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Abstract

High-fidelity DNA replication is critical for the faithful transmission of genetic information 

to daughter cells. Following genotoxic stress, specialized DNA damage tolerance pathways 

are activated to ensure replication fork progression. These pathways include translesion DNA 

synthesis, template switching and repriming. In this Review, we describe how DNA damage 

tolerance pathways impact genome stability, their connection with tumorigenesis and their effects 

on cancer therapy response. We discuss recent findings that single-strand DNA gap accumulation 

impacts chemoresponse and explore a growing body of evidence that suggests that different DNA 

damage tolerance factors, including translesion synthesis polymerases, template switching proteins 

and enzymes affecting single-stranded DNA gaps, represent useful cancer targets. We further 

outline how the consequences of DNA damage tolerance mechanisms could inform the discovery 

of new biomarkers to refine cancer therapies.

High-fidelity DNA replication is constantly challenged by endogenous and exogenous 

sources of genotoxic stress1 (BOX 1). Endogenous sources of genotoxic stress include 

abasic sites, improper incorporation of ribonucleotides into replicating DNA, DNA–protein 

crosslinks, transcription–replication conflicts2, formation of DNA secondary structures, 

single-stranded DNA (ssDNA) gaps3–8, nucleotide imbalances9,10 and changes in origin 

firing frequency11. Exogenous sources of genotoxic stress include ionizing radiation and 

DNA-damaging chemotherapy such as alkylating agents, crosslinking drugs, topoisomerase 

inhibitors and antimetabolites12 (FIG. 1). The transient slowing or aberrant acceleration of 

replication forks in response to these challenges is termed ‘replication stress’ and is tightly 

linked to cancer development3,13–16.

As part of the replication stress response, cancer cells activate various DNA damage 

tolerance (DDT) pathways17. DDT pathways broadly include translesion DNA synthesis 
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(TLS)18, template switching (TS)19 and repriming20 (FIG. 1). TLS involves specialized 

polymerases that can replicate through a damaged DNA template21 and is generally 

regarded as a lower-fidelity form of DDT because the TLS polymerases recruited to stalled 

replication forks have a high potential for mutagenesis18. TS uses sister chromatid DNA 

to bypass replication obstacles22 and, as a result, is less likely than TLS to introduce 

erroneous nucleotides. One version of TS is fork reversal, which promotes the remodelling 

of replication forks into four-way junction structures upon encountering DNA lesions23. 

Reversed fork remodelling enables the original lesion to be repositioned ahead of the 

replication fork junction, facilitating lesion removal before reversed fork restart or lesion 

bypass through a TS mechanism24. Finally, repriming in human cells involves a specialized 

polymerase-primase enzyme, DNA-directed primase/polymerase protein (PRIMPOL)25–28, 

that skips damaged DNA, re-initiating synthesis beyond the lesion and leaving a ssDNA gap 

between the lesion and the point where synthesis restarts20. The ssDNA gap generated by 

PRIMPOL-mediated repriming can then be filled post-replicatively through TLS or TS29–32.

The fine-tuning of different DDT mechanisms is an emerging determinant of tumorigenesis 

and cancer therapy response. Here, we review how the loss of DDT factors can confer an 

increased cancer risk as DDT proteins are critical for DNA replication in the presence of 

endogenous and exogenous replication stress. In addition, we describe how the aberrant 

expression, or indeed the normal function of DDT enzymes upon increased replication 

stress, can promote the genomic instability that drives cancer development and progression. 

Many tumours exhibit elevated endogenous replication stress; therefore, we discuss how 

these pathways can be exploited for cancer cell clearance. Finally, we frame replication 

stress response mechanisms in the context of current clinical cancer treatments and suggest 

possible opportunities for biomarker development.

DNA replication stress in tumorigenesis

Translesion DNA synthesis.

Eukaryotic TLS involves polymerases of the Y-family33 — including REV1, Polη, Polι 
and Poκ — and the B-family (Polζ)34. These Y-family and B-family TLS polymerases lack 

3′-to-5′ nucleotide proofreading and exhibit a decreased capacity to distinguish between 

incoming nucleotides relative to replicative polymerases21. As a result, they are more 

mutagenic than the polymerases that are part of the core replication complex, with error 

rates of up to 1 in every 10 nucleotides inserted, compared to errors rates as low as 1 

in every 1010 bases for the replicative polymerases Polε and Polδ18,35. Mutagenic events 

induced by TLS polymerases can contribute to tumorigenesis36 and impact the response 

of cancer cells to DNA-damaging chemotherapies37, highlighting the importance of these 

mechanisms in the context of tumour treatment.

The recruitment of TLS polymerases to the DNA is mediated by the ubiquitination 

of proliferating cell nuclear antigen (PCNA), which is an essential processivity factor 

for replicative DNA polymerases also known as the DNA sliding clamp. PCNA is 

monoubiquitinated at lysine 164 by the E3 ligase enzyme RAD18 (REF.38) (FIG. 1), 

the activity of which is important for the replication of damaged DNA. RAD18 loss can 

contribute to genomic instability and increased sensitivity to DNA-damaging agents in non-
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malignant mammalian cells39,40. However, RAD18-dependent PCNA ubiquitination also 

drives mutagenic TLS41, promoting tumorigenesis. Indeed, the expression of RAD18 is high 

in a variety of cancer types and correlates with worsened survival outcomes42–44 (TABLE 

1). Moreover, RAD18 expression correlates with increased single nucleotide variations in 

human cancers from The Cancer Genome Atlas, and mutational signatures induced by 

RAD18 activity in mouse models correlate with mutational landscapes from the COSMIC 

database41.

In addition to PCNA monoubiquitination, the Y-family TLS polymerase REV1 functions as 

a scaffold protein to facilitate the downstream recruitment of other TLS polymerases45. In 

normal cells, REV1 contributes to mitochondrial function46 and somatic hypermutation47. 

REV1 loss is associated with metabolic dysfunction; a recent study suggested that this 

dysfunction might be due to the inability of Rev1-knockout mice to appropriately respond 

to endogenous replication stress46. Interestingly, REV1 can also function in base excision 

repair, resulting in a mutational signature enriched for C>G transversions48, and is 

upregulated in hepatocarcinomas and select lung cancers37,49 (TABLE 1).

The B-family polymerase Polζ is involved in the translesion synthesis of DNA adducts that 

stall replication forks and is composed of the catalytic subunit REV3L and the accessory 

subunit REV7 (REF.34). Loss of REV3L is associated with chromosomal instability50 and 

spontaneous tumorigenesis in mouse models51, suggesting that this TLS polymerase is 

important in DDT in non-malignant cells. Interestingly, the genomic instability observed in 

REV3L-deficient cells activates an innate immunity-like response involving upregulation of 

the cGAS–STING pathway and increased micronuclei formation52. When functional, Polζ 
tends to introduce dinucleotide mutations, with strong preferences for GC>AA or GC>TT 

mutations53 (TABLE 1). Several single-nucleotide polymorphisms (SNPs) in REV3L have 

been linked to an increased risk of developing lung cancer in a specific Han Chinese 

population54. Divergent REV3L expression has been reported across different tumour types: 

REV3L expression is elevated in gliomas55 and oesophageal squamous cell carcinomas56,57 

but appears downregulated in select colorectal, lung and gastric cancer tissues relative to 

non-cancer controls54,58,59 (TABLE 1).

Germline mutations in the Y-family TLS polymerase Polη predispose carriers to 

skin tumours as this enzyme is critical for efficient and high-fidelity bypass of UV-

induced lesions, including cyclobutane thymine dimers60. Indeed, patients with xeroderma 

pigmentosum with non-functional Polη are especially prone to malignancies caused by sun 

exposure61. Polη expression is high in a number of tumour types37,62,63 (TABLE 1), and 

increased Polη expression in melanomas, chronic lymphocytic leukaemias and germinal 

centre B cell lymphomas is associated with a mutational signature enriched at WA/TW 

motifs (where W is A or T), consistent with Polη mutagenic activity64,65.

Polι was originally suggested to serve as a back-up of Polη in UV lesion processing, 

although its unique structural features suggest an independent, albeit still ill-defined, 

function for this enzyme in DNA damage bypass66–68. Although Polι deficiencies in normal 

cells are not linked with pathologies in humans68, several SNPs in POLI (encoding Polι) 

have been linked to the development of specific tumour types, including melanoma, prostate 
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cancer, lung adenocarcinoma and squamous cell carcinoma69–71. Cell-based studies have 

shown that Polι activity increases T>C transitions, T>A transversions or C>A transversions 

in breast cancer cells exposed to UV damage72, and Polι expression is elevated in breast 

cancer cell lines72, bladder cancer73 and oesophageal squamous cell carcinoma56 (TABLE 

1). In vivo studies suggest that Polι expression can contribute to oesophageal squamous cell 

carcinoma cell migration and invasion74; however, future research will need to determine the 

molecular links between Polι expression or activity, migration and invasion, and response to 

chemotherapy.

Polκ is implicated, along with Polη, in the replication of DNA at common fragile sites75 

and promotes DNA synthesis when replication fork stalling occurs due to nucleotide 

deprivation76. Polκ has a propensity to introduce interrupted mutations and undergo polar 

pausing77; upon hydroxyurea treatment, the mutational signature of Polκ at poly(dA:dT) 

repeats — sites of fork stalling and collapse in both early and late-replication fragile sites 

— includes recurrent interruptions of poly(dA:dT) tracts with CC:GG sequences in a mouse 

cell line model78. In general, mutations in common fragile sites have been associated 

with genomic instability features that drive tumorigenesis79. Moreover, POLK SNPs are 

associated with various cancer types, including prostate, breast, lung, melanoma, stomach 

and large intestine tumours80, and Polκ expression is elevated in lung cancer81 (TABLE 1). 

It is unclear whether there is a direct relationship between Polκ-dependent mutations within 

particular sequences and tumorigenesis.

Template switching.

TS has been most extensively studied in yeast and bacteria82,83, and work establishing 

TS factors and regulators in human cells is limited. In general, TS pathways can lead to 

genomic instability through genomic rearrangements and sister chromatid exchange (SCE).

TS mechanisms in yeast84,85 and human cells86 are associated with K63-linked 

polyubiquitination of PCNA by the E2-conjugating enzyme UBC13 following PCNA 

monoubiquitination by RAD18 (FIG. 1). UBC13, expressed at moderate levels in most 

tumours87 (TABLE 1), has two E3 ligase partners, helicase-like transcription factor (HLTF) 

and SNF2 histone linker PHD ring helicase (SHPRH), both of which are implicated 

in PCNA ubiquitination88,89. HLTF expression is generally low across tumour types90, 

whereas SHPRH levels appear to be moderate or high in the majority of cancers91 (TABLE 

1). Although there is no clear data indicating the molecular mechanism underlying this 

difference, we speculate that HLTF might be lowly expressed across tumours because of its 

reported antiproliferative functions92–94 in addition to its roles in the DNA replication stress 

response95.

Following PCNA polyubiquitination by UBC13, TS might involve molecular steps 

resembling those of canonical homologous recombination (reviewed in REF.96). The central 

recombinase factor RAD51 and Nijmegen breakage syndrome 1 protein (NBS1), which is 

a key component of the MRE11–RAD50–NBS1 (MRN) complex, have been implicated 

in TS across from abasic sites and benzo[a]pyrene adducts29,97; in this context, RAD51 

might potentially mediate TS by promoting strand invasion and branch migration between 

sister chromatids, whereas the MRN complex might be required to process the stalled 
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replication intermediate. Homologues of the human Bloom syndrome protein (BLM), 

such as the ATP-dependent helicases SGS1 in Saccharomyces cerevisiae98 and hus2/rqh1 

in Schizosaccharomyces pombe99, promote TS by facilitating the dissolution of D-loop 

structures although there are no mechanistic studies that conclusively demonstrate the 

function of BLM in TS in human cells. Interestingly, many of these putative TS factors 

are highly expressed in different cancer types100,101 (TABLE 1).

TS pathways can lead to gross chromosomal rearrangements and gene amplifications102,103, 

which could in turn affect cancer progression, chemoresponse and clinical survival 

outcomes102,103. Copy number variations and gene amplifications are likely to occur 

when replication-associated TS events bypass genomic regions containing a high number 

of repetitive sequences such as telomeres, tRNA genes and triplet repeats102. Identifying 

these TS-dependent copy number variations or gene amplifications could uncover targets to 

improve chemoresponse or reverse resistance resulting from these genomic rearrangements. 

For example, gene amplification of the HER2 receptor is currently used to inform clinical 

treatment of specific breast cancers and other HER2-amplified tumours with the HER2-

specific antibody trastuzumab104. It is notable that break-induced replication, which is 

another fork recovery pathway that rescues collapsed or broken replication forks by 

promoting a TS-like mechanism105, is also an important source of gross chromosomal 

rearrangements in cancer cells; an in-depth review of the molecular consequences of break-

induced replication can be found in REF.105.

Fork reversal.

Replication fork reversal is activated in response to various replication challenges and 

promotes re-annealing of complementary daughter strands to form a four-way reversed fork 

structure24.

Several DNA translocases, including Rad5 in budding yeast106 and RAD54 (REF.107), 

SMARCAL1 (REFS.108,109), FANCM110, ZRANB3 (REFS.111,112) and HLTF113,114 in 

mammalian cells, can promote fork reversal, although their exact mechanisms are unclear 

(FIG. 1). Biallelic SMARCAL1 mutations cause Schimke immunoosseous dysplasia, and 

these clinical phenotypes are linked to the defective replication-associated DNA damage 

response observed in SMARCAL1-deficient cells115,116. High SMARCAL1 expression 

has been observed in pancreatic, testis, breast, prostate and thyroid cancer samples117 

(TABLE 1). Germline mutations in FANCM, a member of the Fanconi anaemia (FA) 

complementation group, lead to increased cancer predisposition, consistent with established 

roles for FA proteins in genome stability118,119. In the context of human malignancy, 

ZRANB3 variants have been observed in endometrial cancers120 and ZRANB3 RNA 

expression is highest in testis cancers relative to other tumour types121 (TABLE 1). RAD54 
mutations have been detected in a single case of primary lymphoma and a single case 

of colorectal cancer122, and tumour-associated RAD54 mutations have been linked with 

genomic instability in cell models123.

The central recombinase factor RAD51 (REF.24), the F-box DNA helicase 1 (FBH1; a 

helicase and RAD51 ubiquitination regulator)124 and several RAD51 paralogs125,126 have 

been implicated in reversed fork formation. Germline RAD51 mutations confer an increased 
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cancer risk, particularly for breast and ovarian cancers127, and RAD51 foci formation has 

been used to assess the homologous recombination proficiency of cancers128. RAD51 

protein levels are increased in pancreatic cancer129, breast carcinomas130 and cancer 

cell lines131 (TABLE 1). As a result, RAD51 inhibitor development127 has emerged as 

a chemotherapeutic strategy, particularly in combination with targeted therapies such as 

poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi).

Resolution of reversed fork structures is mediated in humans by the RECQ1 helicase132. 

The reversed fork restart activity of RECQ1 is regulated by PARP1, which suppresses 

RECQ1 activity until the damage is repaired132. A second mechanism of reversed-fork 

processing and restart depends on human DNA replication helicase/nuclease 2 (DNA2) and 

Werner syndrome ATP-dependent helicase (WRN)133. RECQ1 and WRN, in addition to 

BLM, RECQ5 and RECQ4, all belong to the RecQ helicase family, and Bloom syndrome, 

Werner syndrome and Rothmund–Thomson syndrome arise from germline mutations in 

BLM, WRN and RECQ4, respectively. Hallmarks of these syndromes include chromosomal 

instability, developmental abnormalities and increased risk of cancer134. Further, a mutation 

in the zinc-binding domain of RECQ1 that causes a defective DNA replication and 

DNA damage response following treatment with topoisomerase poisons is associated with 

RECON syndrome135. Interestingly, a rare RECQ1 mutation has also been correlated 

with breast cancer susceptibility136, further emphasizing a role for the RecQ helicases in 

maintaining genome integrity. BLM and DNA2 expression levels tend to be high across 

various tumour types100,137, whereas WRN seems to be moderately expressed in cancers of 

the testis, thyroid, head and neck138 (TABLE 1). RECQ1 expression appears moderate or 

high in lymphomas, thyroid, head and neck, and carcinoid cancers139 (TABLE 1). Targeting 

RecQ family helicases might increase sensitivity to DNA-damaging chemotherapeutics by 

preventing their reported functions in DNA repair and replication, with the caveat that the 

functional inactivation of these enzymes might be toxic to non-malignant cells.

Fork reversal represents a high-fidelity form of DDT and reversed replication forks must be 

protected from extensive nucleolytic degradation to preserve genome stability. In addition 

to their critical roles in homologous recombination, the breast cancer susceptibility proteins 

BRCA1 and BRCA2 act to protect reversed replication forks140–142 and, in their absence, 

nucleases such as MRE11 and exonuclease 1 (EXO1) target the open DNA end of the 

reversed fork substrates, leading to extensive fork degradation. Replication fork degradation 

in cancer is linked to chemosensitivity, whereas restoration of fork protection is associated 

with drug resistance140,143,144. Interestingly, extensive fork degradation is not a terminal 

event as BRCA-deficient cells employ specialized fork recovery pathways to rescue 

degraded forks and withstand DNA damage. In BRCA2-deficient cancer cells, MUS81 

(a structure-specific endonuclease that is expressed at low levels across cancer types)145 

and DNA polymerase-δ subunit 3 (Polδ3) cooperate to facilitate a break-induced replication-

like mechanism of fork restart146,147. Of note, this break-induced replication-like pathway 

is not employed in BRCA1-deficient backgrounds146, suggesting that BRCA1-deficient 

cells recover resected forks through a different pathway. Indeed, ectopic expression of 

the E3 ubiquitin-protein ligase RNF168, together with the DDT enzymes RAD18 and 

SLF1, contributes to a break-induced replication-like mechanism at stalled replication 

forks in BRCA1-deficient cells148. It is unclear whether this axis is also active under 
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conditions of endogenous RNF168 expression and whether additional factors are required 

for fork recovery in BRCA1-deficient cancer cells when RNF168 is not overexpressed. 

Interestingly, RNF168 loss in BRCA1-heterozygous mice predisposes these animals to 

tumour development149, suggesting that RNF168 might also mediate a similar replication 

fork stress response mechanism in non-malignant cells.

Recent work implicates the Cockayne syndrome protein CSB in fork recovery mechanisms 

in both BRCA1-deficient and BRCA2-deficient cells150. CSB functions in a break-induced 

replication mechanism of fork restart that depends on MRE11, MUS81 and RAD52 

(REF.150). RNA levels expressed from ERCC6 (encoding CSB) are highest in thyroid 

and breast tumour samples relative to other cancers151 (TABLE 1). DNA repair protein 

XRCC1, which is involved in ssDNA break repair, is also involved in replication restart in 

cells lacking BRCA2 (REF.152). XRCC1 is highly expressed in a diverse range of cancers 

and is synthetically lethal with BRCA2 (REF.153) (TABLE 1). BRCA2-deficient cells 

activate XRCC1-mediated microhomology-mediated end joining (MMEJ) in collaboration 

with MRE11 to facilitate recovery of extensively degraded replication forks152. Collectively, 

these findings underscore the potential of fork recovery mechanisms as possible therapeutic 

targets.

Repriming and ssDNA gaps.

Repriming is a highly conserved replication stress response that is present across Escherichia 
coli154, budding yeast155 and human cells25–27. In human cells, repriming is mediated by 

PRIMPOL25–27 (FIG. 1), which operates in both mitochondria and nuclei156. Although 

our understanding of mitochondrial repriming is limited, several studies have documented 

a key role for PRIMPOL during nuclear DNA replication3,4,28,32,97,156–159. PRIMPOL 

repriming is generally activated in conditions of impaired fork reversal (for example, upon 

PARPi treatment or loss of SMARCAL1, HLTF or CARM1 expression)3,32,113, increased 

PRIMPOL expression4,32 or BRCA deficiency160,161. Interestingly, PRIMPOL expression 

is elevated in thyroid cancers relative to other tumour types162 (TABLE 1) and the point 

mutant PRIMPOL-Y100H, which alters unique preference of PRIMPOL for dNTPs163, has 

been identified in lung carcinoma as reported in the COSMIC database164, suggesting that 

altering PRIMPOL activity could drive tumour formation.

PRIMPOL-dependent repriming introduces ssDNA gaps downstream of the replication 

obstacle, leaving these gaps to be repaired post-replicatively4,32,97,113,157. Recent studies 

in cells challenged with cisplatin suggest that there are at least two temporally distinct 

pathways that repair ssDNA gaps: in G2-phase, a TLS mechanism dependent on RAD18, 

PCNA monoubiquitination, and REV1 and Polζ promotes gap filling, whereas gap filling 

is mediated by a TS-like mechanism dependent on UBC13 and RAD51 in S-phase32. 

The choice and timing of a particular gap-filling pathway likely varies with genetic 

background and the replication roadblock bypassed during the initial repriming event32,165. 

Potential risks of these gap-filling mechanisms include mutagenesis in the case of TLS, and 

SCEs or chromosomal rearrangements that could contribute to genomic instability in TS. 

Failure to fill the ssDNA gaps leads to persistent ssDNA stretches, which are susceptible 

to cleavage and nucleolytic processing, potentially contributing to double-stranded DNA 
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break accumulation. Recent studies revealed that accumulation of ssDNA gaps or impaired 

gap filling increase chemosensitivity upon treatment with PARPi, particularly in BRCA-

deficient cancer cells32,160,161,166,167. Recent evidence also implicates the accumulation 

of ssDNA gaps in contexts where Okazaki fragment maturation and chromatinization is 

compromised167,168. Thus, factors that promote ssDNA gap generation and the subsequent 

step of gap filling represent attractive targets to modulate chemotherapy response.

In summary, diverse replication fork stress response mechanisms have different effects on 

genome stability and tumour development. These findings raise several questions regarding 

how the differential usage of these pathways affect chemoresponse and clinical outcomes; 

whether relevant combinatorial treatments could effectively target replication stress response 

and improve chemosensitivity or combat chemoresistance in a clinical setting; and whether 

factors involved in replication stress response could serve as useful clinical biomarkers. The 

next sections outline current research aimed at answering these critical questions.

DNA replication stress in cancer therapy

Targeting TLS and DNA repair polymerases in cancer.

RAD18 has been investigated as a promising target for cancer treatment owing to its 

elevated expression across many tumour types and role in initiating TLS (FIG. 2). Indeed, 

targeting RAD18 with a specific microRNA has been shown to sensitize resistant colorectal 

carcinoma cells to chemotherapy in vitro169. Recent data reveal that knockout of RAD18 
in BRCA1-deficient or BRCA2-deficient cancer cells increases DNA damage and formation 

of unrepaired ssDNA gaps, leading to cell death161. Further, RAD18-deficient cancer cells 

are more sensitive than wild type cancer cells to crosslinking agents, including mitomycin 

C and cisplatin170. The increased sensitivity of RAD18-deficient cells to crosslinking agents 

could be associated with an additional role of RAD18 in regulating ubiquitination of the FA 

protein FANCD2 (REFS.170,171), which is a central factor involved in inter-strand crosslink 

repair172,173. Following these observations, recent studies have screened for chemical 

inhibitors of the RAD18 pathway by specifically targeting the interaction between RAD18 

and its upstream E2-conjugating enzyme partner RAD6 (REF.174), paving the way for future 

preclinical studies.

PCNA monoubiquitination can be directly targeted using the small molecular inhibitor 

T2-amino alcohol175. Treatment with T2-amino alcohol prevents repair of interstrand DNA 

crosslinks and increases DNA double-stranded breaks (DSBs) and sensitivity to cisplatin 

in cell-based assays176. Similarly, preventing PCNA monoubiquitination by mutating 

lysine 164 to arginine decreases cell proliferation167 and increases sensitivity to UV 

treatment167,177. Loss of PCNA monoubiquitination increases the response of cells lacking 

BRCA1 or BRCA2 to PARPi and cisplatin167.

Targeting the deubiquitinase USP1, which removes ubiquitin from monoubiquitinated 

PCNA, shows promise in exacerbating replication stress and increasing DNA damage in 

cancer cells178,179. As a result, a clinical trial for advanced solid tumours has recently been 

developed using a first-in-class USP1 inhibitor, both alone and in combination with PARPi 

(TABLE 1).
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TLS polymerases downstream of RAD18-mediated PCNA ubiquitination have been 

explored as targets to modulate cancer cell survival and improve therapy response. REV1 

expression is associated with the development of chemoresistance to platinum-based drugs 

in ovarian cancer models180,181 and loss of REV1 in BRCA-deficient cancer cells leads 

to decreased viability similar to the effects of RAD18 downregulation161. However, the 

degree of epistasis between these two proteins is untested. A newly developed chemical 

inhibitor of REV1, JH-RE-06, has been shown to bind to the REV1 C-terminal domain 

and promote REV1 dimerization182, rendering the enzyme unable to recruit Polζ and 

initiate TLS. Treatment of mice carrying patient-derived melanoma xenografts with JH-

RE-06 in combination with cisplatin substantially reduced tumour burden182. Treatment 

with a different TLS inhibitor, which also inhibits the interaction between REV1 and TLS 

enzymes, selectively kills cancer cell lines that rely on TLS for replication, including 

cells expressing FANCJ-S990A (a mutant copy of the helicase FANCJ that is unable to 

interact with BRCA1) and cells lacking the negative TLS regulator p21 (REF.166). In these 

‘pro-TLS’ backgrounds, treatment with this TLS inhibitor synergizes with other replication 

stress-inducing agents, including inhibitors of ATR or WEE1 (REF.166), an effect that is 

attributed to the accumulation of ssDNA gaps. Interestingly, REV1 inhibition preferentially 

sensitizes BRCA-deficient cancer cells relative to wild type models both in the context 

of JH-RE-06 monotherapy161 and in combination with cisplatin and PARPi treatment32, 

which might be a result of the formation of ssDNA gaps161 and decreased gap filling32 in 

BRCA-deficient backgrounds.

Notably, REV1 loss or inhibition does not sensitize cells to ionizing radiation, possibly 

owing to the upregulation of autophagy, which is a hallmark of radioresistance183. The 

complex relationship between autophagy and cancer therapy responses is summarized in 

REF.184. The impact of TLS polymerase inhibition on autophagy should be considered when 

targeting these proteins for therapeutic benefit.

Promising results have been demonstrated with in vitro optimization of small-molecule 

inhibitors that target other TLS enzymes such as Polη and Polκ185–187. Preliminary studies 

revealed that targeting of Polκ with a small-molecule inhibitor increases sensitivity to 

the alkylating agent temozolomide in vitro185. Lower Polζ expression is associated with 

improved response to cisplatin and gemcitabine chemotherapies in head and neck squamous 

cell carcinomas63 and increased POLN mRNA expression is associated with worsened 

overall survival in non-small-cell lung cancer (NSCLC)188. Studies also indicate that 

increased Polζ expression is linked to cisplatin resistance in bladder cancers189 and in 

ovarian cancer stem cells62. Indeed, Polζ and Polκ have both been shown to facilitate 

replication past platinum adducts190, suggesting that these TLS polymerases could be 

targeted to improve platinum-based therapies. A recent study highlighted that Polκ also 

enables cancer cells to tolerate replication stress resulting from aberrant cyclin-dependent 

kinase 2 (CDK2) activation191, which can be induced by cyclin E overexpression or WEE1 

inhibition191. Consistent with these findings, loss of Polκ or RAD18 sensitizes cancer cells 

to WEE1 inhibition191.

Polζ might represent a target for improving chemosensitivity and decreasing drug resistance. 

Increased expression of REV3L — the catalytic subunit of Polζ — is associated with 
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cisplatin resistance in gliomas55 and REV3L loss sensitizes chemoresistant models of 

NSCLC to platinum-based chemotherapy192. Similarly, loss of REV7 — the accessory 

subunit of Polζ — improved cisplatin response in a mouse model of NSCLC193, and 

increased REV7 expression correlates with worsened survival outcomes in patients with 

diffuse large B cell lymphoma (DLBCL)194. Depletion of REV7 also increases the 

sensitivity of clear cell ovarian carcinoma to cisplatin195. However, in BRCA1-deficient 

backgrounds, REV7 loss contributes to PARPi resistance, an effect attributable to its role in 

non-homologous end joining (NHEJ)196,197. As a result, the impact of REV7 on both TLS 

and NHEJ must be considered when targeting REV7 across cancers.

Polθ, a member of the A-family of polymerases198 that functions in MMEJ199,200, 

represents a promising therapeutic target, particularly in BRCA-deficient cancers199–201. 

Because of its essential role in MMEJ, Polθ loss is synthetically lethal with deficiencies in 

other DSB repair pathways, including homologous recombination199,200 (FIG. 3), and Polθ 
inhibition in BRCA-deficient cancer cells increases sensitivity to cisplatin and PARPi199. 

In addition to its role in MMEJ, Polθ is implicated in the repair of breaks arising from 

collapsed replication forks, tolerance of G-quadruplex DNA secondary structures and 

replication stress response upon fork stalling202. Additional work will be critical to define 

the contributions of each of these mechanisms to chemoresponse as a Polθ inhibitor has 

recently been combined with PARPi in a clinical trial (TABLE 1). Polθ expression levels 

and mutational signatures could represent Powerful clinical biomarkers to assess the efficacy 

of newly developed Polθ inhibitors across a range of tumour types199,203–205.

Targeting TS and replication fork recovery in cancer.

Linking differential expression levels of UBC13, RAD51, BLM and NBS1 to defects in 

TS and to cancer chemotherapy response is complicated by the lack of direct methods 

for investigating homology-mediated TS mechanisms that do not necessarily involve 

strand transfer. In addition, these proteins have multiple cellular roles: UBC13 promotes 

DSB signalling and ubiquitinates cytosolic NF-κB pathway targets206; RAD51 plays 

multiple roles in replication fork stability125; and RAD51, BLM and NBS1 function in 

homologous recombination96. Consequently, we note that any potential chemotherapeutic 

benefit associated with targeting these factors cannot be absolutely associated with changes 

in TS efficiency.

UBC13 upregulation promotes breast and colorectal cancer cell metastasis through JNK 

and MAP kinase activation207,208 and melanoma growth through MEK signalling209 

although another study proposes that UBC13 is downregulated in paclitaxel-resistant ovarian 

cancer cells, with lower expression contributing to worsened outcomes210. Interestingly, 

UBC13 inhibition with a small molecular inhibitor, NSC697923, has been shown to kill 

neuroblastoma cells211, DLBCL cells212 and melanoma cells in vitro209. Differences across 

studies might point to tumour-specific impacts of UBC13 expression and activity and 

indicate a need to evaluate any off-target effects of UBC13 inhibitors that could contribute to 

observed cell-killing phenotypes. In addition to UBC13, downstream TS factors might also 

constitute potential clinical targets and biomarkers.
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Loss of the fork recovery factor MUS81 is associated with increased hydroxyurea 

sensitivity in BRCA2-deficient cancer cells146 and, similarly, CSB downregulation increases 

hydroxyurea sensitivity in BRCA1-deficient and BRCA2-deficient backgrounds150. 

Moreover, MUS81 promotes progression of serous ovarian carcinoma213 and knockdown 

increases sensitivity of epithelial ovarian cancer to PARPi214. Both overexpression and 

downregulation of RNF168 decrease viability in BRCA1-deficient cancers215. These data 

suggest that the relationship between RNF168 expression and cell survival is distinct 

from the roles of other recovery factors such as MUS81 and CSB, whose targeting can 

increase sensitivity to replication stress inducers. Future research should focus on defining 

whether, in addition to its role in fork recovery148, the roles of RNF168 in chromatin 

ubiquitination216 and DNA damage signalling149 should be considered when targeting this 

factor to improve cancer cell chemoresponse.

Leveraging replication stress in PARPi cancer therapy.

The development of PARPi therapies has significantly improved survival outcomes in 

homologous recombination-deficient cancers. Therapies using PARPi and chemotherapy 

are proposed to kill homologous recombination-deficient tumours, such as those harbouring 

BRCA1 or BRCA2 mutations, through synthetic lethality217,218. PARPi leads to trapping 

of PARP proteins on DNA and causes an increase in ssDNA breaks, which are converted 

into irreparable DSBs during replication in BRCA-deficient tumours218–220 and lead to 

cell death (FIG. 3). Toxic DSBs might also originate from the degradation and collapse of 

stalled replication forks upon treatment with DNA-damaging chemotherapy that cannot be 

adequately protected in the absence of BRCA proteins140–142 (FIG. 3). Interestingly, PARPi 

has also shown promise in targeting homologous recombination-proficient cancer cells as 

loss of RNase H2, which is involved in removal of erroneous ribonucleotides from the DNA, 

sensitizes BRCA-proficient cells to olaparib221.

PARPi efficacy is hampered by the development of resistance222,223 and several regulators 

of PARP trapping have recently emerged as key modulators of PARPi224–226. Reported 

mechanisms of PARPi resistance (reviewed in REF.227) include BRCA reversion mutations 

that restore homologous recombination in these tumours; upregulation of efflux pumps 

that clear PARPi from cancer cells; restoration of homologous recombination through 

the downregulation of NHEJ factors, including tumour suppressor P53-binding protein 

1 (53BP1) and the Shieldin complex; diminished PARP trapping via PARP mutations; 

and rescued PARylation and decreased binding of PARP to DNA through loss of poly-

ADP ribose glycohydrolase (PARG)228, which opposes PARP activity. Another emerging 

mechanism of chemoresistance is the restoration of replication fork stability in BRCA-

deficient cancer cells, independent of the re-establishment of homologous recombination 

function in these genetic backgrounds140,229.

ssDNA gaps are frequently formed as a consequence of replication stress and several 

studies propose that the accumulation of ssDNA gaps in BRCA-deficient cancer 

cells, exacerbated by treatment with PARPi, modulates cancer cell survival and drug 

sensitivity8,32,160,161,166,167,230 (FIG. 3). Therefore, PRIMPOL, which generates ssDNA 

gaps during repriming and is regulated by the ATR4 and CHK1 (REF.231) kinases (discussed 
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below), might represent a key regulator of cancer response to PARPi or emerging ATR and 

CHK1 inhibitors.

While PRIMPOL activity is typically associated with leading-strand ssDNA gaps, recent 

evidence suggests that aberrant Okazaki fragment processing (OFP) could lead to ssDNA 

gaps on the lagging DNA strand5,6,167,168. Defects in the canonical OFP pathway232, which 

involves flap endonuclease 1 (FEN1) and DNA ligase I, or a backup OFP mechanism that 

relies on PARP, XRCC1 and DNA ligase 3 (REF.6) have been implicated in increased 

sensitivity to cancer therapies, including to PARPi. Restoration of efficient OFP or 

upregulation of OFP pathways may also contribute to chemoresistance in certain genetic 

contexts, including BRCA1-deficient cancer cells8. Moreover, models of PARPi resistance 

in BRCA-deficient cancer cells can be re-sensitized to PARPi through depletion of DNA 

ligase 3 (REF.233), which could be explained by an increased reliance of BRCA-deficient 

cells on DNA ligase 3-mediated OFP or base excision repair. The ssDNA gap accumulation 

model of chemoresponse234,235 raises the important possibility that gap-filling mechanisms 

can be targeted to sensitize BRCA-deficient tumours to PARPi and other DNA-damaging 

chemotherapy to overcome chemoresistance in these cancers.

There are distinctions to be made between in vitro, in vivo and clinical models of 

PARPi resistance. Patient data has revealed cases of PARPi resistance caused by reversion 

mutations in BRCA1 and BRCA2 (REF.227) as well as by diminished PARP trapping 

via a PARP1 mutation in a single instance227. Preclinical in vivo model data support 

PARPi resistance through decreased 53BP1 and Shieldin expression in patient-derived 

xenografts236. However, it remains to be shown whether restoration of replication fork 

stability or changes in ssDNA gap formation and repair impact clinical PARPi resistance. 

Translation of findings from in vitro models of chemotherapy resistance to clinical models 

of disease is complicated by the fact that multiple chemoresistance mechanisms can be 

activated in the same cell and across cells within the same tumour. In vitro studies must be 

expanded to other BRCA-mutated and wild type tumour types and potentially combine 

parallel assessments of different mechanisms of chemoresistance found in the clinical 

setting.

Exacerbating replication stress in cancer with cell cycle-checkpoint inhibitors.

DDT mechanisms are temporally regulated throughout the cell cycle19 and checkpoint 

inhibitors are emerging as promising drugs for cancer treatment as they affect the ability of 

specific DTT pathways to repair or bypass a lesion in S-phase before cells enter G2-phase or 

reach mitosis.

ATR kinase orchestrates different cellular pathways in response to replication stress, 

including the enforcement of an S/G2 checkpoint237, regulation of intracellular dNTP levels 

and origin firing. ATR might also play a role in replication fork reversal but its contribution 

is unclear238–240. The ATR signalling cascade, involving CHK1 phosphorylation, is 

activated upon exposure of stretches of ssDNA that form during replication fork stalling 

and uncoupling241. Based on the role of ATR in preserving replication fork stability 

and enforcing an appropriate cell-checkpoint response, inhibition of ATR kinase and of 

its downstream CHK1 substrate are relevant strategies to improve cancer chemoresponse 
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(FIG. 2). Preclinical data show that ATR inhibitors and CHK1 inhibitors can re-sensitize 

PARPi-resistant, BRCA1-deficient cancer cells to PARPi, making the ATR–CHK1 pathway 

an attractive therapeutic target in settings of drug resistance229,242. CHK1 inhibition also 

decreases tumour growth in mouse models lacking activating molecule in BECN1-regulated 

autophagy protein 1 (AMBRA1), which has been uncovered as a key regulator of the cell 

cycle243–245. Multiple clinical trials have used preclinical mechanistic insight to inform 

combination therapies with ATR inhibitors and either PARPi, platinum-based chemotherapy, 

antimetabolites or radiotherapy (TABLE 2). Similarly, CHK1/2 inhibitors have been 

included in clinical trials as a monotherapy or in combination with PARPi, gemcitabine 

and even PDL1 blockade (TABLE 2). Importantly, the inhibition of ATR appears to have 

lower toxicity than inhibition of CHK1, which could be related to the non-specificity of 

some CHK1 inhibitors that target both CHK1 and CHK2 (TABLE 2). Activation of ATR 

and CHK1 might be a useful biomarker to predict tumour response to emerging targeted and 

combinatorial therapies that induce replication stress. For a comprehensive review of ATR 

kinase and its functions at replication forks, we direct readers to REFS.1,241.

The G2 checkpoint kinase WEE1, which is downstream of ATR and CHK1, shows promise 

as a therapeutic target (FIG. 2 and TABLE 2). WEE1 inhibitors reduce tumour growth 

in combination with ATR inhibitors in mouse models of DLBCL246, are synergistic with 

CHK inhibitors in acute lymphoblastic leukaemia247 and improve PARPi response in 

triple-negative breast cancer248,249. WEE1 inhibition contributes to replication fork stress 

by disrupting nucleotide pools, leading to replication fork collapse and DSBs250, and by 

promoting replication fork degradation251. In addition, treatment of ex vivo models of 

ovarian cancer with CHK1 inhibitors or with both CHK1 and WEE1 inhibitors increases 

sensitivity to PARG inhibition, which induces replication fork catastrophe and increased 

DNA damage252. These data provide mechanistic insight into the potential clinical efficacy 

of combining CHK1 and WEE1 inhibitors with replication stress-inducing agents such as 

PARPi and PARG inhibitors.

In the absence of ATR, additional kinases, such as ATM and DNA-dependent protein 

kinase (DNA-PK), can phosphorylate CHK1 upon replication stress253. ATM is also 

involved in sensing DSBs, including those resulting from collapsed replication forks, and 

phosphorylates CHK2 as part of the DSB signalling cascade254. As a result, ATM and 

CHK2 inhibitors have entered clinical trials in combination with chemotherapeutic agents 

that induce replication stress, including PARPi (TABLE 1). Drugs that specifically target 

CHK2 have been investigated in fewer clinical trials than those that target CHK1, which 

suggests that they might be less effective as antineoplastics. Indeed, this difference might 

be connected to CHK2 being non-essential in cells, whereas CHK1 is an essential gene255. 

ATM-deficient tumours have been targeted with a wide range of drugs, including platinum-

based agents, ATR inhibitors, PARPi and CHK1/2 inhibition strategies256,257. In addition 

to ATR and ATM, DNA-PK plays critical roles both in DSB repair through NHEJ and in 

the replication stress response. Upon replication stress induction, DNA-PK facilitates ATR–

CHK1 checkpoint activation258, and concurrent ATR and DNA-PK inhibition increases 

radio-sensitivity in colon and head and neck squamous cell carcinoma cell lines259. In vitro 

data show that DNA-PK inhibition can improve cancer cell response to PARPi, doxorubicin 

and radiation treatment, and ATM-deficient cancer cells are also highly sensitive to 
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combined DNA-PK inhibition and PARPi treatment260. As a result, DNA-PK inhibitors 

are in clinical development for the treatment of solid malignancies (TABLE 2).

CDK inhibitors that impair cell cycle progression are increasingly used in the clinic, 

including as second-line therapy for breast, prostate and ovarian cancer261. However, 

resistance to CDK inhibitors — and particularly to CDK4/6 inhibitors — is seen frequently 

and the pleotropic effects of many CDK inhibitors make it difficult to pinpoint mechanisms 

that underlie differential sensitivity262,263. CDK inhibitors typically arrest cells in G1/S 

phase (FIG. 2), which can decrease replication-associated toxicity induced by DNA-

damaging chemotherapy or radiotherapy264,265. As a result, the blunting of chemotherapy by 

CDK inhibitors is a relevant concern266. Despite these concerns, recent preclinical findings 

show that CDK4/6 inhibitors have synergistic effects with PARPi267. Pre-treatment with 

the CDK4/6 inhibitor palbociclib sensitizes cancer cells to a wide range of genotoxic 

agents, such as aphidicolin, camptothecin and doxorubicin, and is associated with prolonged 

replication stress268 (FIG. 2). Post-treatment with palbociclib following incubation with 

DNA-damaging agents, such as gemcitabine, cisplatin and topoisomerase poisons, also 

enhances cancer cell killing269. Although most CDK inhibitors are used as monotherapies, 

a number of clinical trials have tested combinations of CDK inhibitors, particularly CDK4/6 

inhibitors, with platinum-based agents, epirubicin and gemcitabine; however, toxicity with 

these therapies remains a challenge270.

Bolstering immunotherapy response in cancer with replication stress induction.

Recent studies have explored a connection between replication fork perturbations, 

inflammatory signalling and cancer immunotherapy response. The finding that STING 

inflammatory signalling is upregulated in response to replication stress271–273 suggests 

that replication stress might cause the release of DNA fragments from the nucleus into 

the cytosol, causing cGAS–STING pathway activation. Further studies have implicated the 

processing of stalled replication forks271,274,275 and micronuclei276,277 as sources of these 

DNA fragments. Upregulation of an interferon-like response by cGAS–STING leads to T 

cell priming and recruitment and can boost the efficacy of immunotherapies278, suggesting 

that combinatorial treatments exploiting STING-inducing replication stress with immune-

checkpoint blockade represent a promising therapeutic strategy (FIG. 2).

Increased expression of specific TGFβ-responsive genes is associated with immunotherapy 

resistance in gynaecological cancers279, and additional work has shown that blocking TGFβ 
signalling restrains tumour growth in a breast cancer mouse model that is resistant to 

immune-checkpoint blockade280. One study identified that loss of Mediator complex subunit 

12 (MED12; a coactivator that functions in transcription) contributes to chemoresistance by 

upregulating TGFβ signalling and restoring replication fork stability in BRCA-deficient 

cancer cells281. In BRCA-competent cells, BRCA1, which plays roles in both DSB 

repair and replication fork stability, is downregulated by TGFβ through its interactions 

with miR-182 (REF.282); upon stimulation by TGFβ, this microRNA decreases BRCA1 

protein levels in mouse and human cells282,283. These data highlight MED12 and the 

TGFβ signalling axis as promising therapeutic targets for combatting immune therapy 

resistance and improving drug sensitivity, particularly through promoting replication stress 
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and decreasing DNA-damage repair capacity. TGFβ preserves genomic stability more 

broadly by mediating ATM and p53 checkpoint activation and promotion of the DNA 

damage response and DSB repair through SMAD proteins284–286. To refine this preliminary 

evidence, additional studies must define the contribution of the TGFβ pathway across 

cancer cell types, especially in cancer stem cell populations in which TGFβ expression 

has been suggested to both suppress287 and promote cancer stem cell features in different 

contexts288,289.

Several publications broadly suggest that tumour mutational burden (TMB) is linked to 

immunotherapy response290,291. While the impact of TMB on therapy response is not 

straightforward in every cancer subtype nor with every drug regimen, TMB is generally 

proposed to correlate with increased neoantigen formation292. These neoantigens are 

recognized by T cells293 and could boost efficacy of immune-checkpoint blockade and 

improve tumour killing. To date, and based on the preclinical data described above, 

numerous clinical trials have combined immune-checkpoint blockade with a range of 

chemotherapeutics294,295 (FIG. 2). One study also uncovered a “replication stress response 

gene expression signature”, which was predictive of immune-checkpoint blockade response 

in preclinical cancer models296, suggesting that replication stress-linked TMB or neoantigen 

formation could be useful as biomarkers. These data emphasize the importance of further 

mechanistic investigation to exploit the link between replication stress pathways, DNA 

damage response and immune system activation.

DNA replication stress and clinical biomarkers.

DDT pathways could be useful for the development of new clinical biomarkers (FIG. 4). 

TLS enzymes are generally elevated across select tumour types37,56,57,62,63,72,73, possibly 

because of their contribution to mutagenesis, which drives carcinogenesis and also promotes 

tumour evolution and resistance to chemotherapy. Increased RAD18, PCNA ubiquitination 

and TLS polymerase expression relative to normal tissue controls or over time within the 

same tumour might represent novel biomarkers to predict therapy response and clinical 

outcomes43,44,57,69–71,74,297. Similarly, TS proteins, fork reversal factors and fork recovery 

enzymes are elevated in a variety of tumours87,91,100,101,117,121,137–139,145,151,153. The 

successful development of these DDT factors as biomarkers will require large-scale studies 

in a wide range of cancers to assess the tumour specificity of these proteins and establish 

relevant expression thresholds across cancer types. It should be noted that upregulation 

of selected DTT factors could be specific to the DNA-damaging agents that tumour cells 

are exposed to during treatment, which is an important consideration for the clinical 

applicability of these factors as biomarkers. Further, the replication stress-independent roles 

of these factors will also need to be explored to determine whether they contribute to cancer 

cell survival or response to DNA-damaging agents.

Functional assays to assess replication stress activities in tumour samples could be 

used as biomarkers. For example, single-molecule DNA fibre assays have been used in 

preclinical studies to monitor replication fork stability in high-grade serous ovarian cancers 

organoids298. TS-dependent SCE or gene amplifications and TLS-mediated mutagenesis 

could also provide useful readouts to assess possible response to chemotherapy. In addition, 
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increased accumulation of ssDNA and ATR–CHK1 activation could serve as biomarkers 

to predict response to drugs that induce replication stress (FIG. 4), including PARPi. 

Chromatin-bound RPA might be a useful readout of ssDNA gaps in cancer cells299, although 

two major challenges are currently associated with this approach: replication-associated 

ssDNA gaps need to be distinguished from regions of ssDNA generated in other phases 

of the cell cycle, and background levels of chromatin-bound RPA need to be studied and 

baseline thresholds established across diverse tumour types.

Recent data have shown that PARP trapping levels could also be used as a biomarker 

as they are indicative of PARPi sensitivity in cancer cells300. Finally, accumulation of 

cytosolic DNA and activation of the cGAS–STING pathway might also represent novel 

biomarkers to evaluate the combinatorial benefit of replication stress-inducing chemotherapy 

with immunotherapy or with other agents that increase TMB and neoantigen formation.

Conclusion

Precision medicine continues to revolutionize cancer care, informing the strengths and 

limitations of therapeutic strategies and uncovering emerging resistance mechanisms. In 

parallel, the field continues to identify foundational pathways of replication stress and DNA 

damage response using genome-wide screens and sequencing techniques301,302. These tools 

and the data they uncover are transforming the way we understand tumours at the molecular 

level and open new strategies to improve clinical cancer care. Future work needs to identify 

the tumour or cancer cell-type specificity of these emerging pathways and assess the 

adequacy of in vitro and in vivo cancer models that are used to elucidate replication stress 

and DNA repair mechanisms. Further, the feasibility and scalability of possible biomarkers 

and targets outlined in this Review must be explored given that multiple mechanisms of 

chemosensitivity and resistance can be activated within a single tumour or within a single 

cell. These studies are essential to solidify new findings on replication stress that are actively 

shaping clinical medicine, including the link between replication stress and immunotherapy, 

which is emerging as a promising direction for cancer treatment303,304. We predict that new 

cross-disciplinary studies will continue to inform the complex interplay of replication stress 

response mechanisms, DNA damage repair signalling and the tumour microenvironment, 

better predicting and improving response to therapy.
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Glossary

DNA lesions
Modifications introduced On the DNA helix by different genotoxic agents.

Xeroderma pigmentosum
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An autosomal recessive genetic disease caused by biallelic mutations of specific proteins 

that are involved in molecular mechanisms required to cope with UV-induced DNA lesions, 

including Polη.

Polar pausing
Transient pausing of the replication fork in response to a unidirectional barrier that only 

inhibits replication fork progression in one direction.

Schimke immuno-osseous dysplasia
A multi-system autosomal recessive genetic disease caused by inheritance of biallelic 

SMARCAL1 mutations, with renal disease being a major cause of mortality in patients 

with this disease.

RECON syndrome
An autosomal recessive genetic disease caused by biallelic mutations in the RECQL1 DNA 

helicase, which functions in the DNA damage response.

Microhomology-mediated end joining
(MMEJ). One of the DNA double-strand break repair pathways, along with homologous 

recombination and non-homologous end joining, which relies on microhomology sequences 

(1–16 nucleotides) to anneal and align double-strand break ends for repair.
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Box 1 |

DNA replication is mediated by a large protein complex known as the 
replisome that promotes multiple enzymatic activities

In eukaryotic cells, parental DNA is unwound by the CMG complex, which is 

composed of cell division control protein 45 (CDC45), mini-chromosome maintenance 

protein homologues 2–7 (MCM2–7) and the go–ichi–ni–san (GINS) complex. It is 

then replicated by the leading and lagging strand polymerases Polε and Polδ. The 

DNA sliding clamp proliferating cellular nuclear antigen (PCNA) is a homotrimer that 

encircles DNA and is essential for processivity of replicative polymerases. DNA lesions 

or other sources of DNA replication stress (red triangle) can transiently stall the leading 

strand polymerase, without affecting the movement of the CMG complex. This process 

is termed replication fork uncoupling and leads to the accumulation of single-stranded 

DNA stretches that are promptly coated by the single-stranded DNA-binding protein 

replication protein A (RPA).

Cybulla and Vindigni Page 32

Nat Rev Cancer. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1 |. Major mediators of the replication stress response.
Sources of endogenous replication stress include abasic sites, transcription–replication 

conflicts, the incorporation of ribonucleotides into DNA and protein–DNA crosslinks. 

Sources of exogenous stress include DNA inter-strand and intra-strand crosslinks induced by 

DNA crosslinking agents and base damage induced by alkylating drugs. Single-stranded 

DNA gaps or breaks, secondary DNA structures, including hairpins, and nucleotide 

imbalances that stall replicative polymerases are also considered sources of DNA replication 

stress. DNA damage tolerance mechanisms are activated when forks encounter these 

endogenous or exogenous DNA lesions or roadblocks, which are represented as red 

triangles. Translesion synthesis (TLS) is a DNA damage tolerance mechanism that 

involves RAD18-dependent monoubiquitination (mono-Ub) of proliferating cellular nuclear 

antigen (PCNA), which promotes downstream recruitment of TLS polymerases and DNA 

synthesis across the DNA lesion. Template switching involves RAD18 and UBC13-mediated 

polyubiquitination (poly-Ub) of PCNA and the downstream factors RAD51, Bloom 

syndrome protein (BLM) and Nijmegen breakage syndrome 1 protein (NBS1), allowing 

use of the complementary base pairs to replicate DNA past the DNA obstacle. Fork reversal, 

another form of template switching, employs the RAD51, SMARCAL1,ZRANB3, helicase-
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like transcription factor (HLTF) and F-box DNA helicase 1 (FBH1) enzymes to facilitate 

replication fork remodelling into a four-way junction structure. Repriming relies on the 

action of DNA-directed primase/polymerase protein (PRIMPOL), leaving single-stranded 

DNA (ssDNA) gaps behind the replication forks to be filled post-replicatively. PRIMPOL 

activity is regulated by ATR and CHK1.
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Fig. 2 |. The replication stress response in cancer and emerging therapeutic targets.
Upon replication fork stalling, single-stranded DNA exposure leads to the activation of the 

ATR checkpoint and the downstream CHK1 and WEE1 proteins. These signalling pathways 

can be targeted by ATR, CHK and WEE1 inhibitors, which are being tested in clinical 

trials. Following ATR induction, cells activate diverse replication stress response pathways, 

including translesion synthesis (TLS), template switching (TS), fork reversal and repriming. 

Inhibitors of REV1 and UBC13 have been tested in vivo in several cancer types, and REV1 

inhibitors could also be used to target single-stranded DNA gap filling following repriming. 

Additional TLS enzymes and factors involved in replication fork reversal have also shown 

promise as therapeutic targets in vitro. Replication-associated breaks activate the ATM, 

DNA-dependent protein kinase (DNA-PK) and CHK2 kinases. Inhibitors of ATM, DNA-PK 

and CHK2 are being evaluated for anticancer potential in clinical trials, in addition to 

CDK4/6 inhibitors, which are associated with cell cycle arrest and antiproliferative effects. 

Stalled replication forks can also be processed by nucleases, and extensive resection can 
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promote release of DNA fragments into the cytosol, stimulating the cGAS–STINC pathway. 

cGAS–STINC activation can augment the cancer cell response to immunotherapy, a strategy 

that is used widely in clinical trials and in the clinic. Inhibitors of DNA replication stress 

response factors that are already in clinical trial are shown in green, those that have shown 

preclinical in vivo efficacy are in blue, and those with in vitro efficacy are in red; they are all 

indicated by the letter i. mono-Ub, monoubiquitination; PCNA, proliferating cellular nuclear 

antigen.
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Fig. 3 |. Chemotherapy and PARPi in BRCA-deficient cancers.
Replication-associated single-stranded DNA (ssDNA) gaps accumulate in BRCA-deficient 

cancer cells. Upon treatment with DNA-damaging chemotherapy, replication forks are 

subject to extensive nucleolytic degradation, leading to fork breakage and formation of one-

ended double-stranded DNA breaks (DSBs). Degradation mainly originates from reversed 

forks (not shown). Poly(ADP-ribose) polymerase (PARP) inhibition impairs reversal (not 

shown), and causes trapping of PARP proteins and persistent ssDNA gaps, which lead to 

DSBs. Combination of chemotherapy and PARP inhibitor (PARPi) therapy exacerbates DSB 

formation by blocking ssDNA break repair of chemotherapy-induced lesions in addition 

to causing ssDNA gap accumulation and PARP trapping. In BRCA-deficient backgrounds, 
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these DSBs cannot be processed by homologous recombination, leading to cell death. These 

cells also become increasingly reliant on microhomoLogy-mediated end joining (MMEJ) to 

repair breaks, which provides a rationale for targeting Polθ in BRCA-mutant tumours.

Cybulla and Vindigni Page 38

Nat Rev Cancer. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4 |. The replication stress response in cancer and implications for cancer biomarkers.
Potential biomarkers are highlighted within the context of different replication stress 

response pathways. Biomarkers associated with accumulation of single-stranded DNA 

(ssDNA) and ATR–CHK1 activation in yellow; translesion synthesis (TLS) enzyme 

expression or activity and TLS-mediated mutagenesis in blue; template switching (TS) 

enzyme expression or activity and TS-dependent sister chromatid exchange (SCE) or gene 

amplifications in purple; fork recovery protein expression in light blue; fork reversal protein 

expression in brown; DNA-directed primase/polymerase protein (PRIMPOL) expression in 

green and downstream gap filling by TS or TLS-based mechanisms; DNA double strand 

break (DSB) and ATM activation in orange; and cGAS–STING activation in grey. BLM, 

Bloom syndrome protein; NBS1, Nijmegen breakage syndrome 1 protein; TMB, tumour 

mutational burden; WRN, Werner syndrome ATP-dependent helicase.
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