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Accurately characterizing clouds and their shadows is a long-standing problem in the Earth Observation 
community. Recent works showcase the necessity to improve cloud detection methods for imagery 
acquired by the Sentinel-2 satellites. However, the lack of consensus and transparency in existing 
reference datasets hampers the benchmarking of current cloud detection methods. Exploiting the 
analysis-ready data offered by the Copernicus program, we created CloudSEN12, a new multi-temporal 
global dataset to foster research in cloud and cloud shadow detection. CloudSEN12 has 49,400 image 
patches, including (1) Sentinel-2 level-1C and level-2A multi-spectral data, (2) Sentinel-1 synthetic 
aperture radar data, (3) auxiliary remote sensing products, (4) different hand-crafted annotations to 
label the presence of thick and thin clouds and cloud shadows, and (5) the results from eight state-of-
the-art cloud detection algorithms. At present, CloudSEN12 exceeds all previous efforts in terms of 
annotation richness, scene variability, geographic distribution, metadata complexity, quality control, 
and number of samples.

Background & Summary
We are in the midst of an exciting new era of Earth observation (EO), wherein Analysis Ready Data (ARD)1–3  
products derived from big optical satellite imagery catalogs permit direct analyses without laborious 
pre-processing. Unfortunately, many of these products are contaminated by clouds4 and their corresponding 
shadows, altering the surface reflectance values and hampering their operational exploitation at large scales. For 
most of the applications exploiting ARD, cloud and cloud-shadow pixels need to be removed prior to further 
analyses, i.e. masked out, to avoid distortions in the results.

Improving the accuracy of existing cloud detection (CD) algorithms used in current ARD products is a 
pressing need for the EO community regarding optical sensors such as Sentinel-2. Ideally, CD algorithms would 
classify pixels into clear, cloud shadow, thin cloud, and thick cloud. Splitting clouds into two subclasses allows 
downstream applications to design different strategies to treat cloud contamination. On the one hand, thick 
clouds entirely block the surface’s view, reflecting most of the light coming from the sun and generating gaps 
impossible to retrieve using optical sensors data5. On the other hand, thin clouds do not reflect all the sunlight 
allowing to observe a distorted view of the surface6,7. For some applications, such as object detection or disaster 
response8, images contaminated with thin clouds are still helpful. Therefore, distinguishing between thick and 
thin clouds is also a critical first step toward optical data exploitation. Nevertheless, it is worth noting that there 
is no overall consensus on quantitative approaches delimiting when one class begins and the other ends; thus, it 
is so far inherently subjective to the image interpreter9,10.
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Methodologies for CD can be classified into two main categories: knowledge-driven (KD) and data-driven 
(DD). KD category emphasizes the logical sense connected with physical foundations. For instance, the Function 
of mask (Fmask)11 and Sen2Cor12 use a set of physical rules formulated on spectral and contextual features to 
distinguish clouds against water or land. Overall, KD algorithms achieve accurate results, and good generaliza-
tion13–15. However, it is well-known that they have problems associated with thin cloud omission and non-cloud 
object commission, frequently at cloud edges and under surfaces with a smooth texture or high reflectance16,17.

In recent years, supervised data-driven strategies, trained in large manually annotated datasets, have grown 
notoriety in remote sensing thanks to the success of classical machine learning (ML) and deep learning (DL) 
techniques18. Among multiple noteworthy ML precedents19–21 in cloud detection, Sentinel Hub’s s2cloudless22 is 
the most extensively used due to its low computational requirements and lightweight design. Nonetheless, when 
evaluated in certain particular regions, such as tropical forests, s2cloudless falls short of state-of-the-art KD 
cloud detectors13,23,24. Meanwhile, DL has proven to be more effective on CD compared to more classical ML25,26, 
although it is subjected to the exigency of pixel-level annotation.

The recent progress in DL-based cloud semantic segmentation in Sentinel-2 can be attributed to the prolif-
eration of public CD datasets such as SPARCS27, S2-Hollstein28, Biome 810, 38-cloud29, CESBIO30, 95-Cloud31, 
and CloudCatalogue32. Nonetheless, these datasets have some well-known shortcomings, including the absence 
of a temporal component, a lack of thin clouds or cloud shadows labels, a high degree of imbalance between 
cloud and non-cloud classes, and a relatively small size joined with geographical bias (see Table 1 for the current 
characteristics/limitations of each of those datasets). Furthermore, their quality control process is not always 
properly described and their development remains somehow unclear. Additionally, there is a lack of consensus 
on manual annotation protocols and cloud semantic classes definition, which makes inter-dataset comparison 
problematic, particularly under pixels where class transitions occur. These flaws hinder the natural transition to 
global DL cloud classifiers and the application of new-fashioned geographically-aware algorithms13.

Inspired by the CityScapes dataset33, we created and released CloudSEN12, a large and globally distributed 
dataset (Fig. 1) for cloud semantic understanding based mainly on Sentinel 2 imagery. CloudSEN12 surpasses all 
previous efforts in size and variability (see Table 1), offering 49,250 image patches (IPs) with different annotation 
types: (i) 10,000 IPs with high-quality pixel-level annotation, (ii) 10,000 IPs with scribble annotation, and (iii) 
29,250 unlabeled IPs. The labeling phase was conducted by 14 domain experts using a supervised active learning 
system. We designed a rigorous four-step quality control protocol based on Zhu et al.34 to guarantee high quality 
in the manual annotation phase. Furthermore, CloudSEN12 ensures that for the same geographical location, 
users can obtain multiple IPs with different cloud coverage: cloud-free (0%), almost-clear (0–25%), low-cloudy 
(25–45%), mid-cloudy (45–65%), and cloudy (>65%), which ensures scene variability in the temporal domain. 
Finally, to support multi-modal cloud removal35 and data fusion36 approaches, each CloudSEN12 IP includes 
data from various remote sensing sources that have already shown their usefulness in cloud and cloud shadow 
masking, such as Sentinel-1 and elevation data. See Table 2 for a full list of assets available for each image patch.

Methods
This study collects and combines several public data sources that may potentially help us to annotate cloud and 
cloud shadows better. Based on this information, semantic classes (Table 3) are created using an active system 
that blends human photo interpretation and machine learning. Finally, a strict quality control protocol is carried 
out to ensure the highest quality on the manual labels and to establish human-level performance. Figure 2 depicts 
the whole workflow followed to create the dataset. Figure 2a depicts all available data in each CloudSEN12 IP 
(see Method:Data preparation section). Figure 2b illustrates the manual IP selection strategy realized in each 
ROI (see Method:Image patches selection section). Finally, Fig. 2c highlights the human annotation strategy 
and cloud detection models offered in each IP (see Method:Annotation strategy and Method:Available cloud 
detection models sections).

Data preparation.  CloudSEN12 comprises different free and open datasets provided by several public insti-
tutions and made accessible by the Google Earth Engine (GEE) platform37. These include Sentinel-2A/B (SEN2), 

Name Main region Labels
# of 
Scenes Temporal

# of Pixels 
(109)

Thick 
Clouds%

Thin 
Clouds%

Cloud 
Shadows% Clear%

L8-SPARCS79 worldwide full-scene 80 No 0.080 19.37 * 7.37 73.26

S2-Hollstein28 Europe polygons 59 No 0.003 16.06 16.49 4.53 62.92

L8-Biome810 worldwide full-scene 96 No 3.964 33.19 14.71 1.55 50.55

L8-38Cloud29 USA full-scene 38 No 1.494 52.36 * * 47.64

S2-CESBIO30 Europe full-scene 38 No 0.109 22.77 * 2.71 74.52

L8-95Cloud31 USA full-scene 95 No 3.737 49.27 * * 50.73

S2-cloudCatalog32 worldwide partial scene 513 No 0.535 52.58 * 1.47 45.95

WHUS2-CD80 China full-scene 32 No 4.273 13.50 * * 86.50

KappaZeta54 Northern Europe partial scene 155 No 1.064 34.37 19.21 8.36 38.05

CloudSEN12 worldwide partial scene 46697 Yes 4.697 15.50 5.52 5.24 73.73

Table 1.  Summary of publicly available CD datasets in comparison to CloudSEN12. An asterisk represents that 
the dataset does not distinguish the specific class.
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Sentinel-1A/B (SEN1), Multi-Error-Removed Improved-Terrain (MERIT) DEM38, Global Surface Water39 
(GSW), and Global Land Cover maps40 at 10 and 100 meters. The SEN1 and SEN2 multi-spectral image data cor-
respond to the 2018–2020 period. We included all the bands from both SEN2 top-of-atmosphere (TOA) reflec-
tance (Level-1C) and SEN2 surface reflectance (SR) values (Level-2A) derived from the Sen2Cor processor, which 
can be useful to analyze the impact of CD algorithms on atmospherically corrected derived products. See S2L1C 
and S2L2A in Table 2 for band description. On the other hand, SEN1 acquires data with a revisit cycle between 
6–12 days according to four standard operational modes: Stripmap (SM), Extra Wide Swath (EW), Wave (WV), 
and Interferometric Wide Swath (IW). In CloudSEN12, we collect IW data with two polarization channels (VV 
and VH) from the high-resolution Level-1 Ground Range Detected (GRD) product. Furthermore, we saved the 
approximate angle between the incident SAR beam and the reference ellipsoid (see S1 in Table 2). Lastly, our data-
set also includes previously proposed features for cloud semantic segmentation such as (1) Cloud Displacement 
Index41, (2) the azimuth (0–360°) calculated using the solar azimuth and zenith angles42 from SEN2 metadata, (3) 
elevation from MERIT dataset, (4) land cover maps from the Copernicus Global Land Service (CGLS) version 
3, and the ESA WorldCover 10 m v100, and (5) water occurrence from the GSW dataset (see extra/ in Table 2). 
All the previous features constitute the raw CloudSEN12 imagery dataset (Fig. 2a). All the image scenes in raw 
CloudSEN12 were resampled to 10 meters using local SEN2 UTM coordinates.

Image patches selection.  We sampled 20,000 random regions of interest (ROIs) dispersed globally in 
order to retrieve raw CloudSEN12 data. Each ROI has a dimension of 5,090 × 5,090 meters. Besides, we carefully 
added 5,000 manually selected ROIs to guarantee high scene diversity on complicated surfaces such as snow and 
built-up areas. Afterwards, an ROI is retained in the dataset if all three of the following requirements are met: (1) 
SEN2 Level-1C IP does not include saturated or no-data pixel values, (2) the time difference between SEN1 and 
SEN2 acquisitions is not higher than 2.5 days, and (3) there are more than 15 SEN2 Level-1C image scenes for the 
given ROI after applying (2). The total number of ROIs decreased from 25,000 to 12,121 as a result of this filtering. 
Despite this reduction, CloudSEN12 still manages to reach a full global representation. However, a high number 
of ROIs does not necessarily imply a consistent distribution among cloud types and coverage. Unfortunately, 
image selection based on automatic cloud masking or cloud cover metadata tends to produce misleading results, 
especially under high-altitude areas43, intricate backgrounds44, and mixed cloud types scenes. Hence, to guar-
antee unbiased distribution between clear, cloud and cloud shadow pixels, 14 cloud detection experts manually 
selected the IPs (hereafter referred to as CDE group, Fig. 2b). For each ROI, we pick five IPs with different cloud 
coverage: cloud-free (0%), almost-clear (0–25%), low-cloudy (25–65%), mid-cloudy (45–65%), and cloudy image 
(>65%). Atypical clouds such as contrails, ice clouds, and haze/fog had a higher priority than common clouds 
(i.e., cumulus and stratus). After eliminating ROIs that did not count with at least one IP for each cloud coverage 
class, the total number of ROIs was reduced from 12,121 to 9,880, resulting in the final CloudSEN12 spatial cov-
erage (Fig. 1).

Annotation strategy.  New trends in computer vision show that reformulating the standard supervised 
learning scheme can alleviate the huge demands of hand-crafted labeled data. For instance, semi-supervised 
learning can produce more detailed and uniform predictions45, while weakly-supervised learning suggests a 
more cost-effective option to pixel-wise annotation in semantic segmentation. Users might utilize scribble labels 
to train a model for coarse-to-fine enrichment46. Aware of these manual labeling requirements, CloudSEN12 
includes three types of labeling data: high-quality, scribble, and no-annotation. Consequently, each ROI is ran-
domly assigned to a distinct annotation category (Fig. 2c) and labelled by the CDE group:

Fig. 1  CloudSEN12 spatial coverage, purple-to-yellow color gradient represents the amount of manually 
annotated pixels per hexagon. The annotated pixels were collocated in an equal-area hexagonal discrete grid 
with a facet size of 140 km.
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•	 2,000 ROIs with pixel level annotation, where the average annotation time is 150 minutes (high-quality sub-
set, Fig. 3a).

•	 2,000 ROIs with scribble level annotation, where the annotation time is 16 minutes (scribble subset, Fig. 3b).
•	 5,880 ROIs with annotation only in the cloud-free (0%) image (no annotation subset, Fig. 3c).

Human calibration phase.  Human photo interpretation is not a faultless procedure. It might easily be skewed 
by an individual’s basis, overconfidence, tiredness, or ostrich-effect47 proclivity. Hence, to lessen this effect, the CDE 
group refined their criteria using a “calibration” dataset composed of 35 manually selected challenging IPs. In this 
stage, all the labelers can consult each other. As a result, they reached an agreement about the SEN2 band compo-
sitions to be used and how to deal with complicated scenarios such as cloud boundaries, thin cloud shadows, and 
high-reflectance background. A labeler is considered fully trained if its overall accuracy in the calibration dataset 

File/
Folder Name Scale Wavelength Description

S2L1C 
& 
S2L2A

B1 0.0001 443.9 nm (S2A)/442.3 nm (S2B) Aerosols.

B2 0.0001 496.6 nm (S2A)/492.1 nm (S2B) Blue.

B3 0.0001 560 nm (S2A)/559 nm (S2B) Green.

B4 0.0001 664.5 nm (S2A)/665 nm (S2B) Red.

B5 0.0001 703.9 nm (S2A)/703.8 nm (S2B) Red Edge 1.

B6 0.0001 740.2 nm (S2A)/739.1 nm (S2B) Red Edge 2.

B7 0.0001 782.5 nm (S2A)/779.7 nm (S2B) Red Edge 3.

B8 0.0001 835.1 nm (S2A)/833 nm (S2B) NIR.

B8A 0.0001 864.8 nm (S2A)/864 nm (S2B) Red Edge 4.

B9 0.0001 945 nm (S2A)/943.2 nm (S2B) Water vapor.

B11 0.0001 1613.7 nm (S2A)/1610.4 nm (S2B) SWIR 1.

B12 0.0001 2202.4 nm (S2A)/2185.7 nm (S2B) SWIR 2.

S2L1C B10 0.0001 1373.5 nm (S2A)/1376.9 nm (S2B) Cirrus.

S2L2A

AOT 0.001 — Aerosol Optical Thickness.

WVP 0.001 — Water Vapor Pressure.

TCI_R 1 — True Color Image, Red.

TCI_G 1 — True Color Image, Green.

TCI_B 1 — True Color Image, Blue.

S1

VV 1 5.405 GHz Dual-band cross-polarization, vertical transmit/
horizontal receive.

VH 1 5.405 GHz Single co-polarization, vertical transmit/vertical 
receive.

angle 1 — Incidence angle generated by interpolating the 
‘incidenceAngle’ property.

extra/

CDI 0.0001 — Cloud Displacement Index41.

Shwdirection 0.01 — Azimuth. Values range from 0°–360°

elevation 1 — Elevation in meters. Obtained from MERIT Hydro 
datasets38.

ocurrence 1 — JRC Global Surface Water39. The frequency with 
which water was present.

LC100 1 — Copernicus land cover product. CGLS-LC100 
Collection 340.

LC10 1 — ESA WorldCover 10 m v100 product.

labels/

fmask11 1 — Fmask4.0 cloud masking.

QA60 1 — SEN2 Level-1C cloud mask.

s2cloudless22 1 — sen2cloudless results.

sen2cor 1 — Scene Classification band. Obtained from SEN2 level 
2A.

CD-FCNN-RGBI 1 — López-Puigdollers et al.23 results based on RGBI 
bands.

CD-FCNN-RGBISWIR 1 — López-Puigdollers et al.23 results based on RGBISWIR 
bands.

kappamask_L1C 1 — KappaMask54 results using SEN2 level L1C as input.

kappamask_L2A 1 — KappaMask54 results using SEN2 level L2A as input.

manual_hq 1 High-quality pixel-wise manual annotation.

manual_sc 1 Scribble manual annotation.

Table 2.  List of assets available for each image patch.
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surpasses 90%. Then, a “validation” dataset formed of ten IPs is used to assess individual performance; labelers are 
not permitted to confer with one another during this step. If the labeler’s overall accuracy drops below 90%, it will 
return to the calibration phase (Fig. 4).

Labeling phase.  The Intelligence foR Image Segmentation (IRIS) active learning software48 was used in 
the manual labeling annotation process (Supplementary Fig. S1). IRIS allowed CDE members to train a model 
(learner) with a small set of labeled samples that is iteratively reinforced by acquiring new samples provided by a 
labeler (oracle). As a result, it dramatically decreases the time spent creating hand-crafted labels but maintains the 
labeler’s capacity to make final manual revisions if necessary. For high-quality labeling generation (Fig. 5a), IRIS 
starts training a gradient boosting decision tree (GBDT)49 with s2cloudless cloud probability values greater than 
0.7 as thick cloud and less than 0.3 as clear. GBDT algorithm starts generating weak decision trees by dividing 
training data and gradually moving in the direction of lowering the loss function, then all the weak decision trees 
are combined into a single strong learner to generate a final prediction. IRIS use the LightGBM Python package. 
Readers are referred to Ke et al.50 for a detailed algorithm description. After obtaining GBDT predictions, the 
CDE group makes adjustments to the prior results and, if necessary, adds other cloud semantic classes such as 
cloud shadow and thin cloud. Using this new sample set, the GBDT model is re-trained. The two previous steps 
are repeated several times until the pixel-wise annotation passes the labeler’s visual inspection filter. The final 
high-quality annotation results are then obtained by applying extra manual fine-tuning. Since there are no quan-
titative criteria to distinguish between boundaries in semantic classes, the labelers always attempt to maximize the 
sensitivity score under ambiguous edges.

On the other hand, for scribble labeling (Fig. 5b), the CDE group also used IRIS but without ML assistance. 
First, labelers spend one-minute adding annotations around centroids of the semantic classes. Usually, pixels 
adjacent to the centroids are more straightforward to classify automatically. Then, to produce balanced annota-
tions, the CDE group added more samples at cloud and cloud shadow edges for three more minutes.

Quality control phase.  Despite the human calibration phase, errors are still common in hand-operated 
labels. Therefore, statistic and visual inspections were implemented before admitting a manual annotation in 
CloudSEN12 (Fig. 6). First, an automatic check is set only for high-quality labels. It proposes that the GBDT 
accuracy during training must be higher than 0.95. This simple threshold pushes the CDE group to set more sam-
ples and care more about labeling correctness. Later, two sequential visual inspection rounds are carried out for 
scribble and high-quality labels. The evaluators are two other CDE members than the one who labeled the IP. If 
a mistake is found, it is notified using GitHub Discussions (https://github.com/cloudsen12/models/discussions). 
Finally, we discern the most challenging IPs (difficulty level greater than 4, see Table 4) and consult all CDE mem-
bers to reaffirm or change a semantic class. The deliberations were supported by using cloudApp (https://csaybar.
users.earthengine.app/view/cloudapp), which is a GEE web application that displays SEN2 image time series from 
any location on the earth (Supplementary Fig. S2).

Comparing the manual annotation before and after quality control can provide insight into the correctness 
of annotations made by humans. Based on this, CloudSEN12 set, for the first time, the human-level perfor-
mance at 95.7% confidence when considering all semantic cloud classes (described in Table 3) and 98.3% if 
thin clouds are discarded. The clear and thick cloud classes presented the largest PA agreement with 99.1% 
and 96.6%, respectively (Fig. 7). The variance concerning the thick cloud class (3.4%) was produced by efforts 
to limit the formation of false positives around cloud borders in the first round of quality control. In contrast, 
thin cloud and cloud shadow classes present the largest disparities, with a PA of 78 and 91.8%, respectively. 
Despite using IRIS and CloudApp, which permits labelers to contrast both spectral and temporal SEN2 data, 
the detection of semi-transparent clouds remained unclear (21%). This was especially noticeable when all CDE 
members discussed the most complicated IPs (Fig. 6); thin clouds were always the source of the most contention. 
Considering the assimilation of atmospheric reanalysis data and radiative transfer model outputs could help to 
reduce the cirrus detection uncertainty9,51. Nonetheless, our manual labeling approach did not consider this 
additional data. Finally, cloud shadow disagreement is explained by a reinterpretation of the semantic classes 
after the first quality control round. At first, we assumed that only thick clouds could project shadows. However, 
this was ruled out as many thin low-altitude clouds project their shadows on the surface, significantly affecting 
surface reflectance values.

Available cloud detection models.  The large number of user requirements makes challenging to compare 
CD algorithms fairly24. In crop detection, for instance, examining the performance of CD models during specific 
seasons rather than on an interannual scale may be more meaningful. Another example is that some data users 

Code Class Superclass 1 Superclass 2 Description Priority

0 Clear non-cloud valid Pixels without cloud and cloud shadow contamination. 4

1 Thick Cloud cloud invalid Opaque clouds that block all the reflectance from the Earth’s 
surface. 1

2 Thin Cloud cloud invalid Semitransparent cloud that alters the surface spectral signal but 
still allows to recognize the background. 3

3 Cloud Shadow non-cloud invalid Dark pixels thrown by a thick or thin cloud. 2

Table 3.  Cloud semantic categories considered in CloudSEN12. Lower priority levels indicate greater relevance.
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may want to compare CD model performance geographically across different biomes or land-cover classes. In EO 
research that uses deep learning, it has become rather common to benchmark models as classic computer vision 
algorithms, generating global metric values for each validation dataset. However, this convenient approach is 
more likely to result in biased conclusions, especially using poorly distributed datasets. We argue that an appro-
priate model in EO must be capable of obtaining adequate global metrics while being consistent in space across 
multiple timescales, i.e., at the local domain. Furthermore, in cloud detection, the observed patterns must be 
aligned with our physical understanding of the phenomena. All of the above is hard to express in a single global 
metric value. Therefore, in order to cover all the possible EO benchmarking user requirements, we added to 
each IP the results of eight of the most popular CD algorithms (see labels/in Table 2). This simple step provides 
CloudSEN12 users more flexibility to choose a better comparison strategy tailored to their requirements. Next, 
we detail the CD algorithms available for each IP in CloudSEN12:

•	 Fmask4: Function of Mask cloud detection algorithm for Landsat and Sentinel-211. We use the authors’ MAT-
LAB implementation code via Linux Docker containers (https://github.com/cloudsen12/models). We set the 
dilatation parameter for cloud, cloud shadow, and snow to 3, 3, and 0 pixels, respectively. The erosion radius 
(dilation) is set to 0 (90) meters, while the cloud probability threshold is fixed to 20%.

•	 Sen2Cor: Software that performs atmospheric, terrain, and cirrus correction to SEN2 Level-1C input data12. 
We store the Scene Classification (SC), which provides a semantic pixel-level classification map. The SC maps 
are obtained from the “COPERNICUS/S2_SR” GEE dataset.

Fig. 2  A high-level summary of our workflow to generate IPs. (a) Satellite imagery datasets that comprises 
CloudSEN12 assets. (b) IP selection by the CDE group. (c) Generation of manual and automatic cloud masking. 
KappasMask and CD-FCNN have two distinct configurations.
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•	 s2cloudless: Single-scene CD algorithm created by Sentinel-Hub using a LightGBM decision tree model50. 
The cloud probability values are collected without applying neither a threshold nor dilation. This resource is 
available in the “COPERNICUS/S2_CLOUD_PROBABILITY” GEE dataset.

•	 CD-FCNN: U-Net with two different SEN2 band combinations:23 RGBI (B2, B3, B4, and B8) and RGBISWIR 
(B2, B3, B4, B8, B11, and B12) trained on the Landsat Biome-8 dataset (transfer learning52,53 from Landsat 8 
to Sentinel-2).

•	 KappaMask: U-Net with two distinct settings:54 all Sentinel-2 L1C bands and all Sentinel-2 L2A bands except 
the Red Edge 3 band. It was trained using both Sentinel-2 KappaZeta Cloud and Cloud Shadow Masks and 
the Sentinel-2 Cloud Mask Catalogue (see Table 1).

•	 QA60: Cloud mask embedded in the quality assurance band of SEN2 Level-1C products.

Table 5 shows the cloud semantic categories for the different CD techniques available in CloudSEN12.  
It should be noted that only four CD algorithms provide the cloud shadow category.

Preparing CloudSEN12 for machine learning.  Splitting our densely annotated dataset into train and test 
sets is critical to ensure that ML practitioners always use the same samples when providing results. Since cloud for-
mation tends to fluctuate smoothly throughout space, a simple random split is suspicious to violate the assumption 

Fig. 3  The three primary types of hand-crafted labeling data available in CloudSEN12. The first row in high-
quality (a), scribble (b), and no annotation (c) subgroups shows a SEN2 level 1 C RGB band combination.
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of test independence, especially under highly clustered labeled areas, such as the green and yellow regions shown 
in Fig. 1. Therefore, we carry out a spatially stratified block split strategy55, based on Roberts et al.56, to limit the 
risk of overfitting induced by spatial autocorrelation. First, we divided the Earth’s surface into regular hexagons of 
50,000 km2. Then, the initial hexagons are filtered, retaining only those intersecting with the high-quality subset. 

Fig. 4  Human calibration workflow diagram. The overall accuracy (OA) is calculated by comparing individual 
labeler results against expert group results.

Fig. 5  (a) High-quality labeling phase diagram. The model is set up using s2cloudless priors (blue). 
Annotations made by labelers with and without ML assistance are saved (green). (b) Scribble labeling phase 
diagram. The labelers starts by adding samples at the centroids (blue), and then into the borders; if the results 
pass a simple visual inspection, the annotation is send to inspection (see Method:Quality control phase section).

https://doi.org/10.1038/s41597-022-01878-2


9Scientific Data |           (2022) 9:782  | https://doi.org/10.1038/s41597-022-01878-2

www.nature.com/scientificdatawww.nature.com/scientificdata/

Finally, using the difficulty IP property (see Table 3), we randomly stratified the remained hexagon blocks using 
90% (1827 ROIs) and 10% (173 ROIs) for training and testing, respectively (Fig. 8). Notice that on each ROI, we 
have five IPs hence the total amount of training and testing data is five times these numbers. The no annotation 
and scribble subsets might be used as additional inputs for the training phase.

Data Records
The dataset is available online via Science Data Bank57. We defined an IP as the primary atomic unit, represent-
ing a single spatio-temporal component. Each IP has 49 assets (see Table 2) and 31 properties (see Table 4). 
All the assets are delivered in the form of LZW-compressed COG (Cloud Optimized GeoTIFF) files. COG is a 
standard imagery format for web-optimized access to raster data. It has a specific internal pixel structure that 
allows clients to request just specified areas of a large image by submitting HTTP range requests58. The IP prop-
erties are shared using the SpatioTemporal Asset Catalog (STAC) specification. STAC provides a straightforward 
architecture for reading metadata and assets in JSON format, providing users with a sophisticated browsing 
experience seamlessly integrating with modern scripting languages and front-end web technologies.

Figure 10 shows the CloudSEN12 dataset organization, which follows a four-level directory structure. The 
top level includes the metadata file in CSV format (content of Table 4) and three folders: high, scribble, and 
no-label. These folders correspond to the annotation categories: high-quality (2000 ROIs), scribble (2000 ROIs), 
and no annotation (5880 ROIs). The second-level folders correspond to each specific geographic location (ROI). 
The folder name is the ROI ID (Fig. 10b). Since an ROI consists of five IPs with different cloud coverage, each 
ROI folder contains five folders whose names match the GEE Sentinel-2 product ID of the specific IP (Fig. 10c). 
Finally, each IP folder stores the assets detailed in Table 2 (Fig. 10d).

Technical Validation
Neural network architecture.  In order to demonstrate cloudSEN12’s effectiveness in developing DD mod-
els, we trained a U-Net59 network with a MobileNetV260 backbone (UNetMobV2) using only the high-quality 
pixel-level annotation set. U-Net models often have considerable memory requirements since the encoder and 
decoder components include skip connections of large tensors. However, the MobileNetV2 encoder significantly 
decreases memory utilization due to the use of depthwise separable convolutions and inverted residuals. The 
entire memory requirements of our model, considering a batch with a single image (1 × 13 × 512 × 512), the 
forward/backward pass, and model parameters, is less than 1 GB using the PyTorch deep learning library61. The 
implementation of the proposed model can be found at https://github.com/cloudsen12/models.

The high-quality set is split into training, validation, and test sets. First, we obtain the test and no-test set 
using the previous geographical blocks. Then, the no-test set is randomly divided into training and validation 
sets according to the ratio of 90/10%. The U-Net network is trained considering all the SEN2 L1C bands with a 
batch size of 32, Adam optimizer with a learning rate of 10−3, and the standard cross-entropy as loss function. 
During the training phase, the learning rate is lowered by a factor of 0.10 if the cross-entropy measured in the 
validation set does not improve in four epochs. Lastly, if the model does not improve after ten epochs, the model 
with the lowest cross-entropy value in the validation set is chosen.

Benckmarking strategy.  CloudSEN12’s suitability for benchmarking cloud and cloud shadow is discussed 
in this section. In order to maintain fairness, we only consider the 975 IPs available in the test set. We assessed 
the similarity between the semantic categories (Table 3) from CD models (automatic) and manual annotations 
through three experiments. First, we created the “cloud” and “non-cloud” superclasses (Table 3) that aggregate 
thick and thin cloud and clear and cloud shadows classes, respectively. In the second experiment, cloud shadows 
are validated by considering four algorithms: UNetMobV2, KappaMask, Fmask, and Sen2Cor, as not all algo-
rithms are capable of detecting cloud shadows (Table 5). Finally, in the third experiment, “valid” and “invalid” 
superclasses (Table 3) are also analyzed just for algorithms with cloud shadow detection. In all the experiments, 
human-level performance is included by comparing manual annotations before and after the quality control pro-
cedure (see Method: Quality control phase section). We report producer’s accuracy (PA), user’s accuracy (UA), 
and balanced overall accuracy (BOA) as metrics to assess the disparities between predicted and expected pixels:

Fig. 6  Flowchart overview of the entire QC process.
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Where TP, TN, FP, and FN denote true positive, true negative, false positive, and false negative. High PA values 
show that cloud pixels have been effectively masked out (clear-sky conservative approaches). In contrast, high UA 
values indicate that the algorithm is cautious in excluding non-cloud pixels (conservative cloud approaches). High 
BOA values are related to a good balance of false positives and false negatives. We generate a unique set of PA, UA, 
and BOA values for each test IP. Since the PA and UA values are always zero in cloudless IPs, they were replaced 
by NaN to prevent negative bias in the results. Then to report the summarized PA and UA metrics (Table 6), we 
consider the following three scenarios: (i) low values group (PAlow% and UAlow%), which represents the percentage 
of IPs with PA/UA values lower than 0.1; (ii) middle values group (PAmiddle% and UAmiddle%) which represents the 
percentage of IPs between 0.1 and 0.9; (iii) high values group (PAhigh% and UAhigh%) which represents the percent-
age of total IPs higher than 0.9. In contrast to UA and PA, we calculate the median of all IPs for BOA estimates.

Cloud vs non-cloud.  Figure 9 and Table 6a show BOA, PA, and UA density error curves and summary sta-
tistics for the first experiment. Excluding UNetMobV2 results, BOA and PA values exhibited a well-defined bino-
mial error distribution with peak modes of different intensities. We found that the mode of the secondary peak is 
close to 0.5 and 0 for BOA and PA, respectively. Considering the three algorithms with the highest BOA, we found 
that this secondary distribution contains at least 3.86% of the total IPs (see PAlow in Table 6a) and 38.83% of the 
IPs fall between the transition of these two distributions (see PAmiddle in Table 6a). A simple visual examination 
reveals that the omission of small and thin clouds is the primary cause of PAlow values, whereas PAmiddle is mainly 
attributable to cloud borders misinterpretation. Low-thickness clouds, such as cirrus and haze, tend to produce 
more omission errors independent of the cloud detection algorithm. In KD algorithms, this can be explained by 
the simplicity of semitransparent cloud modules, which are just a conservative threshold in the cirrus band (B10). 

Metadata name Description

annotator_name The labeler’s name.

roi_id The region of interest ID.

s2_id_gee Sentinel-2 GEE ID.

s2_id Sentinel-2 product ID.

s2_date Sentinel-2 acquisition date in ISO format.

s2_sen2cor_version Sen2Cor configuration baseline used at the time of the product generation.

s2_fmask_version Fmask version.

s2_s2cloudless_version s2cloudless version.

s2_reflectance_conversion_correction Earth-Sun distance correction factor.

s2_aot_retrieval_accuracy Accuracy of aerosol optical thickness model.

s2_water_vapour_retrieval_accuracy Declared accuracy of the Water Vapor model.

s2_view_off_nadir The angle from the SEN2 sensor between nadir (straight down) and the scene center.

s2_view_sun_azimuth SEN2 sun azimuth angle.

s2_view_sun_elevation SEN2 sun elevation angle.

s1_id SEN1 product ID.

s1_date SEN1 acquisition date in ISO format.

s1_grd_post_processing_software_name Name of the software to pre-processing SEN1.

s1_grd_post_processing_software_version SEN1 software pre-processing version.

s1_slc_processing_facility_name Name of the facility where the processing step was performed.

s1_slc_processing_software_version Software version identification.

s1_radar_coverage percentage of valid SEN1 pixels contained in this IP.

land_cover Predominant land use.

label_type Manual labeling type (i.e., scribble, high-quality or no-annotation).

cloud_coverage Cloud coverage estimated using photo-interpretation. (see Method: Image patches selection 
section).

test Whether the IP is part of training (train) or testing (test) dataset.

difficulty Labeler’s confidence (from 1 to 5) of the manual annotation.Where one indicates near-perfect 
and five denotes potentially significant mistakes.

proj:epsg EPSG code.

proj:geometry Footprint of this IP.

proj:shape Number of pixels for the default IP.

proj:centroid Centroid coordinates of the IP in latitude and longitude.

proj:transform The affine transformation coefficients.

Table 4.  Metadata associated to each image patch.
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Additionally, thin clouds are often overlooked or unfairly reported in most CD datasets62. In the primary distri-
bution, the peak’s mode is close to 0.90 and 0.95 for BOA and PA values, holding 57.31% of the IPs (see PAhigh in 
Table 6a). These results suggest that more than half of the IPs in CloudSEN12 are easily recognizable by automatic 
cloud masking algorithms.

Figure 9 demonstrates furthermore that not all algorithms exhibit the same behavior. Based on the PA and 
UA metrics, we may differentiate between three types of algorithms: quite balanced (UNetMobV2, Fmask, and 
KappaMask L1C), cloud conservative (CD-FCNN, QA60, s2cloudless, and Sen2Cor), and non-cloud conserva-
tive (KappaMask L2A). The first group reports similar values between PAhigh and UAhigh percentages. In contrast, 
the second group exhibits high UA values at the expense of worsening PA. As observed in the PA heatline plot, 
these algorithms show a pronounced bimodal distribution and a wide interquartile range, with more than half 
of the IPs exhibiting PA values below 0.5. Considering the high temporal resolution of SEN2 imagery, it seems 
unsuitable to use cloud-conservative algorithms for CD, except maybe for extremely cloudy regions where each 
clear pixel is critical62. On the other hand, in non-cloud conservative algorithms, over half of all IPs have PA 
values greater than 0.9 (see column PAhigh in Table 6a), but as a result, the UAhigh metric decrease significantly.

Based on BOA estimates (see column BOA in Table 6a), we may conclude that QA60 is the most unreliable 
algorithm, failing to distinguish both cloud and non-cloud pixels. Whereas UNetMobV2 is clearly the best at 
detecting clouds, even semitransparent and small clouds, that other algorithms usually overlook. Although the 
UNetMobV2 and KappaMask are based on a similar network, we observe that KappaMask (in particular version 

Fig. 7  Confusion matrix between high-quality manual labels cast by the CDE group before and after the quality 
control procedure. In the middle of each tile, we show the number of pixels and their ratios with respect to the 
total number of pixels. The true positive class agreement is expressed by the UA and PA at the right and bottom 
of the diagonal tiles.

CloudSEN12 KappaMask Sen2Cor Fmask s2cloudless
CD-
FCNN QA60

0 Clear 1 Clear

4 Vegetation 0 Clear land

0 Clear 0 Clear 0 Clear

2 Dark area pixels 1 Clear water

5 Bare Soils 3 Snow

6 Water

11 Snow

1 Thick cloud 4 Cloud
8 Cloud medium probability

4 Cloud 1 Cloud 1 Cloud 1024 Opaque cloud
9 Cloud high probability

2 Thin cloud 3 Semi-
transparent cloud 10 Thin cirrus 2048 Cirrus cloud

3 Cloud 
shadow 2 Cloud shadow 3 Cloud shadows 2 Cloud shadow

Table 5.  Output correspondence for the available CD algorithms. KappaMask, Sen2Cor, Fmask, S2cloudless, CD-
FCNN and QA60 are mapped respectively to CloudSEN12 semantic categories. Adapted from Sanchez et al.13.
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2A) tends to overestimate clouds under specific land cover types, such as mountains, open/enclosed water bod-
ies, and coastal environments. Considering that the L1C and L2A versions of KappaMask are fine-tuned on a 
relatively small dataset from Northern Europe, it is expected that fine-tuning in CloudSEN12 should lead to 

Fig. 8  Location of the training (grey) and testing (black) regions. The IPs were collocated in a equal-area 
hexagonal discrete grid with a facet size of 140 km.

Fig. 9  BOA, PA, and UA comparison for the CloudSEN12 dataset. The upper figure depicts BOA density estimations 
for all CloudSEN12 IPs high-quality. The colors reflect the tail probability estimated by 0.5-abs(0.5-ecdf), where ecdf 
is the empirical cumulative distribution function. The vertical black lines drawn represent the first, second, and third 
quartiles, respectively. The heatlines in the lower figure shows the PA and UA value distribution. The red stars shows 
the median and the gray lines the 25th and 75th percentiles.
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better results on a global evaluation. Finally, we can conclude that UNetMobV2, Fmask, and KappaMask level 
1C provide the most stable solution for cloud masking, with inaccuracies evenly distributed across different 
cloud types and land covers.

Cloud shadows.  Quantitative evaluations of cloud shadow detection on CloudSEN12 are presented 
in Table 6b. The percentage of IPs with PA values < 0.1 (PAlow) ranges from 64.50% for Sen2Cor to 8.88% for 
UNetMobV2, indicating that a large number of cloud shadow pixels are omitted in all the algorithms. In contrast 
to the cloud/no-cloud experiment, the vast majority of IPs belong to the PAmiddle and UAmiddle groups, except for 
Sen2Cor, which belongs to the PAlow group. The PAhigh percentage value was unexpectedly low, suggesting that 
the ground truth and predicted values rarely collocate perfectly over the same area. Comparing the results of the 
first and second experiments reveals that correctly detecting thick and thin clouds is not guaranteed for achiev-
ing a high PA score in cloud shadows. Besides, our results suggest that DL-based approaches (KappaMask and 
UNetMobV2) outperform KD algorithms (Sen2Cor and Fmask). This seems reasonable, given that KappaMask 
and UNetMobV2 are built on a multi-resolution model. Hence, it is probable that the model learns to identify the 
spatial coherence between clouds and cloud shadows classes.

Valid vs invalid.  In this section, we examine the combined detection of cloud and cloud shadows of five 
automatic CD algorithms (see Table 6c). The reported metrics show a slight decrease in the PAhigh values of Fmask, 
Sen2Cor, and KappaMask L1C models compared to the first experiment. Consequently, the KappaMask L2A 
model significantly lowers its PAhigh value from 65.25 to 57.66%, indicating that this model tends to confuse 
cloud shadow with clear pixels. In contrast, UNetMobV2 slightly increased its reported PAhigh value from 68.60 to 
70.66%. This is explained by the fact that UNetMobV2 tends to err thin cloud pixels with cloud shadows and vice 
versa, and since both belong to the same superclass in this experiment, these inconsistencies are considered true 
positives. Finally, further studies are required to identify the circumstances in which CD algorithms depart most 
from human-level performance to deliver superior automatic CD algorithms.

Discussion of experimental results.  In the three experiments, UNetMobV2 delivers the best balance 
between false negative and false positive errors. These outcomes are expected due to the more extensive and 
diverse image patches utilized during training. However, because deep learning models are prone to handle tar-
get shift poorly, the use of other datasets (e.g., PixBox63 or Hollstein28) might aid in corroborating these find-
ings. Furthermore, the Sen2Cor results are estimated without considering changes between different versions 
(Supplementary Fig. S3). Therefore, the values reported here could vary from those obtained using only the latest 
version (version 2.10, accessed on 9 July 2022). In addition, it is important to note that, in contrast to FMask and 
Sen2Cor, KappaMask and UNetMobV2 results are produced without image boundary data. Therefore, expanding 
the IP size might improve the reported metrics, particularly for the cloud shadows experiment.

Usage Notes
This paper introduces CloudSEN12, a new large dataset for cloud semantic understanding, comprising 49,400 
image patches distributed across all continents except Antarctica. The dataset has a total size of up to 1 TB. 
Nevertheless, we assume most user experiments need only a fraction of CloudSEN12. Therefore, to simplify 
its use, we developed a Python package called cloudsen12 (https://github.com/cloudsen12/cloudsen12). This 
Python package aims to help machine learning and remote sensing practitioners to:

Fig. 10  Folder structure of the CloudSEN12 dataset. level zero: type of manual annotation, level one: 
geographic location (ROI), level 2: IP (for each ROI there are 5 IPs with different amount of cloud coverage), 
level 3: asset level where files in COG formats are stored.
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•	 Query and download cloudSEN12 using a user-friendly interface.
•	 Predict cloud semantics using the trained UNetMobV2 model.

The CloudSEN12 website https://cloudsen12.github.io/ includes tutorials for querying and downloading the 
dataset using the cloudsen12 package. Besides, there are examples of how to train DL models using PyTorch. 
Finally, although CloudSEN12 was initially designed for cloud semantic segmentation, it can be easily adapted 
to tackle other remote sensing problems like SAR-sharpening64, colorizing SAR images65, and SAR-optical image 
matching66. Furthermore, by combining CloudSEN12 with ESA WorldCover 10 m v100, users may train land 
cover models to be aware of cloud contamination.

Code availability
The code to (1) create the raw CloudSEN12 imagery dataset, (2) download assets associated with each ROI, 
(3) create the manual annotations, (4) build and deploy cloudApp, (5) generate automatic cloud masking, (6) 
reproduce all the figures, (7) replicate the technical validation, (8) modify cloudsen12 Python package, and (9) 
train DL models are available in our GitHub organization https://github.com/cloudsen12/.
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