell barcodes are highlighted and 

named ambient clusters (dataset: SD1). (E) Heatmap of enrichments between ambient RNA 

markers and Neu-mat or Neu-NRGN cell types in NSD1 (Fisher’s exact test, log10(FDR)). 

(F) Co-embedding of Neu-NRGNs, Neu-mat and SD1 ambient clusters. See also Figures 

S1–2 and Tables S2–3.
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Figure 3. Ambient RNAs contaminate glia expression profiles.
(A-B) Dot plots using odds ratio and FDR adjusted p-values as measurements of ambient 

RNA enrichment of genes depleted in NeuN- sorted datasets compared to other datasets 

that did not perform NeuN- sorting; comparisons include: (A) between NSDs and NeuN- 

SDs; (B) between SDs and NeuN- SDs (per major cell type using a Fisher’s exact test). 

(C) The same enrichment as in (A-B) after each analysis (in y-axis as rows) performed in 

oligodendrocytes from the SD1 dataset. Numbers: FDR value; colors scale: −log10(FDR). 

(D) UMAP plot of SD1 oligodendrocytes after CellBender. (E) Heatmap of enrichment 

between oligodendrocyte cluster markers and ambient RNA markers. (F) Violin plots of 

gene expression (log transformed) in oligodendrocytes after each analysis. Left column: 

oligodendrocyte markers, right column: ambient RNA markers. NeuN- sorted: NeuN- SD1. 

(G) Spearman rank correlations of all genes between SD1 oligodendrocytes and NeuN- 

sorted oligodendrocytes after each analysis (x-axis). (H) The same enrichment as in (C) 
performed in all datasets and glial cell types after each analysis. (I) Spearman rank 

correlations of all genes with the NeuN- sorted dataset. Correlations were performed per 
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cell type per dataset (y-axis) after each analysis (x-axis). The numbers and color of the 

heatmaps indicate the correlation coefficient. See also Figures S3–9 and Table S4.
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Figure 4. Ambient RNA contamination causes misinterpretation of transitioning 
oligodendrocytes in the human brain.
(A) Overlap of the immature oligodendrocyte markers in SD1 and the top 200 

most abundant ambient RNA markers. (B) The oligodendrocyte lineage trajectory as 

reconstructed with destiny. The ‘transition’ zone: the 400 cell barcodes around the middle 

cell barcode based on DC1. (C) Heatmap enrichments between the trajectory zones (OPC, 

Transition, OL) and either ambient RNA or immature oligodendrocyte markers using 

a Fisher’s exact test. Numbers: FDR; color scale: −log10(FDR). (D) The same lineage 

trajectory as (B) with cell barcodes removed after subcluster cleaning highlighted. (E) UMI 

counts of cell barcodes within the OPC, Transition or OL zones. (F) The oligodendrocyte 

lineage trajectory after CellBender. (G) The same lineage trajectory as (F) with cell 

barcodes removed after subcluster cleaning highlighted. (H) UMAP of OPC subclustering. 

COP: committed OPCs. (I) The ratio of COPs within OPCs or within the transitioning cells 

to the total number of OPCs and transitioning cells. Asterisk: p-value < 0.05, Chi-square 

test. (J) Heatmap of oligodendrocyte lineage markers (z-scored across cell types per marker 
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gene). (K) Overlap of COP markers (compared to OPCs) across datasets. The top 100 

markers were selected (FDR < 0.05). (L) Violin plots of the expression levels of the top 

COP markers in three datasets. See also Figures S10–12 and Tables S5–6.
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Figure 5: Stepwise guidelines of ambient RNA marker detection and ambient RNA removal.
Steps 1–4 describe how to identify ambient RNA markers in the given dataset. Steps 5–7 

describes how to use this information to further remove ambient RNA contaminated cell 

barcodes after a formal ambient RNA contamination removal tool such as CellBender is 

applied. Left: for non-sorted datasets, right: for nuclei-sorted datasets.
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Key Resources Table

Biological Samples

Adult mouse (P56) frontal cortex specimens Table S1 N/A

Adult human posterior cingulate cortex specimens Table S1 N/A

Deposited Data

Mouse snRNA-seq data This paper GEO: GSE198640

Human nuclei-sorted snRNA-seq data (SD1) Lake et al., 2018 GEO: GSE97930

Human nuclei-sorted snRNA-seq data (SD2) Tran et al., 2021 https://research.libd.org/globus (endpoint: jhpce#tran2021)

Human non-sorted snRNA-seq data (NSD1) Velmeshev et al., 2019 BioProject: PRJNA434002

Human non-sorted snRNA-seq data (NSD2) This paper GEO: GSE198951

NeuN- sorted dataset 1 Hodge et al., 2019 https://portal.brain-map.org/atlases-and-data/rnaseq/human-
mtg-smart-seq

NeuN- sorted dataset 2 Bakken et al., 2020 https://assets.nemoarchive.org/dat-ek5dbmu

NeuN- sorted dataset 3 Sadick et al., 2022 GEO: GSE167494

Human cortical oligodendrocyte data Jäkel et al., 2019 GEO: GSE118257

Software and Algorithms

CellRanger v.3.0.2 10x Genomics https://www.10xgenomics.com/products/single-cell-gene-
expression/

R version 4.1.2 The R Project https://www.r-project.org/

Seurat_3.0.1 Stuart et al., 2019 https://github.com/satijalab/seurat

Scran_1.18.7 Chen et al., 2016 https://bioconductor.org/packages/release/bioc/html/
scran.html

GeneOverlap_1.30.0 Shen et al., 2021 https://bioconductor.org/packages/release/bioc/html/
GeneOverlap.html

CellBender_0.2.0 Fleming et al., 2019 https://github.com/broadinstitute/CellBender

DecontX Yang et al., 2020 https://github.com/campbio/celda

SoupX Young & Behjati, 2020 https://github.com/constantAmateur/SoupX

Destiny_3.8.1 Angerer et al. 2015 https://bioconductor.org/packages/release/bioc/html/
destiny.html

clusterProfiler_4.2.2 Yu et al., 2012 https://bioconductor.org/packages/release/bioc/html/
clusterProfiler.html

SynGO Koopmans et al., 2019 https://www.syngoportal.org/

Umi-tools_1.1.1 Smith et al., 2017 https://github.com/CGATOxford/UMI-tools

STAR_2.7.10 Dobin et al., 2013 https://github.com/alexdobin/STAR

Subread_2.0.1 Liao et al., 2014 https://sourceforge.net/projects/subread/files/

Gread_0.99.3 Srinivasan et al., 2016 https://rdrr.io/github/asrinivasan-oa/gread/

Critical commercial assays

RNAscope® Multiplex Fluorescent Reagent Kit v2 ACD Bio-techne Catalog #: 323100

Chromium Single Cell 3′ v3 10x Genomics Cat#1000153

Chemicals, peptides and recombinant proteins

RNAscope® Probe-Hs-OLIG2-C2- mRNA ACD Bio-techne Catalog #: 424191-C2

RNAscope® Probe Hs-SYT1-C3- mRNA ACD Bio-techne Catalog #: 525791-C3
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RNAscope® Probe-Hs-GRIN2A- mRNA ACD Bio-techne Catalog #: 485841

RNAscope® Probe-Mm-Mog-C2 mRNA ACD Bio-techne Catalog #: 492981-C2

RNAscope® Probe-Mm-Syt1- mRNA ACD Bio-techne Catalog #: 491831

RNAscope® Probe-Mm-Rbfox1- mRNA ACD Bio-techne Catalog #: 519911

RNAscope® Probe-Mm-Snap25- mRNA ACD Bio-techne Catalog #: 516471
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