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Abstract

Context is widely regarded as a major determinant of learning and memory across numerous 

domains, including classical and instrumental conditioning, episodic memory, economic decision 

making, and motor learning. However, studies across these domains remain disconnected due to 

the lack of a unifying framework formalizing the concept of context and its role in learning. 

Here, we develop a unified vernacular allowing direct comparisons between different domains 

of contextual learning. This leads to a Bayesian model positing that context is unobserved and 

needs to be inferred. Contextual inference then controls the creation, expression and updating 

of memories. This theoretical approach reveals two distinct components that underlie adaptation, 

proper learning and apparent learning, respectively referring to the creation and updating of 

memories versus time-varying adjustments in their expression. We review a number of extensions 

of the basic Bayesian model that allow it to account for increasingly complex forms of contextual 

learning.
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Placing context in context

Central to the operation of the brain is the ability to store and maintain multiple memories of 

the environment, and retrieve them as the need arises. The notion of context (see Glossary) 

has emerged as being a key component of how the brain manages this complex task: it 
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controls whether and how much conditioned fear memories are expressed [1–3], episodic 

memories are recalled [4–6], spatial locations remembered [7–10] and motor skills activated 

[11–13]. Thus, classical work on contextual memories suggests that, by knowing the current 

context, the challenging problem of managing multiple memories can be reduced to the 

simpler problem of dealing with one memory at a time.

But what is context, and how does the brain determine the current context? To borrow from 

James [14], “Everybody knows what context is.” Indeed, from the experimenter’s point 

of view, context is usually clearly defined, e.g. by the room in which the experiment is 

taking place, or salient landmarks unique to an environment. However, in the real world, 

contexts are neither clearly defined nor labeled, and in general they cannot be unequivocally 

defined by the features of the environment. For example, contexts for fear conditioning in 

laboratory experiments are commonly operationalized by the identity of specific sensory 

cues or experimental chambers. But how does contextual fear conditioning happen in the 

wild? When a mouse escapes a ferret in a clearing of a forest, what constitutes the ‘context’ 

for this fearful memory? Is it the particular forest, any forest in general, the clearing, the 

time of the day, or the chirping of the birds in the background, or the sequence of actions 

that led to this traumatic encounter? Similarly, when a chef has learned to generate different 

knife movements under a range of contexts such as when dealing with oranges or tomatoes, 

what movement should she use when slicing a persimmon for the first time, and how should 

any motor errors update the memories for existing contexts [15]?

Here we review empirical evidence and computational models of how the brain breaks 

down our continuous stream of sensorimotor experience into distinct contexts such that the 

consequent creation, expression and updating of memories supports flexible and adaptive 

behavior. We emphasize the commonalities that exist across sensory, motor and cognitive 

domains. A common theme that emerges is that the computational task of inferring 

the current context is non-trivial, and the way the brain solves this task has profound 

consequences on the processing of memories.

Context-dependent effects on long-term memory

The role of context in learning and memory is ubiquitous. All forms of long-term memory, 

from declarative (semantic [16] and episodic [17]) to nondeclarative (associative [18], 

nonassociative [19, 20], procedural [21] and priming [22, 23]), exhibit context-dependence, 

whereby the expression of remembered information or learned behaviors depends on 

contextual factors, such as sensory cues in the environment, location and time. Here we 

provide some examples of paradigms that suggest context is important in the four broad 

areas of classical conditioning, episodic memory, economic decision making and motor 

learning – and a unified terminology to describe these results (see Box 1).

Classical conditioning

In classical conditioning [24, 25] (Fig. 1a), an unconditioned stimulus (US, e.g. a foot 

shock for a rat; Fig. 1a, feedback, purple) is presented with a conditioned stimulus (CS, 

e.g. a tone; state, orange) in an acquisition phase. Over numerous trials, the conditioned 

stimulus comes to elicit a conditioned response (e.g. freezing) that grows in strength 
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and/or frequency. If the unconditioned stimulus is then withheld (change in contingency, 

in the gray box) in an extinction phase, the conditioned response becomes progressively 

weaker over trials. If acquisition and extinction are performed in distinct environments 

(environments A and B, respectively; sensory cues, pink), returning the animal to the 

acquisition environment (A) leads to re-expression of the conditioned response (ABA 
renewal) [26, 27]. Thus, the information learned in the acquisition and extinction phases 

of the experiment (that the CS does and does not predict the US, respectively) has been 

linked to the specific contexts defined by different sensory cues (environments A and B) and 

contingencies.

While in the experiments described above, context can be unambiguously identified by 

the physical location or environment of the subject (indeed, the sensory cue, such as the 

experimental chamber, is often referred to as the “context” in these experiments), there are 

other phenomena which have been explained by other, more subtle notions of context. For 

example, reaquisition of the conditioned response a second time, after having extinguished 

it once, is faster than initial acquisition (rapid reaquisition, also known as savings) [28, 

29]. In fact, even the (repeated) presentation of the US alone can lead to the re-expression 

of the conditioned response on the first presentation of the CS (reinstatement) [30, 31]. 

In both cases, it has been suggested that different (and opposite) memories have been laid 

down in the original acquisition and extinction phases, which have been linked to different 

contexts (rather than extinction simply erasing the originally acquired memory, as the term 

“extinction” may suggest) [32]. According to these theories, the presence of the US (in 

reinstatement) or the CS and the US (in savings) in the second phase of the experiment act 

as contextual cues, recalling the acquisition context and thus giving rise to the conditioned 

response.

The phenomenon of spontaneous recovery represents an even more intriguing case of 

context being implicitly defined [24, 33]. Here, after extinction, the passage of time alone 

can lead to the reappearance of the conditioned response. This has been suggested to be 

caused by a temporally evolving internal representation of context that, in the absence of 

salient stimuli, changes over time as fundamentally determined by its intrinsic dynamics 

and can eventually return to the original acquisition context [18, 34]. Moreover, the partial 
reinforcement extinction effect [35] suggests that even the temporal dynamics of the 

context representation are experience-dependent. In this paradigm, the rate of extinction 

of the conditioned response (assumed to be due to the emergence of the memory for 

the “extinction” context) is slower if the CS and US are paired inconsistently during the 

acquisition phase (so that the omission of the US on one trial does not necessarily imply that 

“extinction” will persist on the next trial) [32].

Episodic memory

The notion of context has been central to theories of episodic memory. In a typical episodic 

memory experiment (Fig. 1b), participants observe a state that varies from trial to trial 

(e.g. a visual shape in the foreground). The set of possible states depends on the current 

context (indexed by a sensory cue, background image), which changes on a slower timescale 

than the state. Recall of a memory for a state is facilitated by reinstating the conditions 
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(i.e. context) in which that memory was originally encoded [36]. For example, spontaneous 

changes in context over time (similar to those thought to account for spontaneous recovery 

of classical conditioning or motor learning), have been suggested to underlie some of the 

most common effects in episodic memory recall [4, 6]. These include the recency effect, 
whereby the ability to recall an item (the state) declines with the passage of time since 

encoding or the presence of intervening items, and the contiguity effect, in which recall of 

an item is facilitated by the presentation or recall of an item that was presented nearby in 

time to the target item. Both of these effects have been accounted for by assuming a notion 

of context that gradually drifts over time and is in turn used to index the memory of a past 

item at recall. This results in recent items sharing a similar context to the current context 

and, more generally, temporally contiguous items sharing a similar context to one another 

[4] (see Ref. [37] for a review of whether context gradually drifts or abruptly shifts).

Contexts relevant for episodic memory do not seem to just simply drift at random. They 

have also been shown to be controlled by specific, potent sensory cues. For example, in a 

number of studies, participants read, watched or listened to narratives consisting of a stream 

of items, punctuated by event boundaries (also known as context shifts) that in turn were 

marked by rapid changes in perceptual, temporal or semantic information. In text narratives, 

time shift signals at the beginning of a sentence such as “A while later...” can act as 

sensory cues that are indicative of a new event [38]. A common finding is that within-event 

items are recalled and recognized more easily than across-event items. For example, serial 
recall (recall of items in the order in which they were experienced) is poorer across event 

boundaries compared to within the same event [38–40]. Consistent with a reduction in 

memory for the temporal order of items across event boundaries, recency discrimination 
(memory for which of two items was presented most recently) is less accurate when items 

are separated by event boundaries [36, 39, 41–43]. Similarly, items separated by event 

boundaries are remembered as being further apart in time compared to those presented 

within the same event [17, 42, 44]. Recognition of a previous item is also less accurate when 

an event boundary separates the encoding of the item and the subsequent recognition test 

[45, 46]. The effects of event boundaries can also be observed in more naturalistic settings. 

For example, walking through a doorway leads to impaired recognition of items encountered 

in the previous room [47, 48]. In addition, when a person returns to the same room (ABA 
structure), their memory for the items of that room (room A) is better compared to when 

they go to another room (room C, ABC structure) [47], echoing ABA renewal in classical 

conditioning.

While the identity of context is usually assumed to be objectively defined by the 

experimenter in classical conditioning paradigms, the experiments on episodic memory 

described above highlight how context is very much a subjectively constructed concept that 

is in the eye of the individual. In particular, for high-dimensional, multi-sensory naturalistic 

stimuli, such as movies, there is no clear and unambiguous ground-truth segmentation of 

the stimulus stream into discrete events, and hence event boundaries can only be determined 

in the first place by asking participants to explicitly report perceived event boundaries [49, 

50], or by observing abrupt shifts in brain activity [51] or bursts of autonomic arousal 

[52] indicative of perceived event boundaries. Despite this, participants often agree on 
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the location of event boundaries [53], and individuals who have a higher segmentation 
agreement score (a measure of the degree to which the event boundaries identified by an 

individual agree with those identified by the group) exhibit better recall, recognition and 

order memory performance [54–56], suggesting that normative event boundaries exist.

Economic decision making and instrumental learning

In a typical economic decision making or instrumental learning experiment (Fig. 1c), 

participants observe a state that varies from trial to trial (e.g. a shape), choose from a 

set of n actions and receive a reward (feedback) that depends on both the state and the 

chosen action (the contingencies). This task can be generalized to a contextual variant, 

in which, unbeknownst to participants, the contingencies can change depending on the 

context, which remains constant over a number of trials (as opposed to stimuli which can 

change on every trial) [57]. At the beginning of an experiment, participants do not know the 

contingencies, and hence they obtain relatively little reward. Then, through trial-and-error 

learning, they come to select better actions, as indicated by an increase in performance, 

and in turn obtain more reward. Following a context switch, performance drops abruptly 

before increasing steadily to a plateau [58–60]. This increase in performance is faster if 

the current context has been experienced before [59, 60] (analogous to rapid reacquisition 

in classical conditioning), suggesting that participants use feedback to retrieve a previously 

learned context-specific policy (mapping from states to actions), rather than learn a new 

policy from scratch. Importantly, performance increases even for those states of a context 

that have not been yet encountered since the reinstatement of the context, suggesting that 

participants retrieve entire context-specific policies rather than just the actions specific to 

individual states [61, 62].

By presenting context-specific sensory cues (e.g. a color), which provide a second source 

of information about the context in addition to the feedback, the increase in performance 

following a context switch can be accelerated further, suggesting that participants can use 

sensory cues to aid retrieval of the appropriate policy [59]. Moreover, in experiments where 

a single context can be associated with multiple sensory cues, contexts associated with 

more cues are inferred to be more probable when a new sensory cue is presented, as 

revealed by a preferential retrieval of the policy for the context associated with most sensory 

cues [63]. This suggests that the information about sensory cues associated with a context 

includes information at a higher level of abstraction (e.g. the diversity of cues) than just the 

identity of the specific cues that have already been encountered in that context. Similarly, 

information about state-action-feedback contingencies can also be learned at a higher level 

of abstraction than just a simple lookup-table. For example, in an experiment in which 

contexts were associated with abstract relationships between actions and feedback (defining 

the parametric form of the dependence of feedback on actions, e.g. linearly increasing or 

decreasing with key position on a keyboard, but with the exact parameters of the linear 

relation changing across blocks of trials of the same context), participants were able to 

exploit this abstract knowledge (linearity) about the contingencies to efficiently guide their 

exploration in novel blocks [64].
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Finally, in a two-step sequential decision-making paradigm using four different contexts 

with a rich transition structure, participants showed learning and transfer effects indicative 

of having also learned this context transition structure, rather than just the contingencies 

corresponding to individual contexts, and their overall frequencies [65].

Motor adaptation

In motor adaptation (Fig. 1d), participants make movements (action) in the presence of 

a perturbation such as a viscous force field [66] or visuomotor rotation [67]. Each 

perturbation represents a contingency between action and the feedback (kinematic error). 

These perturbations are meant to be analogous to the experience of interacting with 

objects in the real world that have different physical properties. The abrupt introduction 

of a perturbation leads to large kinematics errors, which gradually decrease over trials 

as participants adapt their motor output to compensate for the perturbation. When two 

opposite perturbations (e.g. force fields with opposite directions) are presented in a random 

order, the memories of the two contingencies interfere such that minimal adaptation occurs. 

However, if each perturbation is paired with a unique sensory cue, robust adaptation to both 

perturbations is possible (e.g. Refs. [12, 21]). Interestingly, however, not all sensory cues 

are effective at reducing interference, and among those that are effective, some are more 

effective than others [68], and different cues engage implicit and explicit learning processes 

to different degrees [69]. Moreover, the effectiveness of sensory cues may change with 

experience as novel cue-context associations are learned [12, 13].

On a single-trial basis, sensory cues interact with perturbations to determine how much 

adaptation occurs: single-trial learning (the change in adaptation following a single trial 

with a perturbation) is greater when the sensory cue and the perturbation in that trial are 

indicative of the same context vs. different contexts [13]. Single-trial learning is also greater 

when a perturbation is likely to persist from one trial to the next compared with when it is 

likely to revert to the opposite perturbation [70, 71]. Thus, the dynamics of adaptation are 

sensitive to the environmental consistency (or its inverse, volatility). Importantly, many 

of the phenomena observed in classical conditioning have direct analogues in the motor 

domain, including spontaneous recovery [72], reinstatement (known as evoked recovery 
[13]) and savings [73]. Moreover, these phenomena have been shown to depend on a variety 

of experimental manipulations in subtle ways. For example, spontaneous recovery increases 

if the acquisition phase is extended [74] and decreases if the acquisition phase is preceded 

by a counter-acquisition phase in which the opposite perturbation is presented [75]. In 

addition, savings is more pronounced when a perturbation is large or abruptly introduced 

compared to when it is small or gradually introduced [76]. A recent study has shown that 

a model of motor learning that includes, at its core, contextual inference can provide a 

unified explanation for all these findings [13].

Bayesian theories of context-dependent learning

In Box 1, we summarize the main domain-general features of contextual learning that can 

be distilled from the findings presented in the previous section. These general features 

motivate a unifying theoretical framework for contextual learning. At the same time, they 
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also represent the desiderata for such a theory, specifying the space of empirical phenomena 

that needs to be captured. We now turn to developing such a theoretical framework.

Given that, as we argued above, there is no objective ground truth for context, it is the 

subjective beliefs of the learner about the context that controls learning and memory. 

Bayesian models of cognition provide a mathematical formalism for rigorously defining 

such beliefs and how they should be updated in light of past and current sensory experience 

[77]. Under this view, context is a prominent example of a so-called latent variable that 

cannot be observed directly, only indirectly via its potentially stochastic effects on the 

observable features of the environment [78]. In particular, as we saw above (Box 1), context 

controls the appearance of the environment (e.g. the distribution of states or sensory cues) 

and other task-relevant associations, such as state-action-feedback contingencies [3, 79, 80]. 

Beliefs about context are then expressed as a posterior probability distribution, defining the 

probabilities with which the learner believes it is currently in any particular context.

In order to define the posterior distribution of a latent variable, such as the current context, 

Bayesian models start from a generative process that specifies the learner’s assumptions 

about the environment, its latent and observed variables, and their statistical relationships 

(i.e. how the distribution of each variable may depend on some of the other variables). This 

can be visualized as a graphical model consisting of nodes (representing random variables) 

and edges between the nodes (representing probabilistic relationships between the random 

variables). Fig. 2a show graphical models for a multiple-context environment (cf. the model 

for a single-context environment in Fig. 2b). This model captures the essence of many of 

the contextual learning experiments described above (Fig. 1), and uses the variables defined 

in our unified vernacular (Box 1). Specifically, there exists a set of contexts (indexed by 

c), each described by its set of (potentially temporally evolving) contingencies, xt
(c) (empty 

circles with differently colored contours), which define the probability with which different 

observations may be made about sensory cues (qt, pink), states (st, orange), and feedback 

(rt, purple), the latter also being conditioned on the subject’s actions (at, green). Critically, 

the current context ct (blue and red filled circles) acts as a top-level “gating” variable that 

determines (connections with filled or empty circular heads) which contingency is currently 

at play, i.e. it determines the observations (black vs. gray vertical arrows, for contingencies 

that are gated in vs. out in a given time step, respectively). Moreover, this context variable 

also evolves over time according to its own dynamics (horizontal arrows in the top row), as 

determined by context-dependent transition probabilities (Fig. 2c, see also Box 6; transition 

probabilities are included in the contingencies of the current context, but to avoid clutter, the 

corresponding arrow from contingency to next context is not shown in Fig. 2a).

For example, for the mouse in the forest, relevant sensory cues may be the density of trees, 

and the lighting conditions, states may be associated with the appearance or absence of a 

ferret, actions may include searching for food or trying to escape, and feedback may be 

related to consuming food vs. being consumed. This mouse may distinguish two contexts, 

associated with a safe and unsafe environment depending on whether there are nearby 

predators, with the probabilities of observing different sensory cues and states, and receiving 

different feedback for different action (the contingencies), under each context likely being 
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different. The longer the mouse waits near a watering hole, the higher the probability of 

being in the unsafe context may become (context transitions).

According to the generative process underlying contextual learning (Fig. 2a), both the 

current context, ct, and the contingencies corresponding to each possible context, xt
(c), are 

latent variables. Thus, the Bayesian contextual learner needs to simultaneously infer both of 

these quantities. Note that, in Bayesian models, inference is uniquely determined in principle 

(at the computational level of analysis) as the probabilistic inversion of the generative model, 

without any free parameters or process-level assumptions (although in practice, algorithmic-

level choices may still need to be made; Box 2). Specifically, inferences about xt
(c) constitute 

a (long-term) memory of context c. As we discuss below, this is compatible with how 

classical single-context theories of learning formalized the contents of memory (Fig. 2b) 

and accounted for a broad range of empirical findings in simple (single-context) learning 

paradigms. However, the Bayesian contextual learning model also requires inferences to 

be performed and continually updated about ct. Therefore, the learner needs to infer the 

probability that each context is currently active. In some situations, such as when our mouse 

is in the jaws of a ferret, the sensory evidence may be overwhelmingly in favor of the unsafe 

context, such that the probability of this context is effectively 1, whereas when our mouse 

moves from a shrub into a clearing it may infer an intermediate probability for the unsafe 

context. In the next section, we describe the functional consequences of these inferences, 

and how they should ultimately be reflected in behavior.

Note that here we have assumed a graphical model with a fixed structure underlies inference 

in contextual learning. However, classical conditioning experiments suggest that context 

may play diverse roles in associative learning, such that animals can treat it as having a 

purely modulatory or additive effect on contingencies, or deem it altogether irrelevant [81, 

82]. This diversity has been accounted for by Bayesian theories assuming that animals 

consider alternative structures for the generative model, each being a special case of the one 

we present here, and perform hierarchical inference over these structures, treating the correct 

model structure as “just another” high-level latent variable to be inferred [83]. Whether such 

hierarchical learning of multiple simpler structures is a better account of these phenomena 

than learning the contingencies within a single more complex structure remains to be tested.

Consequences of contextual inference

The posterior distribution over contexts expresses the probability that each known context 

or a yet-unknown novel context is currently active. In turn, this posterior controls the 

expression, updating and creation of memories as we detail below.

Contextual mixing for memory expression

If the current context, and its corresponding contingency, were known to the learner, then 

choosing the best action at a given time would be straightforward (even if tedious): the 

learner would need to select the action that is associated with the most desirable (highest 

utility) feedback according to this contingency. Thus, behavior would be driven only by a 

single memory – that corresponding to the current context. However, given that, in general, 
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there is uncertainty about the current context, as expressed by the posterior over ct, in 

principle the memories for all contexts need to be consulted [13, 58, 84–87]. Specifically, 

according to the rules of Bayesian decision theory [88], the expected utility of each action 

can be computed by averaging its utility across contexts, weighted by the posterior context 

probabilities, and the action with the highest expected utility can be chosen. When the utility 

of an action is defined as the squared error from some context-dependent target action (for 

every context), such as in motor control [89] (but see Refs. [90–92]), the action with the 

highest expected utility is simply the weighted average of the target actions in each context, 

with the weights given by the posterior context probabilities.

The critical insight in all these cases is that the contents of several memories (those 

associated with contexts that have a non-zero probability) need to be mixed for optimal 

behavior. This is notably different from classical accounts of memory recall that focus on 

how a single memory is retrieved at a time [93, 94]. Similar to these classical theories, 

several recent models of context-dependent learning also express a single memory on each 

trial – the memory associated with the single most probable context – rather than mix 

memories [59, 76, 95]. In doing so, they ignore uncertainty about the context, which, in 

general, will lead to suboptimal action selection. Interestingly, in the domain of motor 

control, the idea that the output of different modules mix linearly “on demand” has been 

quite well accepted [11, 96–98], but its relationship to contextual inference, and more 

generally the factors governing the mixing proportions have not been explored until recently 

[13]. In contrast, there have only been sporadic suggestions for such mixing of memories 

in the domains of episodic [86], spatial memory [10] and human instrumental learning [58], 

and these have not been supported experimentally by a systematic analysis of behavior.

Contextual de-mixing for memory updating and creation

Once feedback is received, after having executed an action, the contextual learner is faced 

with a difficult credit assignment problem [11, 85]. As it is uncertain which context is 

currently “active”, it is not obvious which context was responsible for the feedback and 

hence which memory should be updated by it. Once again, the posterior distribution over 

contexts holds the normative solution to this problem [13, 58, 87, 99–101]. In particular, the 

same feedback now needs to be de-mixed, such that all memories are updated in proportion 

to the posterior probabilities of their corresponding contexts. In other words, the same 

memory needs to be updated with an effective learning rate that is dynamically modulated 

depending on the posterior probability assigned to its corresponding context at any given 

time.

Given that exact inference in multiple-context models is often intractable (see Box 2), a 

computationally cheap alternative that is commonly used in models of human learning [59, 

76, 86, 95] is to definitively assign each trial to the context with the highest probability. 

However, this approximation ignores uncertainty about the context and leads to only a single 

memory being updated on each trial. This non-Bayesian heuristic has been justified on the 

basis that it does not qualitatively affect model behavior [86, 95] compared to more properly 

Bayesian methods [13, 58]. However, this is likely to only be true for paradigms that do not 

directly test how memories are updated on a single-trial basis, as we discuss below.
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Just as memory recall should not be confined to retrieving a single memory, in general, 

memory updating also needs to occur in parallel for multiple contexts. Although this may 

sound somewhat unorthodox, compared to conventional concepts of memory processing 

(e.g. the updating of episodic memories by consolidation or reconsolidation [102]), there 

is experimental evidence for such de-mixed memory updating. In motor learning, a recent 

experiment specifically introduced a cue-conflict situation to increase contextual uncertainty 

at the time of memory updating [13]. This allowed the demonstration of the graded (de-

mixed) updating of two different motor memories as predicted by contextual de-mixing. 

While this graded updating was evident at the level of individual subjects, whether it was 

also graded at the level of individual trials, or might have been approximated by probabilistic 

all-or-none updating, has not been resolved (see Outstanding Questions).

Sometimes, all existing memories seem inappropriate in a situation, and so updating them, 

even if with the appropriate de-mixing, would be inappropriate and instead an altogether 

new memory needs to be created. Indeed, classical accounts of memory creation often 

highlight the importance of novelty or prediction errors in mediating this process [3, 5]. 

In line with this, if contextual inference is performed over an open-ended set of contexts, 

also allowing for yet-unseen novel contexts, contextual de-mixing automatically gives rise 

to memory creation when the posterior probability of a novel context (the formal definition 

of ‘novelty’ in this framework) is sufficiently high. A fundamental prediction of memory 

creation being driven by contextual inference is the widely observed hysteretic “boiling 

frog effect”: a single abrupt change in the environment often triggers the creation of a 

new memory, but many small changes adding up to the same total effect typically do not. 

This is because after each small change, the memory of the current context may still seem 

appropriate, albeit a little off, and so updating it is justified by contextual inference, that 

is its probability under the posterior is high (Fig. 3a, top). An abrupt transition to a novel 

situation leads to the probabilities of all known contexts being low, and thus (because 

probabilities need to sum to one), the probability of a novel context must necessarily be 

high (Fig. 3a, bottom). This effect has been described in a number of different domains. 

In episodic memory, small changes to sensory stimuli have been suggested to lead to a 

gradual updating of their memories, whereas abrupt changes lead to the laying down of 

new memories [86]. This principle was shown to also account for event segmentation in 

naturalistic videos [103]. Analogous effects are seen in place cell remapping, a putative 

neural correlate of the inference of a new context [104], and the concomitant creation 

of new spatial memories [105] (but see Ref. [106]): remapping depends non-linearly on 

the similarity of environments [107], and is diminished by the gradual introduction of 

environmental changes [108]. In motor control, savings is greater for an abruptly (versus 

gradually) introduced perturbation [109] and de-adaptation is faster after the removal of 

an abruptly (versus gradually) introduced perturbation [110], as in these cases multiple 

memories are thought to have been created, allowing flexible switching between them. 

Similarly, in classical conditioning, the gradual extinction of a CS-US pairing prevents fear 

recovery (spontaneous recovery and reinstatement), as the memory learned in the acquisition 

phase is unlearned, in contrast to when extinction is abrupt and a new memory is created, 

thus preserving the original memory [111, 112].
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Proper and apparent learning

Contextual mixing and demixing also provide a new lens onto one of the most classical 

phenomena in experimental psychology: the learning curve. A learning curve shows a 

gradual improvement in performance (or “adaptation”) on a task over time (typically, 

consecutive trials) as training, or learning proceeds. As such, the traditional interpretation 

of a learning curve has been that a memory (or a collection of memories) is being 

incrementally updated, and the behaviorally observable gradual changes in performance are 

due to these memory updates. Indeed, classical [25, 113, 114] and more modern [72] models 

of learning directly postulate this mechanism. Fig. 4a shows a simple simulated example 

of such proper learning. However, the dependence of memory expression on context 

probabilities means that adaptation can also arise from a distinctly different mechanism: 

apparent learning [13]. Apparent learning refers to a change in contextual mixing in 

memory expression due to an update in the estimated context probabilities (Fig. 4b). 

Indeed, apparent, rather than proper, learning may underlie a host of phenomena that had 

traditionally been attributed to proper learning (Box 3). Of course, adaptation can also arise 

from a mixture of proper and apparent learning (Fig. 4c).

Varieties of context-dependent learning models

The theoretical framework developed above can be modified or generalized in a variety 

of ways to capture distinct features of the environment and the corresponding features 

that characterize learning about the environment. This can be achieved by incorporating 

alternative modeling assumptions into the generative process, which in turn alters the 

inference process and the organization of experience into context-specific memories.

Single- vs. multiple-context models

Most models of learning do not have a notion of context. Some of these have been explicitly 

cast in similar Bayesian terms as the contextual learning model we describe above, such 

as Kalman filter-based models of motor learning [115], or classical conditioning [116], or 

models of economic decision-making with Bayesian priors on reward contingencies [57, 

117]. As such, the generative model underlying these models is a special case of that shown 

in Fig. 2a, in which there is only one set of contingencies that is always active (Fig. 2b, Fig. 

4a).

Importantly, even classical models that have not been formalized as Bayesian models 

originally can often be re-derived as being equivalent to such models (for example, see 

Refs. [118] and [119] for Bayesian treatments of the Rescorla-Wagner model [25] of 

classical conditioning, and of state-space models [72, 114] in motor learning, respectively). 

Once formalized in this way, a comparison to the general multiple-context case of Fig. 

2a immediately exposes the fundamentally single-context nature of these models. This 

may be puzzling at first, as some of these models also suggest the presence of several 

memory traces (represented as prediction weights associated with different stimuli [25], or 

processes associated with different underlying learning and/or retention rates [72]), which 

may appear to be similar to the multiple memories that correspond to distinct contexts in 

the model of contextual learning we describe above (i.e. inferences about xt
(c) for each c). 
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However, there is a critical difference between these notions of multiple memories. In the 

contextual learning model, the observations in each time step are assumed to be generated 

by a single context at a time. As a consequence, when a context is inferred not to have 

been responsible for the observations through some period of time, its memory is preserved 

(modulo assumptions about the intrinsic ongoing dynamics of its contingencies), and – by 

the virtue of apparent learning – it can be easily reinstated once the context is inferred to be 

active again. Single context models with multiple memory traces assume, even if implicitly, 

that all contingencies represented in these traces contribute (with fixed relative weights) at 

all times, and thus also express and update all these traces at all times. As a consequence, 

there is no “going back” to a previously represented mental state, unless by re-learning. In 

other words, single-context models are unable to show apparent learning by construction, 

and it is this inability that prevents them from going back. Multiple-context models can 

further differ in the representation that indexes the current context in them. This can be as 

simple as a pointer to one of a discrete number of different contexts, as we assumed above, 

or more complex, using compositional or continuous representations (Box 4).

A critical difference between single and multiple-context models is the way they interpret 

environmental variability, that is volatility. While single context models have to assign 

volatility to changes in the contingency, multi-context models can assign the same volatility 

to either changes in contingencies or to changes in the context (see Box 5).

Static vs. dynamic contingencies

A critical design choice is whether the context-specific contingencies are assumed to be 

static over time or time varying. (Note that even inferences about static contingencies 

will vary over time as more experience is accrued.) This choice remains relevant even 

for non-Bayesian models of learning. For example, models in which memories are biased 

towards recent observations (e.g. by using a constant learning rate) and/or change even in the 

absence of experience (e.g. due to adaptive forgetting) implicitly assume that contingencies 

are time varying [25, 59, 72]. In contrast, models in which memories depend equally on all 

past observations (at least within the same context, e.g. by using a learning rate that scales 

inversely with the number of observations) and do not change in the absence of experience 

implicitly assume that contingencies are static [120].

All current models of motor learning (regardless of whether they assume the environment 

consists of a single context or multiple contexts) agree that time-varying contingencies are 

critical for capturing the dynamics of motor memories [12, 13, 70, 72, 76, 99, 114, 119, 

121–128]. Similarly, the most widely used models of conditioning and simple economic 

decision making tasks use a constant learning rate, thus implicitly assuming time-varying 

contingencies [25, 129]. In contrast, models of context-dependent economic decision 

making tasks have typically not considered the notion of time-varying contingencies [58, 

59, 85, 95]. Bayesian models of these tasks assume that contingencies (reward functions) are 

static and thus weight all observations within the same context equally [58, 95].
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Context transition dynamics

Once the notion of multiple contexts is introduced, inferring the current context becomes 

critical, as memory creation, expression and updating all depend on this inference. In 

turn, this inference depends on the context dynamics, that is the transition probabilities 

between contexts. The simplest class of models assumes uniform transition probabilities 

(with the potential exception of a self-transition bias that makes the “from” context the 

most probable), thus implying some fixed level of between-context volatility [59] (Box 

5). A somewhat richer class of models breaks this (near) uniformity by having transition 

probabilities depend on the “to” context (thus differentiating the overall frequency of 

contexts) but constraining them to be the same for each “from” context [95, 104]. Again, 

a self-transition bias can be added [86], which might itself change over time in varying-

volatility models (i.e. models with time-varying between-context volatility) [58]. Such 

models are not able to account for differences in learning that arise in environments 

that differ only in the transitions between contexts, such as the effect of environmental 

consistency on single-trial learning [70, 71] (Box 3), spontaneous recovery and the recently 

demonstrated learning of rich context transition structures in a two-step sequential decision 

making paradigm [65].

At the other extreme are models in which transition probabilities depend on both the “from’ 

and “to” contexts, without any additional constraints [84]. While these models are very 

flexible (i.e. they can learn any context transition matrix), they afford no generalization 

across contexts, such that the transition probabilities from each newly encountered context 

need to be learned from scratch (see also “Hierarchy” below). A compromise between 

complete uniformity and extreme flexibility is provided by hierarchical models, in which 

transition probabilities also depend on both the “from” and “to” contexts but are expected, a 
priori, to exhibit some degree of similarity between each “from” context, thereby supporting 

generalization and meta-learning. Such a model has recently accounted for empirical data 

from a large set of different paradigms using a diverse array of context transition structures 

[13].

Known vs. unknown number of contexts

Some models assume that the learner knows the true number of contexts in the environment 

(e.g. by fixing the number of contexts/modules in the model) [11, 12, 58, 85, 99, 130]. 

These models have no notion of memory creation as the number of memories is fixed 

from the start. However, in most real-world scenarios, it is unrealistic to assume that the 

learner knows the true number of contexts, as this number is in general only knowable 

through experience. Therefore, another class of models learns the number of contexts in the 

environment from experience. These models either assume that there is a finite number of 

contexts that really exist, we just don’t know a priori what this number is [1, 79, 80, 131], 

while others (so called Bayesian nonparametric models, e.g. the the hierarchical Dirichlet 

process, see also below under “Hierarchy”) assume that there really is an infinite number 

of contexts and it is only the number of contexts we experience over any limited time that 

remains necessarily finite [3, 13, 59, 86, 87, 95, 104]. Either way, these models create a 

new memory whenever a novel context is inferred. It is currently an open question (see 

Outstanding Questions) whether the brain uses a fixed number of memories at all times, 
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and just discounts those that have not been linked to a previously encountered context (by 

setting the corresponding context probabilities to zero for expression and updating), or it 

dynamically adds new memories on the go as the need arises (whenever a new context is 

encountered).

Reorganization of context-specific memories

In addition to creating new memories when novel contexts are encountered, in a resource-

rational framework [132], it may also be beneficial to reorganize existing memories. For 

example, if a context has not been encountered for a long time, it may be useful to 

prune the memory of this context to free up computational resources. Similarly, if multiple 

memories become sufficiently similar, it may justify the merging of these memories. 

Although heuristics for deciding when to prune or merge memories have been proposed 

[133, 134], a principled Bayesian account of memory pruning and merging would require 

that these pruning and merging operations emerge naturally as a consequence of inference 

in an appropriately defined generative model (e.g. a model in which novel contexts can 

appear and previously encountered contexts can disappear or merge). One example of such 

a generative model is the multiple target tracking model in the signal processing literature, 

where novel targets (akin to contingencies) can be “born” at different points in time and 

existing targets can split, merge and “die” [135–137]. Making an optimal decision about 

whether to prune an existing memory may involve weighing the benefits of freeing up 

memory and computational resources against the costs of removing a memory that is needed 

later. It is again an open question whether such reorganization actually takes place and, if so, 

whether sleep has a special role in such reorganization, as is suggested by a diverse array of 

beneficial effects of sleep on motor and perceptual skills [138–140].

Hierarchical contingencies and learning-to-learn

Although the creation of separate memories for different contexts prevents interference, 

it also prevents the beneficial transfer of context-general knowledge when contexts share 

common properties and features. The ability to share knowledge across contexts is crucial 

for transfer learning and learning-to-learn. Therefore, in multiple-context environments, it 

is desirable not only to create separate memories for each context but to also allow those 

memories to share common elements. Hierarchical Bayesian models naturally achieve this 

trade-off between specialization and generalization (see Box 6) by exploiting an inductive 

bias that states that the contingencies of different contexts share some common structure 

[141].

Concluding remarks and future directions

A growing body of experimental and modeling work suggests that humans and other animals 

segment their continuous stream of sensorimotor experience into distinct contexts. This is 

true in multiple domains of cognition, including classical conditioning, episodic memory, 

reinforcement learning, spatial cognition and motor learning [3, 7, 13, 38, 95]. At the 

heart of segmentation lies contextual inference, which controls how memories are created, 

updated and expressed. Importantly, the dependence of memory expression on contextual 
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inference gives rise to a form of learning that until recently has been unappreciated: apparent 

learning.

Apparent learning has important implications for the future of studying learning and 

memory (see Outstanding Questions), as it implies that observed behavior does not provide 

a direct window into proper learning. Thus, to appropriately interpret behavioral data, and to 

study the neural mechanisms of learning, a more nuanced approach will be necessary. Given 

that adaptive changes in behavior can arise from a combination of proper and apparent 

learning, contextual inference must be considered so as to identify reliably the individual 

contributions of these processes. In general, contextual inferences could either be measured 

(e.g. using neural measurements) or inferred from behavior (e.g. using a computational 

model). In lieu of reliable methods for measuring contextual inferences directly, a model 

capable of exhibiting both proper and apparent learning could be fit to the data of a 

participant to discern the contributions of these two forms of learning [13]. Dissecting the 

contributions of proper and apparent learning to behavior will be instrumental for identifying 

their respective neural underpinnings.
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Glossary

ABA renewal
a conditioned response can be reinstated by re-exposure to the conditioning context (A) 

following extinction in a different context (B) (cf. ABA structure)

ABA structure
a task with two contexts, A and B, which are experienced in the order A then B and then A 

again (cf. ABA renewal)

ABC structure
a task with three contexts, A, B and C, experienced in that order

Action
a choice made by a participant such as a button press or arm movement

Anterograde interference
learning a contingency is slower if a different contingency has been learned previously, with 

the amount of interference increasing with the length of experience of the first contingency

Apparent learning
a change in how context-specific memories are differentially expressed due to a change in 

belief about the current context. Based on behavior alone, it may appear as though proper 

learning has taken place, hence the name
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Consolidation
a time-dependent process by which recent learned experiences are transformed and 

stabilized into long-term memory

Context shifts
see Event boundaries

Context
a discrete variable that controls which one of potentially many contingencies is currently 

active, i.e. determines the statistics of sensory cues, states, actions, and feedback

Contextual inference
the process of inferring the current context from a sequence of observations of sensory cues, 

states, actions and feedback

Contiguity effect
the finding that stimuli that occur close together in time become associated to each other so 

that recall of an item is facilitated by the presentation or recall of a different item that was 

presented in close temporal proximity

Contingency
the context-specific statistical relationship between sensory cues, states, actions, and 

feedback

Environmental consistency
the tendency of the environment to stay the same over time, typically in reference to the 

context (i.e. the inverse of between-context volatility)

Event boundaries
the transition points that segment a continuous stream of sensory observations (such as a 

movie) into a series of discrete events, such as at scene changes in a movie

Evoked recovery
the re-expression of a previously extinguished motor memory following re-exposure to the 

perturbation associated with that memory (cf. Reinstatement)

Extinction
the disappearance of a conditioned response when no longer reinforced

Feedback
sensory input that either has intrinsic valence or is related to task performance (e.g. rewards, 

punishments, movement accuracy) and that can depend on state, action, as determined by the 

currently active contingency

Force field
typically two-dimensional planar forces exerted at the handle of a robot grasped by a 

participant that depend on the state of the hand (e.g. the velocity of the hand in a viscous 

force field)
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Hierarchical Dirichlet process
a nonparametric Bayesian model that supports the hierarchical generation of context 

transition probability matrices between infinitely many contexts

Kinematic error
the spatial error, for example, of a reaching movement

Object manifold
the properties of objects (such as a bike or hammer) can be characterized by a set of 

parameters (e.g. inertia, damping). However the parameters for bikes do not span the entire 

range of possibilities but live on a lower dimension than the full space of object parameters 

(i.e. a manifold)

Partial reinforcement extinction effect
the rate of extinction of a learned behavior is slower if the behavior was only reinforced on a 

fraction of acquisition trials, rather than on all trials

Place cell remapping
The phenomenon by which place cells change their firing patterns (place fields) when the 

environment changes (e.g. by changing salient landmarks)

Policy
a strategy that a participant uses in pursuit of goals. The policy determines (sometimes 

stochastically) the action that will be taken as a function of the state and the current 

contingency

Proper learning
an update to the estimates of context-specific contingencies

Rapid reaquisition
faster relearning of a contingency (following its extinction) compared to initial learning of 

the same contingency

Recency discrimination
after being presented with a series of items, participants are asked to determine which of a 

set of items was presented more recently

Recency effect
stimuli that are presented more recently are remembered better than those that came earlier

Reconsolidation
the process by which, upon its recall, a previously consolidated memory is potentially 

modified, and then consolidated

Reinstatement
the return of a previously extinguished conditioned response after the presentation of the 

unconditioned stimulus alone (cf. Evoked recovery)
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Retrieval failure
the temporary inability to access information that is stored in memory

Savings
see Rapid reaquisition

Segmentation agreement score
a measure of how well the event boundaries perceived by an individual agree with the 

typical event boundaries of a group

Sensory cue
sensory input that has neutral valence and is not performance related (e.g. the appearance of 

the environment). Sensory cues may be informative of the context, but given the context, the 

sensory cue (unlike state) does not affect feedback

Serial recall
after being presented with a series of items, participants are asked to recall the items in the 

order in which they were presented

Single-trial learning
the change in behavior induced by a single trial. Although called “learning”, this change in 

behavior can arise through apparent, rather than proper, learning

Spontaneous recovery
the re-emergence of a previously extinguished response after a delay

State
a latent or observed variable that determines the feedback (often depending on the action 

taken). The same state can be associated with different feedback under different contexts

Utility
the scalar measure of the goodness of an action which can be a function of quantities that 

have intrinsic valence or are related to task performance, such as, rewards, punishments, 

movement accuracy

Visuomotor rotation
a rotation of the visual representation of the hand (e.g. a cursor) about the start location of a 

reaching movement

Volatility
the rate of change of the environment. Within-context volatility refers to the trial-to-trial 

variability of context-specific contingencies, whereas between-context volatility (the inverse 

of environmental consistency) refers to the trial-to-trial variability of the context itself, as 

determined by the context transition probabilities
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Box 1 - Contextual learning: a unifying view

Although the different experimental domains in which contextual learning has been 

studied each have developed historically their own idiosyncratic terminologies, their 

paradigms can be broadly described using a common set of key concepts (Fig. 1). By 

definition, in contextual learning experiments, context (Fig. 1, red and blue) changes over 

time (typically progressing in trials). Each context is associated with a specific set of 

contingencies (gray boxes) defining the kind of sensory stimuli that can occur in the 

context, and how feedback depends on these and the subject’s actions. In general, it 

is useful to distinguish between two kinds of sensory stimuli that subjects can receive 

in a context: sensory cues and feedback. There may be sensory cues (pink; e.g. the 

appearance of the environment) that are informative about the context but have no 

further direct task-relevance. When subjects also have the opportunity to choose an 

action in a trial (green; e.g. a button press, or joint torques to move the arm), and in 

turn receive feedback (purple; e.g. reward or movement kinematics), this feedback can 

directly depend not only on their action but also on some specific stimuli they receive, 

that define (albeit, in general, only probabilistically) the current state (orange). Therefore, 

the critical difference between sensory cues and states is that once the context is known, 

only state affects feedback (i.e. is task relevant).

Collectively, the findings in different domains reveal a number of domain-general 

features of contextual learning. First, the internal representation of context is determined 

by a complex interaction between three main factors: 1) feedback signals that are 

performance related (e.g. rewards, punishments, movement accuracy), 2) sensory cues 

that have neutral valence and are not performance related (e.g. the appearance of 

the environment) and 3) spontaneous factors that are independent of experimentally 

controlled stimuli (e.g. the passage of time, or uncontrolled stimuli). Second, the effects 

of each of these factors are experience-dependent. This means that not only the way 

rewards and sensory cues are associated with different contexts is subject to learning 

(the first two factors) but also the propensity with which different contexts appear 

and transition over time (the third factor). For example, experience with more volatile 

environments can lead to the mere passage of time mediating more abrupt shifts in 

context (see also Box 5). Third, once an internal representation of context is determined, 

it has widespread effects on the creation, expression, and updating of memories. In 

general, memories related to the currently active context are predominantly expressed 

and/or updated, whereas new memories are laid down in contexts that are believed to be 

novel.
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Box 2 - Curbing the complexity of contextual inference

The task of the Bayesian contextual learner is to infer (by applying Bayes’ rule) the 

joint posterior distribution over all latent variables ℒt (i.e. the set of contingencies, xt
(c), 

and contexts, ct, see Fig. 2a) given the history of all observed variables O0: t (i.e. the 

sequence of sensory cues, q0:t, states, s0:t, actions, a0:t, and instances of feedback, r0:t). 

This inference process performs a probabilistically appropriate inversion of the generative 

process we described in the text (and Fig. 2a). In general, this inversion would require 

computing a posterior, P ℒ0: t ∣ O0: t , over the whole history of latent variables up to the 

current time point, t, as a function of the whole history of observations. However, in 

reality, it is often only the posterior over the latent variables for the last (or a couple 

of most recent) time step(s), P ℒt ∣ O0: t , that is required by downstream computations. 

Moreover, this posterior can typically be computed online, in a recursive manner, such 

that the posterior computed in the previous time step can be combined with observations 

in just the last time step, so that no memory for all previous observations is required:

P ℒt ∣ O0: t

new posterior
∝ P Ot ∣ ℒt

information from
current

observations

∫ P ℒt ∣ ℒt − 1
internal model of
latent dynamics

P ℒt − 1 ∣ O0: t − 1

previous posterior
dℒt − 1

(1)

Note that Eq. 1 also exposes how inference is fully determined by the generative process: 

the first and second term on the right hand side respectively correspond to the vertical and 

horizontal arrows in Fig. 2a.

Nevertheless, even in the simplest case (such as that shown in Eq. 1), computing the 

posterior may still be radically intractable, and so only an approximate version will be 

computed. The precise nature of the approximations the brain might be using for this is 

unknown (see Outstanding Questions). Here we simply assume that they are sufficiently 

accurate to yield the basic effects of contextual inference we describe below that 

would follow from (near)-exact computations. In fact, sometimes even simple-looking 

heuristics can efficiently approximate such complex-looking computations [11, 58, 85, 

143–145]. For example, it may be possible to show that successful process-level models 

of contextual effects on episodic memory [4, 146] correspond to approximate forms of 

inference under a model such as the one we present here.

Approximate forms of inference may even provide a better account of data than exact 

inference. For example, it has been suggested that the classical, smoothly increasing (and 

eventually asymptoting) learning curve in classical and operant conditioning (such as 

those simulated in Fig. 4) is an artifact of group averaging. Instead, individual subjects 

show abrupt steps in behavioral responses that fluctuate bidirectionally, with decreases 

as well as increases in performance after an initial rise to an unstable asymptote [147]. 
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Behaviors such as these cannot easily be accounted for by exact contextual inference, 

where both the estimated contingencies and context probabilities change gradually over 

time. However, they may arise from a particularly powerful approximation that is based 

on using Monte Carlo samples to represent complex posterior distributions [78]. Indeed, 

sampling-based approximations have been suggested to underlie a number of cognitive 

[148] as well as neural phenomena [100]. Specifically, in the context of learning, they 

have also been suggested to underlie contextual inference [13, 58, 149] and account for 

the kind of abrupt and bidirectional fluctuations in performance that had been described 

empirically [149].
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Box 3 - Apparent learning phenomena

Fundamental to apparent learning is the idea that stored memories can lie dormant 

without being fully expressed. This is analogous to the phenomenon of retrieval failure, 

whereby information stored in memory is temporally inaccessible, such as when a word 

is on the tip of the tongue [150]. It has been suggested that retrieval failure, like apparent 

learning, occurs when the context in which a memory was encoded (the learning context) 

differs from the current context (the test context) [18]. Consistent with this interpretation, 

retrieval failure can be overcome if sensory cues associated with the learning context are 

presented at test time [16], reminiscent of reinstatement and evoked recovery. However, 

whereas the term retrieval failure has negative connotations, apparent learning is a 

consequence of optimal Bayesian contextual inference, and hence memory suppression 

(retrieval failure) can be viewed as a normative phenomenon.

Apparent learning has recently also been suggested to underlie several classical learning 

phenomena [13]. According to this account, rapid reacquisition (savings) occurs because 

the acquisition context is inferred to be more probable the second time it is experienced, 

and hence its associated memory is expressed more (Fig. 3b). Spontaneous recovery 

occurs because the acquisition context is inferred to be more probable following the 

passage of time based on the dynamics of context transitions, and hence its associated 

memory is re-expressed (Fig. 3b). Evoked recovery/reinstatement and ABA renewal 

occur because the re-presentation of sensory feedback (evoked recovery/reinstatement) 

or sensory cues (ABA renewal) associated with the acquisition phase provides strong 

evidence that the acquisition context is active again, and hence its associated memory is 

re-expressed (Fig. 3b). Anterograde (or pro-active) interference means that adaptation 

to a given contingency, or the study of some information (acquisition phase), can slow 

down subsequent adaptation to a new contingency, or impair the memory of more 

recently studied information, with this effect becoming stronger when the acquisition 

phase lasts for longer [18, 151, 152]. This happens because extensive experience with the 

first contingency makes the learner believe it is less probable that they will transition to 

any other contingency, and hence the memory associated with the second contingency 

is expressed less (Fig. 3c). Environmental consistency (the inverse of between-context 

volatility, Box 5) can affect single-trial learning simply through apparent learning. That 

is, in a more (less) consistent environment there is a higher (lower) probability with 

which the current context is expected to persist to the next trial, leading to more (less) 

expression of an updated memory (even though the same amount of proper learning takes 

place across those environments).
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Box 4 - Simple vs. complex context representations

In the main text, we have formalized the notion of context simply as a discrete latent 

cause. Such simple latent-cause models [3, 13] assume that exactly one latent cause is 

active at each point in time, and hence there is a one-to-one mapping between latent 

causes and contexts. In contrast, compositional latent-cause models [1, 79, 80] assume 

that multiple latent causes can be active at each point in time, and hence a context is 

formalized as a unique combination of latent causes. Importantly, such compositional 

representations allow powerful forms of generalization, as previously experienced latent 

causes can be combined in new ways to represent novel contexts [153]. For example, 

in grid-world navigation tasks, humans represent the context compositionally (when 

beneficial to do so) by inferring separate latent causes for the reward function (goal 

location) and the state transition function (mapping from states and actions to next 

states), allowing new tasks to be learned quickly by representing them as novel 

combinations of previously experienced reward and state transition functions [154, 155]. 

Likewise, in motor control, we may be able to draw upon our prior experience with 

different objects so as to combine them to control a novel object [156, 157].

Contexts may also vary on a continuum, rather than each being an island entire of itself, 

equidistant from all other contexts. In this case, the contingencies for different contexts 

need (and should) not be assumed to be independent a priori, and instead their similarities 

and dissimilarities can be assumed to reflect the metric relationships between the contexts 

themselves. Once again this can result in greatly improved generalization. For example, 

having learned to control objects that all lie on the same object manifold (e.g. bicycles 

of different wheel diameter, weight, and height), we can quickly adapt to novel objects on 

the same manifold [158, 159].

Whether discrete, compositional, or continuous – all the aforementioned representations 

are “flat”. Instead, contexts may be hierarchically organized, as in the example given 

in the introduction: the mouse’s encounter with the ferret may be associated with 

multiple contexts at different levels of a hierarchy, identifying the forest in which 

the encounter happened, the specific clearing within the forest, and the scrub in the 

clearing. Moreover, these contexts may evolve on different timescales [51, 160]. For 

example, the mouse moves between forests relatively slowly but, within a forest, darts 

from shrub to shrub. Indeed, there is evidence that even random material is organized 

hierarchically in memory [161], suggesting a strong inductive bias for hierarchical 

context representations. To accommodate these inductive biases, the generative model 

underlying contextual learning that we proposed above (Fig. 2a) can be extended with a 

hierarchical representation of contexts [162, 163].
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Box 5 - Volatility

In classical single-context models of learning, the volatility of the environment is defined 

as the trial-to-trial variability of the contingencies. In the Kalman filter [116, 164] (Fig. 

2b), this variability is determined by the variance of the “process noise”, the noise in the 

temporal evolution of contingencies (x). Greater process noise in the generative model 

produces greater uncertainty during inference and hence a larger Bayes-optimal learning 

rate [119, 165, 166]. However, in multiple-context models, the term volatility has been 

used to describe an alternative property of the environment [58], namely how likely the 

context is to switch from one trial to the next, as determined by the context transition 

probabilities.

Unfortunately, these distinct types of volatility, which we refer to as within- and between-

context volatility, have sometimes been conflated. For example, single-context models 

that estimate within-context volatility have been used to draw inferences about how 

humans learn in multiple-context economic decision-making tasks, where the reward 

rate stays fixed for a number of trials but occasionally switches (e.g. between 0.2 and 

0.8) from one trial to the next in a covert manner (i.e. without explicit cues) [57, 165]. 

When rewards are generated by such a switching multi-context process, a single-context 

model learns that the within-context volatility has increased (as a single, context-invariant 

reward rate is assumed to have jumped from 0.2 to 0.8, or vice versa), despite the 

fact that the true within-context volatility of the generative process is actually zero 

(the reward rate in each context never changes). Indeed, the learning rate of subjects 

exposed to such a process has been shown to increase with more switching – as revealed 

by fitting the learning rate of a Rescorla-Wagner model (a paradigmatic single-context 

model, as discussed above) to their binary choices [57, 167]. This is as it would be 

expected from a single-context learner that adjusts its learning rate to the volatility of 

the environment. However, more recently, it has been shown that changes in memory 

expression due to contextual inference in a multiple-context model can mimic changes in 

the learning rate of a single-context model [13]. Specifically, in an analogous setting in 

motor adaptation, environmental consistency (the inverse of between-context volatility) 

has been shown to underlie apparent changes in learning rate (Box 3). This leaves open 

the possibility that earlier results on the effects of reward rate switching on (apparent) 

learning rates [57, 167] reveal signatures of contextual inference, rather than providing 

evidence for the adjustment of (proper) learning rates per se (see also [168]). Using the 

appropriate (multiple-context) model class for a model-based (re)analysis of the data will 

be necessary to properly adjudicate between these hypotheses.
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Box 6 - Hierarchical Bayesian models

In hierarchical Bayesian models, the prior distributions of the “local” parameters, 

determining the context-specific contingencies, depend on a shared “global” 

hyperparameter, which in turn has a hyperprior distribution of its own. During inference, 

both the local parameters and the global hyperparameters of the prior distributions 

are learned, with the latter supporting learning-to-learn or meta-learning. Thus, this 

hierarchical organization induces dependencies between the contingencies of each 

context during learning. That is, experience in one context will lead to the global 

hyperparameters being updated, and this in turn will cause the contingencies of all 

contexts to be updated. Consequently, in the small-data regime, hierarchical models 

support well-informed inferences about the contingencies of previously experienced 

contexts (backward transfer) as well as future contexts that have yet-to-be experienced 

(forward transfer). In particular, rather than having to learn the contingencies of each 

new context from scratch, which would be inefficient, the learned prior distributions of 

the contingencies can be exploited to initialize the contingencies of a new context in a 

sensible way such that they only require fine tuning, thus allowing rapid improvement in 

performance [169, 170].

In cognitive science, hierarchical Bayesian models have been used to explain how 

humans learn concepts [171], abstract knowledge [172] and inductive biases [173]. In 

the context of contextual learning, the hierarchical Dirichlet process (HDP) is a Bayesian 

nonparametric model [174] that has been proposed as a model of how humans balance 

the trade-off between specialization and generalization in multiple-context environments 

[13]. Specifically, the HDP was used to define a distribution on a context transition 

matrix in a hierarchical manner, such that each local transition distribution (row of the 

transition matrix), corresponding to the transition probabilities when starting from each 

specific context, depended on a global transition distribution that was shared across 

contexts, determining the expected overall frequency of each context (Fig. 2c).

While building on the same theoretical concepts, this hierarchy in the contents of 

contexts (the contingencies) is different from the hierarchical representation of the 

contexts themselves we discuss in Box 4. For example, even with a simple “flat” 

representation of contexts, contingencies can still be organized hierarchically. Indeed, 

a hierarchical representation of the transition probabilities between contexts (one 

component of their contingencies) has been shown to underlie spontaneous recovery 

and anterograde interference in motor learning – without invoking a hierarchical 

representation of contexts per se [13].
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Outstanding Questions Box

• Current models of context-dependent learning only ever update existing 

memories or add new ones. Does the brain also reorganize existing 

memories, such as by pruning or merging existing memories? Does sleep 

play a role in the reorganization of memories? How are these operations 

related to classically described memory processes such as consolidation and 

reconsolidation?

• How can proper and apparent learning be measured and distinguished at 

the behavioral and neural levels? Beside recently described effects on overt 

behavior, are there covert behavioral signatures of proper and apparent 

learning? For example, does contextual uncertainty – a hallmark of apparent 

learning – manifest in reactions times, reflex gains or pupil size?

• How does the brain represent contexts in a compositional manner? By 

composing novel contexts from other known contexts, compositional 

representations can support combinatorial generalization.

• Does the brain represent contexts and their contents hierarchically, and if 

so, what kind of hierarchy is it (which aspects of the contingencies does it 

involve, beside transition probabilities) and how deep is the hierarchy?

• How domain-general is the simultaneous and graded expression and updating 

of multiple memories that has so far only been demonstrated empirically in 

motor adaptation? When expressing multiple memories, are there ways of 

combining them other than just a simple average? Can multiple memories be 

updated simultaneously on a single trial, or is only one memory updated at a 

time, with graded updating emerging only due to averaging across trials?

• Does the brain use a fixed number of memories at all times, simply 

discounting those that have not been linked to a previously encountered 

context, or does it dynamically add new memories on the go as the need 

arises?

• Is there a specialized brain area for computing timescales general-purpose 

contextual inferences, or are there distinct areas performing domain-specific 

forms of contextual inference, perhaps at different time scales?

• How are the effects of contextual inference on memory creation, updating, 

and expression implemented mechanistically in neural circuits? Given that 

exact contextual inference is intractable, what approximate algorithms does 

the brain use for it? What neural code is used to encode graded uncertainty 

about context? How do these processes play into continual learning in 

biological circuits?
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Highlights

• Context has widespread effects on memory and learning across multiple 

domains.

• Context is rarely directly observed by the learner and needs to be inferred.

• Contextual inference is determined by three main factors: performance-

related feedback signals, performance-unrelated sensory cues, and 

spontaneous factors, such as the passage of time.

• Contextual inference controls memory creation, updating and expression 

across a variety of domains. In general, this requires multiple memories to 

be recalled and modified at any time.

• Adaptation is not a monolithic process but arises from a combination of 

two distinct processes: proper learning, involving the creation and updating 

of memories, and apparent learning, involving changes in how existing 

memories are expressed.

• Many classical learning phenomena, typically attributed to proper learning, 

have been shown to arise primarily from apparent learning.
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Fig. 1 |. Elements of contextual learning in different domains.
Top row shows key elements of contextual learning (color coded; see also Box 1), panels 

show how they apply to specific domains. Three consecutive trials in a typical classical 

conditioning (a), episodic memory (b), instrumental learning (c) and motor adaptation (d) 

task. For each task, the first two trials (trials n−1 and n) are in context 1 (blue), and the 

last trial (trial n+1) is in context 2 (red). Each context can be associated with an observed 

sensory cue (pink, conditioning chamber in a, background image in b and c, and orientation 

of virtual tool in d). The sensory cue is informative of the context but is not directly related 

to task performance. On each trial, the participant observes a state (orange, presence or 

absence of auditory tone in a, foreground image in b and c, and target location in d). The 

participant selects an action (green, no action is taken in a and b, discrete button press in 
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c, and continuous elbow joint torque in d). Given the state and action (if applicable), the 

participant receives feedback (purple, presence or absence of foot shock in a, no feedback in 

b, monetary reward in c, and observed hand trajectory in d). The relationship between state, 

action and feedback is determined by the context-specific contingencies (gray box). The 

straight arrows in d show velocity-dependent forces produced by the handle of the robot (not 

shown) grasped by the participant. Note that some of the specific experimental paradigms 

only use a subset of these ingredients. For example, actions are usually not considered in 

classical conditioning (a) or (the study phase of) episodic memory experiments (b; in this 

case, typically there is not even feedback, but see [142]), motor learning experiments (d) 

often have only one state (i.e. the same target across all trials) for each context, and many 

paradigms do not use any context-specific sensory cues. In addition, historically, the same 

term has come to refer to different concepts in different domains: for example, the term 

“state” as used in state-space models of motor learning [72, 114, 128] refers to the concept 

that we here call “contingency”, while we reserve the use of the term “state” in a sense 

that is closest to that used in reinforcement learning [120]. Finally, sometimes terms other 

than “context” are used to express the same concept (e.g. “task set” or “abstract rule” in 

economic decision making).
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Fig. 2 |. Internal model of the environment commonly imputed to learners.
a-b. Graphical models underlying multiple context (a) and single context models (b). 

Temporal changes in variables (circles) are formalized by introducing multiple nodes for 

them, each corresponding to the value of the variable in a different time step (subscript), 

and then introducing directed edges (horizontal arrows) between them to describe how their 

future values depend on their past values (i.e. internal dynamics). The value of a variable in 

a given time step can also depend on other variables in the same time step (vertical arrows). 

a. Multiple-context model [12, 13, 58, 59, 95]. Contexts (top nodes, color represents the 
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identity of the active context) evolve according to Markovian transition probabilities. Each 

context has its own contingency (only two shown for simplicity; in general, the number 

of contexts and contingencies can be unbounded). Contexts can also be associated with 

sensory cues (pink) of which the appearance probabilities are also dictated by the context-

specific contingencies. Only the contingency associated with the active context influences 

the observed sensory cue, state (orange) and feedback (purple) variables (gating by context, 

black vs. gray arrows). Feedback can depend on both an observed state and an action 

(green). In general, the active contingency can also affect the next context transition (for 

clarity, arrows not shown). In addition, states may not be directly observable and may 

have their own (action-dependent) dynamics [120] (also not shown for clarity). Gray box 

indicates that the contingency, xt, determines the joint distribution of the variables inside 

the box (here: qt, st and rt) b. Single-context model [57, 119, 116] in which only a single 

contingency exists. c. Hierarchical contingencies: an example of transition probabilities (as 

generated by a hierarchical Dirichlet process). The set of probabilities for transitioning 

‘from’ each context (bottom, horizontal multicolored bars, with the width of each stripe 

showing the probability of transitioning to each ‘to’ context) is a variation on a global set of 

probabilities (top). This way, learning about the local transition probabilities in a particular 

context informs inferences about global transition probabilities, in turn informing inferences 

about other local transition probabilities, even for context transitions that have not yet been 

observed.
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Fig. 3 |. Classical paradigms explained by contextual inference.
Each paradigm is schematically represented by three rows (two rows in panel a, top). 

The bottom row (rows in panel b) with yellow/brown colored bars shows the time course 

of the experiment in terms of state feedback (positive, +, negative, −, null, 0, or absent, 

blank), sensory cues (yellow and brown), and state (CS). For motor control, +, 0, and − 

reflect the strength and direction of a perturbation applied to the hand during reaching. 

For conditioning +, and 0 reflect the presence/absence of a US. The top two rows (top 

row in panel a, top) with red/blue colored bars show the memories that are relevant to the 

experiment (red for +, blue for 0 or −); for each memory, the bar with pale background 

extends from the time the memory was created until the end of the experiment (scalloped 

edge reflects a pre-existing memory). Dark shading within each bar shows the expression of 

the corresponding memory at each point in time (the height of the dark shading represents 

the level of expression, between 0 and 1, with the expression across existing contexts 

summing to 1). Below we highlight the paradigms (see main text and Box 3 for details 

of the paradigms and explanation of the mechanisms). a. Top: for a gradually introduced 

perturbation (black expanding triangle in second row) the existing memory is updated (blue 

changing to red in first row). Bottom: memory creation occurs for an abruptly introduced 

perturbation. b. Paradigms in which an initially learned memory (red) is re-expressed later 

in the paradigm after another memory has been expressed. Re-expression can rely on the 

state feedback, sensory cue or spontaneous factors. c. New memory expression. Anterograde 

interference, in which learning a second contingency (here, − perturbation) is slower if 

another contingency (here, + perturbation) has initially been learned, with the amount of 

interference increasing with the length of initial learning (long + vs. short +), that is when 

the environment is less volatile. Green and purple arrows to point to rapidly vs. slowly 

changing levels of memory expression, respectively.
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Fig. 4 |. Identical learning curves can arise due to proper or apparent learning, or their 
combination.
Simulations of a model of contextual learning [13] in response to a step change in a 

(deterministic) contingency (black line, top row) under three different scenarios (a-c). The 

three scenarios unfold under different parameter settings and initial conditions (e.g. 1 vs. 

2 memories). Task performance (top row, cyan) is a mixture of the inferred contingency 

distributions for each context (middle row, blue and red). For simplicity, each inferred 

contingency directly determines a response magnitude appropriate for the corresponding 

context. The mixture is weighted by the associated context probabilities (bottom row, blue 

and red – gray shows the probability a potential novel context). a. Pure proper learning: 

the “contingency” corresponding to the relevant state (e.g. defined by the presentation of 

the CS, or a movement target) is simply a scalar, such as the probability of receiving the 

US as feedback in that state, or the magnitude of force perturbation when reaching to that 

target. In naive subjects, the estimate of this contingency is initially 0, and over training 

it is increased as the CS is consistently paired with US, or the force perturbation with the 
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target (middle row). This gives rise to a classical learning curve. Note that in this example, 

contextual inference plays no role whatsoever, as (the simulated subject assumes) there is 

only a single context at play at all times of which the probability can thus only be constant 

one at all times (bottom row). b. Pure apparent learning: an existing (red) memory whose 

contingency has previously been updated to some non-zero level (here taken to be 1, for 

simplicity) is expressed more over time, relative to a baseline memory (blue, taken to be at 

zero), as its associated context is inferred to be active with increasing probability (bottom 

row, probability of red context increases). Thus, memory updating plays no role here, as the 

estimated contingencies for both contexts are constant through time (middle row). c. Mixture 

of proper and apparent learning: a new (red) memory is created and updated but also 

expressed more over time. Critically, these distinct forms of learning can produce identical 

adaptation curves (a-c, top panels), despite having radically different internal representations 

(middle and bottom panels).
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