Table 2.
Evaluation metrics between state-of-the-art models and the proposed models on the ISIC 2018 dataset. The best performance is denoted in bold font for each of the performance metrics.
| Model | Year | Acc ± St. Dev. | Dice ± St. Dev. | JAC ± St. Dev. |
|---|---|---|---|---|
| U-Net | 2015 | 0.9437 | 0.8585 | 0.7521 |
| Attention U-Net | 2018 | 0.9438 | 0.8553 | 0.7472 |
| TransUNet | 2021 | 0.9026 | 0.7283 | 0.5727 |
| Residual U-Net | 2017 | 0.9408 | 0.8586 | 0.7522 |
| Recurrent U-Net | 2018 | 0.9471 | 0.8686 | 0.7677 |
| R2U-Net | 2018 | 0.9453 | 0.8661 | 0.7638 |
| Fractal U-Net | 2021 | 0.9424 | 0.8531 | 0.7438 |
| Efficient fractal U-Net | 2021 | 0.9499 ± 0.0008 | 0.8749 ± 0.0012 | 0.7776 ± 0.0018 |
| Efficient dense U-Net | 2021 | 0.9507 ± 0.0034 | 0.8808 ± 0.0064 | 0.7870 ± 0.0103 |
| Efficient R2U-Net | 2021 | 0.9474 ± 0.0013 | 0.8743 ± 0.0018 | 0.7767 ± 0.0029 |