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Leveraging image complexity 
in macro‑level neural network 
design for medical image 
segmentation
Tariq M. Khan 1*, Syed S. Naqvi 2 & Erik Meijering 1

Recent progress in encoder–decoder neural network architecture design has led to significant 
performance improvements in a wide range of medical image segmentation tasks. However, state-
of-the-art networks for a given task may be too computationally demanding to run on affordable 
hardware, and thus users often resort to practical workarounds by modifying various macro-level 
design aspects. Two common examples are downsampling of the input images and reducing the 
network depth or size to meet computer memory constraints. In this paper, we investigate the effects 
of these changes on segmentation performance and show that image complexity can be used as a 
guideline in choosing what is best for a given dataset. We consider four statistical measures to quantify 
image complexity and evaluate their suitability on ten different public datasets. For the purpose of 
our illustrative experiments, we use DeepLabV3+ (deep large-size), M2U-Net (deep lightweight), 
U-Net (shallow large-size), and U-Net Lite (shallow lightweight). Our results suggest that median 
frequency is the best complexity measure when deciding on an acceptable input downsampling factor 
and using a deep versus shallow, large-size versus lightweight network. For high-complexity datasets, 
a lightweight network running on the original images may yield better segmentation results than a 
large-size network running on downsampled images, whereas the opposite may be the case for low-
complexity images.

Medical image segmentation aims to delineate organs or lesions in images from computed tomography (CT), 
magnetic resonance imaging (MRI), optical imaging, and other medical imaging modalities, and serves as a 
basis for subsequent quantitative image analysis in a wide range of clinical and research applications. It is one 
of the most difficult tasks in medical image analysis, as it provides critical information about organ shapes 
and volumes, and medical images can be quite complex1–4. The challenges of obtaining a clinically applicable 
segmentation are multifaceted, including diverse segmentation tasks, different modalities, multiple resolutions, 
and varying anatomical characteristics such as shape, size, location, deformity, and texture. Recent progress in 
encoder-decoder architectures such as U-Net5–8 has improved segmentation performance on many benchmarks. 
However, designing such networks requires significant effort in choosing the right network configuration.

The size of medical imaging datasets is constantly increasing9 and often it is not possible to train deep neural 
network architectures on a single mid-range graphics processing unit (GPU) at the native image resolution. As 
a result, the images are typically downsampled before training, which may cause loss or alteration of fine details 
that are potentially important for diagnosis. Also, in benchmarking studies, downsampling is sometimes used 
for both training and testing of medical image segmentation methods10,11, and thus the results may not be fully 
representative of performance on the native images. Alternatively, shallow networks are often proposed12–14, in 
an attempt to trade off image size and network size to allow training on limited computing hardware. Another 
common practice is iterative downsampling until training of a deeper network of choice becomes feasible on 
given hardware. While these approaches are understandable from a practical standpoint, we argue that the 
optimal choice of input size and network depth is inherently dependent upon the characteristics of the data and 
the segmentation task.

Recent methods in medical image segmentation adopt neural architecture search (NAS)15–20 to determine 
the best suitable network architecture for the task at hand. However, a computationally expensive search has 
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to be performed for each new dataset and task, and the resulting architecture may not generalize well to other 
datasets and tasks. Here again, the importance of the information content of the data is often ignored. We argue 
that we need to take a step back and base the macro-level design choices of neural networks, such as the amount 
of downsampling or the depth of the network, on the information complexity of the data.

Our objective in this work is to employ measures of image complexity to guide macro-level neural net-
work design for medical image segmentation. We focus specifically on balancing input image downsampling 
and network depth/size for optimal segmentation results. To this end, we consider four statistical complexity 
measures: delentropy21, mean frequency22, median frequency22, and perimetric complexity23. Delentropy and 
perimetric complexity have been used previously as measures of data complexity in autonomous driving24 and 
binary pattern recognition23, respectively, while mean and median frequency have been used in electromyogra-
phy signal identification22. In this paper, they are used for the first time as complexity measures for predicting 
a suitable input image downsampling factor and selecting a shallow versus deep, lightweight versus large-size 
neural network.

In general, the architectural design choices for semantic segmentation networks boil down to either model 
scaling25 (in the pursuit of performance) leading to deep networks, or model compression26 (for embedded and 
edge applications) resulting in shallow counterparts. The intended applications and corresponding hardware 
resources impose demands and limits on the number of trainable network parameters, and determine whether 
to use a computationally heavy or lightweight network. Based on model scaling and model compression, four 
design combinations, including deep large-size, deep lightweight, shallow large-size, and shallow lightweight 
networks are included in our experiments (Table 1). Here, networks with more versus less than 80 layers are 
categorized as deep versus shallow, and networks with more versus less than 3 million parameters are categorized 
as large-size versus lightweight. Based on these criteria, four existing state-of-the-art networks are selected for 
the comparative analysis. Specifically, DeepLabV3+27 is used as a deep large-size network, M2U-Net28 as a deep 
lightweight network, an adapted U-Net5 as a shallow large-size network, and U-Net Lite as a shallow lightweight 
network. To find the best complexity measure in selecting a suitable network, we use several data fitting models, 
including linear and polynomial fitting such as linear regression R2 , adjusted R2 , root mean square error (RMSE), 
mean absolute error (MAE), Akaike information criterion (AIC), and corrected AIC.

The aim of this work is to take advantage of image complexity in the design of macro-level neural networks 
for medical image segmentation. To demonstrate the efficacy and wide applicability of image complexity analysis 
for neural network based medical image segmentation, we present experiments on 10 different datasets from 
public challenges. The results confirm that the proposed complexity measures can indeed aid in making the 
said macro-level design choices and that median frequency is the best measure for this purpose. More specifi-
cally, the results show that input image size is important for datasets with high complexity and downsampling 
negatively affects segmentation performance in such cases, whereas downsampling does not significantly affect 
performance for datasets having low complexity. Also, in the case of high-complexity datasets and computational 
constraints, a shallow network taking the original images as input is to be preferred, whereas for low-complexity 
cases competitive performance with the same computational constraints is achievable by using downsampling 
and a deep network topology.

Complexity measures
It has long been known that data complexity measures can be used to determine the intrinsic difficulty of a clas-
sification task on a given dataset29. In this study we consider four important complexity measures and investigate 
their suitability for medical image segmentation tasks.

Delentropy.  The standard Shannon entropy of a gray-scale image is defined as21:

where N is the number of gray levels and pi is the probability of a pixel having gray level i. Delentropy (DE) is 
computed similarly, but using a probability density function known as deldensity21. DE is different from Shannon 
entropy, which looks only at individual pixel values. Instead, DE considers the underlying spatial image structure 
and pixel co-occurrence through the deldensity, which is based on gradient vectors in the image. Specifically, the 
two-dimensional probability density function (normalized joint histogram) pi,j is computed as:

(1)H = −

N−1∑

i=0

pi log pi ,

Table 1.   Selection criteria used in this study for each of the four distinct categories of networks.

Category Criteria Network Layers Parameters

Deep large-size > 80 layers & >3M parameters DeepLabV3+ 100 20 M

Deep lightweight > 80 layers & <3M parameters M2U-Net 155 0.55 M

Shallow large-size < 80 layers & >3M parameters U-Net 58 30 M

Shallow lightweight < 80 layers & <3M parameters U-Net Lite 46 0.28 M
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where dx and dy denote the derivative kernels in the x and y direction, δ is the Kronecker delta to describe the 
binning process in histogram generation, and W and H are the image width and height, respectively. From this, 
DE is computed as:

where I and J are the number of bins (discrete cells) in the two dimensions of the probability density function. 
The 12 factor in (3) reflects the Papoulis generalized sampling, which halves the entropy rate21. Discrete 2 × 2 ker-
nels are used as dx and dy in our implementation to estimate the x and y derivatives by taking finite differences.

Mean frequency.  The mean frequency (MNF) of a signal is computed as the sum of the product of the 
power spectrum and frequency divided by the total sum of the power spectrum22:

where Pi is the value of the power spectrum at frequency bin i, fi is the actual frequency of that bin, and M is 
the total number of frequency bins. The power spectrum is computed as the squared amplitude of the Fourier 
transform. Prior to power spectrum estimation, the image is windowed with a rectangular window of length 
determined by the dimensions of the image. The MNF can be considered as the frequency centroid or the spectral 
center of gravity and is also called the mean power frequency and mean spectral frequency in several works22. 
For an extension to the 2D image domain, the 1D formula (4) is first applied to each column of the image inde-
pendently to obtain its mean frequency, and subsequently to the resulting vector of mean frequencies.

Median frequency.  The median frequency (MDF) of a signal is the frequency at which the power spectrum 
of the signal is divided into two regions with equal integrated power22. In other words, at the MDF = fj the fol-
lowing equality holds:

Similar to MNF, the MDF of a 2D image is computed by first applying the 1D procedure to each column inde-
pendently, and then to the resulting vector. The power within each bin is computed by rectangular integration. 
Afterwards, the MDF is determined by searching for the bin j that satisfies the condition (5).

Perimetric complexity.  The perimetric complexity (PC) is a measure of the complexity of binary images. 
The general concept goes back to the early days of vision research23 where this measure, originally called disper-
sion, was used to describe the perceptual complexity of visual shapes. It is defined as:

where P represents the perimeter of the foreground and A is the foreground area. In our study, this measure is 
computed from the annotation masks of the gray-scale images.

Segmentation networks
To investigate the interplay between image complexity, input downsampling, and network depth and size, we 
considered four possible network design options: deep large-size (DeepLabV3+), deep lightweight (M2UNet), 
shallow large-size (U-Net), and shallow lightweight (U-Net Lite).

Deep large‑size network.  DeepLabV3+27 was used as a deep large-size network. Consisting of 100 layers 
and 20 million trainable parameters, it enhances DeepLabV3 by including a simple yet effective decoder module 
to refine segmentation results, particularly along object boundaries27. We built a DeepLabV3+ network using 
ResNet-18 as the base network.

Deep lightweight network.  M2U-Net28 was employed as a representative a deep lightweight network. 
It uses a new encoder-decoder architecture based on the U-Net and consists of 155 layers and 0.55 million 
trainable parameters. Specifically, it incorporates MobileNetV230 pretrained components in the encoder and 
novel contractive bottleneck blocks in the decoder, which, when combined with bilinear upsampling, drastically 
reduces the parameter count to 0.55 million compared to about 30 million in the original U-Net5.

(2)pi,j =
1

4WH

W−1∑

w=0

H−1∑

h=0

δi,dx(w,h)δj,dy(w,h),

(3)DE = −

1

2

J−1∑

j=0

I−1∑

i=0

pi,j log2 pi,j ,

(4)MNF =

M∑
i=1

fiPi

M∑
i=1

Pi

,

(5)
j∑

i=1

Pi =

M∑

i=j

Pi .

(6)PC =

P2

4πA
,
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Shallow large‑size network.  The U-Net5 architecture was adopted as a shallow large-size network. It 
is made up of two subnetworks, namely an encoder and a decoder, which are linked by a bridge section. The 
encoder and decoder subnetworks are divided into several stages, the number of which determines the depth 
of the subnetworks. In our experiments, the encoder depth was set to 4 stages to make the U-Net a shallow net-
work, totalling 58 layers and about 30 million trainable parameters. The U-Net encoder stages consist of two sets 
of convolutional and rectified linear unit (ReLU) layers, followed by a 2-by-2 max pooling layer. The decoder 
stages consist of an upsampling transposed convolutional layer followed by two sets of convolutional and ReLU 
layers. For the convolutional layers, we used feature map depths of 64, 128, 256, 512 for the four stages, respec-
tively, and 1024 for the bridge section.

Shallow lightweight network.  For a shallow lightweight network we designed U-Net Lite based on the 
U-Net architecture. In U-Net Lite, we reduced the encoder depth of U-Net to 3 stages. We also used a reduced 
number of convolutional filters in each stage to, respectively, 8, 16, and 32. Together, these modifications reduced 
the number of layers to 46 and the number of trainable parameters to only 0.28 million.

Experimental results
Two experiments were performed to test the hypothesis that image complexity can and should be taken into 
account in making macro-level neural network design choices for medical image segmentation. In the following 
sections we present the network training approach, the used public datasets, segmentation performance metrics, 
regression analysis performance metrics, and the results of the two experiments.

Network training.  All experiments were carried out on an Intel(R) Core(TM) i7-8700 CPU with 64 GB 
RAM and a relatively low/mid-range GeForce GTX1080Ti GPU. Network training was done with adaptive 
moment estimation (Adam) and a fixed learning rate of 1e-3. After initial experimentation, the maximum num-
ber of epochs was set to 15 with a batch size of 8 to match the hardware constraints. Gradient clipping was 
employed based on the global l2-norm with a gradient threshold of 331. Weighted cross-entropy loss was used as 
the objective function for training all models in our experiments. To calculate the class association weights in the 
loss, we used median frequency balancing32.

Public datasets.  We used 10 publicly available datasets (Table 2) representing a range of image complexities 
(Table 3). We confirm that all experiments were performed in accordance with relevant guidelines and regula-
tions.

STARE.  The STARE (Structured Analysis of the Retina) dataset33 consists of 20 color retinal fundus images 
acquired with a field of view (FOV) of 35◦ and size 700×605 pixels. There are various pathologies in 10 of the 
20 images. For each of the 20 images, two expert manual segmentation maps are available of the retinal blood 
vessels, and we used the first of these as the ground truth. Following others34,35, we used 10 for training and ten 
for testing.

DRIVE.  The DRIVE (Digital Retinal Images for Vessel Extraction) dataset36 is from a diabetic retinopathy 
screening program. It contains 20 color images for training and 20 for testing with a size of 584×565 pixels 
and covers a wide age range of diabetic patients. Seven of the 40 images show small signs of mild early diabetic 
retinopathy. For each of the 40 images, an expert manual segmentation mask is available for use as ground truth.

CHASE‑DB1.  The CHASE-DB1 dataset37 (a subset of the Child Heart and Health Study in England) includes 
28 color images of children. Each image is captured with a 30◦ FOV centered on the optic disc and has a size of 
999×960 pixels. As ground truth, two different expert manual segmentation maps are available, of which we used 

Table 2.   Public datasets used in the experiments.

Dataset Organ Number of images Image size (Pixels) Training Testing

STARE Vessel 20 700×605 10 10

DRIVE Vessel 40 584×565 20 20

CHASE-DB1 Vessel 28 999×960 28 8

MC Chest 138 4020×4892, 4892×4020 100 38

PH2 Skin 200 768×560 ISIC-2016 200

ISIC-2016 Skin 900 576-4288×542-2848 900 PH2

DRISHTI-OC Optic cup 101 2896×1944 50 51

DRISHTI-OD Optic disc 101 2896×1944 50 51

PROMISE12 Prostate 274 512×512 200 74

BCSS Breast 151 1500-3000×2000-4000 100 51



5

Vol.:(0123456789)

Scientific Reports |        (2022) 12:22286  | https://doi.org/10.1038/s41598-022-26482-7

www.nature.com/scientificreports/

the first for our experiments. Since there are no specific training or testing subsets, following others11,38–40 we 
used the first 20 images for training and the remaining 8 for testing.

MC.  The Montgomery County (MC) chest X-ray dataset41 contains 138 frontal chest X-ray images obtained 
from a tuberculosis research program and is often used as a benchmark for lung segmentation. It includes 58 
tuberculosis cases and 80 normal cases with a variety of abnormalities and for which expert manual segmenta-
tions are available. The images are relatively large, either 4020× 4892 or 4892× 4020 pixels. Following others42, 
we selected 100 images for training and the remaining 38 for testing.

PH2.  The PH2 dataset43 (named after its provider, the Hospital Pedro Hispano in Matosinhos, Portugal) 
includes 200 dermoscopic images, 768× 560 pixels each, of melanocytic skin lesions with expert annotation to 
be used as ground truth in evaluating both segmentation and classification methods. Following experimental 
protocols of others44–47, we used all images in this dataset for testing, while training was done on the ISIC-2016 
training images.

Table 3.   Effect of input image downsampling on segmentation performance for the considered datasets. The 
proposed complexity measures computed on the original images are also reported.

Downsampling Se Sp A BA D J E DE MNF MDF PC

STARE 0.2105 0.3725 0.1796 0.1971

2 0.8741 0.9915 0.9826 0.9328 0.8833 0.7913 0.2087

3 0.8086 0.9872 0.9738 0.8979 0.8226 0.6991 0.3009

4 0.7586 0.9868 0.9696 0.8727 0.7895 0.6527 0.3473

DRIVE 0.2821 0.4632 0.2301 0.2253

2 0.8077 0.9872 0.9715 0.8975 0.8317 0.7121 0.2879

3 0.6931 0.9799 0.9549 0.8365 0.7282 0.5731 0.4269

4 0.6242 0.9767 0.9460 0.8005 0.6683 0.5027 0.4973

CHASE-DB1 0.1869 0.3961 0.1967 0.2670

2 0.8785 0.9911 0.9837 0.9355 0.8755 0.7788 0.2212

3 0.8280 0.9872 0.9769 0.9076 0.8233 0.7002 0.2998

4 0.7655 0.9866 0.9723 0.8761 0.7818 0.6427 0.3573

MC 0.0594 0.0367 0.0166 0.0016

2 0.9996 0.9997 0.9997 0.9996 0.9993 0.9986 0.0014

3 0.9991 0.9996 0.9995 0.9991 0.9990 0.9980 0.0020

4 0.9990 0.9995 0.9994 0.9990 0.9987 0.9975 0.0025

PH2 0.0248 0.0181 0.0049 0.0014

2 0.9985 0.9975 0.9984 0.9985 0.9965 0.9931 0.0069

3 0.9966 0.9974 0.9980 0.9966 0.9955 0.9910 0.0090

4 0.9958 0.9962 0.9971 0.9958 0.9936 0.9873 0.0127

ISIC-2016 0.0093 0.0106 0.0017 0.0128

2 0.9979 0.9994 0.9995 0.9979 0.9976 0.9953 0.0047

3 0.9968 0.9990 0.9992 0.9968 0.9962 0.9925 0.0075

4 0.9964 0.9990 0.9991 0.9964 0.9961 0.9922 0.0078

DRISHTI-OC 0.0090 0.0128 0.0072 0.0029

2 0.9943 1.0000 0.9990 0.9971 0.9961 0.9922 0.0078

3 0.9943 0.9999 0.9998 0.9971 0.9950 0.9901 0.0099

4 0.9901 0.9999 0.9997 0.9950 0.9918 0.9838 0.0162

DRISHTI-OD 0.0117 0.0104 0.0045 0.0013

2 0.9957 1.0000 0.9998 0.9978 0.9972 0.9943 0.0057

3 0.9955 0.9999 0.9998 0.9977 0.9963 0.9925 0.0075

4 0.9924 0.9998 0.9996 0.9961 0.9939 0.9880 0.0120

PROMISE12 0.1104 0.0469 0.0175 0.0035

2 0.9623 0.9988 0.9978 0.9805 0.9654 0.9336 0.0664

3 0.9453 0.9988 0.9969 0.9722 0.9568 0.9178 0.0822

4 0.9398 0.9985 0.9963 0.9692 0.9499 0.9054 0.0946

BCSS 0.0282 0.0163 0.0018 0.0085

2 0.9950 0.9988 0.9977 0.9969 0.9963 0.9927 0.0073

3 0.9944 0.9971 0.9966 0.9957 0.9946 0.9894 0.0106

4 0.9914 0.9964 0.9953 0.9939 0.9924 0.9851 0.0149
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ISIC‑2016.  The ISIC-2016 dataset48 (named after the International Skin Imaging Collaboration who hosted 
the challenge at the 2016 IEEE International Symposium on Biomedical Imaging where this dataset was used) 
contains 900 dermoscopic training images of different sizes, from as small as 576× 768 or 718× 542 pixels to as 
large as 4288× 2848 pixels, with expert manual annotation for benchmarking melanoma segmentation, pattern 
detection, and classification methods. For testing, we used the PH2 images.

DRISHTI‑OC.  The DRISHTI-GS1 dataset49 includes 101 retinal images for glaucoma assessment. The images 
were captured with a 30◦ FOV centered on the optic disc (OD) and are of size 2896×1944 pixels. Average bounda-
ries of both the optic cup (OC) and the OD in all images were obtained from manual annotations by four 
experts. The dataset is divided into 50 images for training and 51 for testing. We refer to the OC boundaries as 
the DRISHTI-OC dataset.

DRISHTI‑OD.  The DRISHTI-OD dataset refers to average boundaries of the OD regions in the 101 retinal 
images of the DRISHTI-GS1 dataset49 described above.

PROMISE12.  The PROMISE12 (Prostate MR Image Segmentation 2012) dataset50 contains three-dimensional 
(3D) transversal T2-weighted magnetic resonance (MR) images of 50 patients scanned at various centers using 
various MRI scanners and imaging protocols. The size of the images varies, from 256×256 pixels, to 320×320, 
384×384, and 512×512 pixels. In our experiments we used only images of patients 0-12, all of size 512×512 pixels, 
of which we used 200 for training and 74 for testing51.

BCSS.  The BCSS (Breast Cancer Semantic Segmentation) dataset52 contains more than 20,000 manually seg-
mented tissue regions in 151 whole-slide breast-cancer images from The Cancer Genome Atlas (TCGA). The 
images vary in size, 1500-3000×2000-4000 pixels, and were annotated by 25 participants ranging in experi-
ence from senior pathologists to medical students. Following others53, we used 100 images for training and the 
remaining 51 for testing.

Segmentation performance metrics.  To quantify segmentation performance, we used seven popular 
metrics54,55. Denoting the segmented image by S and the corresponding ground-truth image by G, each having N 
pixels i = 1 . . .N with a value either 0 (negative = background) or 1 (positive = foreground), we first computed 
the numbers of true-positive (TP) pixels:

true-negative (TN) pixels:

false-positive (FP) pixels:

and false-negative (FN) pixels:

from which we obtained the sensitivity (Se), also known as the recall (R):

the specificity (Sp):

the accuracy (A):

the balance accuracy (BA):

(7)TP =

N∑

i=1

Si · Gi ,

(8)TN =

N∑

i=1

(1− Si) · (1− Gi),

(9)FP =

N∑

i=1

Si · (1− Gi),

(10)FN =

N∑

i=1

(1− Si) · Gi ,

(11)Se = R =

TP

TP+ FN
,

(12)Sp =

TN

TN+ FP
,

(13)A =

TP+ TN

TP+ TN+ FP+ FN
,
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the Dice (D) coefficient, which is equivalent to the F1-score:

the Jaccard (J) coefficient:

and the overlap error (E):

The values of all metrics are in the range [0, 1], where 0 means worst and 1 means best performance, except for 
E, where 0 means best and 1 means worst performance.

Regression analysis performance metrics.  To evaluate the performance of the linear regression mod-
els, we used the most common regression performance metrics, including the coefficient of determination R2 , 
adjusted R2 , RMSE, MAE, and important unbiased metrics, namely AIC and its corrected version AICc56.

The first is a statistical measure of proportional variance in the outcome that is explained by the independent 
variables57 and is computed as:

with the total sum of squares (TSS)

and the residual sum of squares (RSS)

computed from the observed values yi and the values mi predicted by the model57. The regression model having a 
higher R2 value is considered to be better. To account for the numbers of independent variables, k, and observa-
tions, n, the adjusted R2 ( AR2 ) is also employed58:

To measure the average error of the models in predicting the observations, we computed the RMSE, defined as:

as well as the MAE, defined as:

Finally, to get an unbiased estimate of a model’s performance, we computed the AIC metric:

and because our sample size is relatively small ( n = 10 datasets), we also employed the AICc metric:

Experiment I: image complexity as a guide for input downsampling.  This experiment was 
designed to investigate the effect of input downsampling on medical image segmentation performance and how 
the proposed complexity measures predict the corresponding information loss. We considered three downsam-

(14)BA =

Se+ Sp

2
,

(15)D = F1 =

2|S ∩ G|

|S| + |G|
=

2TP

2TP+ FP+ FN
,

(16)J =
|S ∩ G|

|S ∪ G|
=

TP

TP+ FP+ FN
,

(17)E = 1− J =
FP+ FN

TP+ FP+ FN
.

(18)R2
= 1−

RSS

TSS

(19)TSS =

n∑

i=1

(
yi − ȳ

)2

(20)RSS =

n∑

i=1

(
yi −mi

)2

(21)AR2
= 1−

(
1− R2

)
(n− 1)

(n− k − 1)
.

(22)RMSE =

√√√√ 1

n

n∑

i=1

(
yi −mi

)2
,

(23)MAE =

1

n

n∑

i=1

∣∣yi −mi

∣∣.

(24)AIC = n log

(
RSS

n

)
+ 2k,

(25)AICc = AIC+

2k2 + 2k

n− k − 1
.
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pling factors: 2, 3, and 4, which are typically sufficient to reduce the images to a workable size for most networks. 
For this experiment, we did not employ the networks, as the goal was to study the effect of input downsampling 
alone. To this end, the binary annotation masks of the images of all considered datasets were downsampled by 
a given factor, and then upsampled with the same factor to restore their size for comparison with the original 
masks using the segmentation performance metrics (Section  "Segmentation performance metrics"). Bilinear 
interpolation was employed in our implementation for both downsampling and upsampling. To minimize alias-
ing artifacts in the reconstructions, we removed all frequency components above the resampling Nyquist fre-
quency using a low-pass filter59 before downsampling, and after upsampling we applied optimal thresholding to 
get binary masks maximizing the Dice/F1-measure60. From the results of this experiment (Table 3) we observe 
two important trends: (1) the segmentation quality is consistently decreasing with increasing downsampling, 
and (2) this effect is less severe for datasets with relatively low image complexity. These trends clearly support 
our hypothesis that the proposed complexity measures are indicative of the information loss caused by down-
sampling and therefore can be employed as a guideline to determine the amount of acceptable downsampling.

To compare the predictive power of the different complexity measures on segmentation performance, we 
performed linear regression for the two most common segmentation performance metrics: Dice (F1) and Jac-
card (expressed via E). The results (Fig. 1) indicate that the MDF measure outperforms the other measures in 
predicting segmentation quality, as confirmed by its highest R2 values. As both MNF and MDF are higher than 
DE and PC, it can be concluded that frequency information is most predictive of segmentation performance in 
the datasets considered in our experiments. The other measures capture different types of complexity and may 
prove useful in other medical image segmentation tasks.

To evaluate the trade-off between the goodness-of-fit and model complexity in terms of the number of 
independent variables (or the degree of freedom), we compared the regression performance of models by vary-
ing the degree of freedom (DoF) and using the regression performance metrics (Section "Regression analysis 
performance metrics"). The metrics were computed for the three considered downsampling factors: 2, 3, and 4. 
The DoF is the number of independent variables in the polynomial function (or the degree of the polynomial) 
that best fits the data. In our experiments, models with DoF > 5 did not improve the regression performance in 
general (Table 4). More specifically, while performance further improved in terms of the other metrics, according 
to the AICc metric optimal performance was reached for DoF = 4 or 5 in most cases. Given our small sample 
size, we considered AICc to be decisive owing to its unbiased nature.

Figure 1.   Comparison of complexity measures in terms of their predictive performance.
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Measure DoF R
2

AR
2 RMSE MAE AIC AICc

Downsampled by 2

DE

1 0.964387 0.958452 0.021752 0.016354 − 59.2487 −  58.5821

2 0.964775 0.950684 0.021634 0.016246 − 57.3362 − 54.9362

3 0.987878 0.978787 0.012691 0.008659 − 63.8702 − 57.8702

4 0.994052 0.986121 0.008890 0.007013 − 67.5658 − 54.2325

5 0.999930 0.999754 0.000967 0.000626 − 101.062 − 71.0617

6 0.999958 0.999707 0.000746 0.000399 − 103.223 − 19.2228

MNF

1 0.992983 0.991814 0.009655 0.008384 − 72.2439 − 71.5772

2 0.998666 0.998133 0.004209 0.003328 − 83.5268 − 81.1268

3 0.999446 0.999030 0.002714 0.002272 − 88.5520 − 82.5520

4 0.999833 0.999610 0.001490 0.001202 − 96.1454 − 82.8121

5 0.999972 0.999903 0.000606 0.000369 − 108.533 − 78.5332

6 0.999992 0.999942 0.000331 0.000177 − 116.238 -32.2378

MDF

1 0.993635 0.992574 0.009196 0.007828 − 73.0241 − 72.3574

2 0.997561 0.996585 0.005693 0.004479 − 78.6963 − 76.2963

3 0.998331 0.997079 0.004709 0.003594 − 79.7330 − 73.7330

4 0.999695 0.999288 0.002014 0.001472 − 91.3206 − 77.9873

5 0.999989 0.999961 0.000382 0.000236 − 115.902 − 85.9019

6 0.999996 0.999971 0.000235 0.000126 − 121.711 -37.7109

PC

1 0.942353 0.932746 0.027675 0.016837 − 55.3957 − 54.7290

2 0.966339 0.952875 0.021148 0.015842 − 57.6996 − 55.2996

3 0.982266 0.968966 0.015350 0.011684 − 60.8266 − 54.8266

4 0.999788 0.999506 0.001677 0.001038 − 94.2488 − 80.9155

5 0.999806 0.999322 0.001604 0.000961 − 92.9601 − 62.9601

6 0.999966 0.999763 0.000670 0.000377 − 104.927 -20.9274

Downsampled by 3

DE

1 0.971305 0.966522 0.028192 0.020556 − 55.0995 − 54.4329

2 0.974376 0.964127 0.026640 0.019587 − 54.0052 − 51.6052

3 0.992955 0.987671 0.013969 0.009600 − 62.3344 − 56.3344

4 0.996215 0.991169 0.010238 0.008100 − 65.3059 − 51.9726

5 0.999964 0.999875 0.000994 0.000635 − 100.623 − 70.6233

6 0.999989 0.999924 0.000548 0.000293 − 108.159 -24.1591

MNF

1 0.985851 0.983493 0.019796 0.015826 − 60.7561 -60.0894

2 0.996766 0.995473 0.009464 0.006754 − 70.5639 − 68.1639

3 0.996932 0.994631 0.009218 0.006069 − 68.9855 − 62.9855

4 0.999801 0.999537 0.002345 0.001862 − 88.8881 − 75.5548

5 0.999991 0.999970 0.000486 0.000303 − 112.080 − 82.0802

6 1.000000 0.999999 0.000008 0.000004 − 139.762 − 55.7619

MDF

1 0.986262 0.983972 0.019507 0.015018 − 60.9920 − 60.3254

2 0.994309 0.992032 0.012555 0.009130 − 66.0420 − 63.6420

3 0.994451 0.990290 0.012397 0.008372 − 64.2447 − 58.2447

4 0.999674 0.999240 0.003003 0.002189 − 84.9303 − 71.5970

5 0.999988 0.999958 0.000574 0.000346 − 109.406 − 79.4060

6 0.999996 0.999975 0.000314 0.000169 − 117.049 − 33.0493

PC

1 0.918892 0.905374 0.047397 0.027916 − 46.7871 − 46.1204

2 0.954481 0.936273 0.035507 0.026147 − 49.4083 − 47.0083

3 0.974561 0.955482 0.026544 0.019937 − 52.0630 − 46.0630

4 0.999846 0.999641 0.002064 0.001275 − 90.9320 − 77.5987

5 0.999852 0.999480 0.002028 0.001215 − 89.2110 − 59.2110

6 0.999974 0.999819 0.000847 0.000476 − 101.187 − 17.1869

Downsampled by 4

Continued



10

Vol:.(1234567890)

Scientific Reports |        (2022) 12:22286  | https://doi.org/10.1038/s41598-022-26482-7

www.nature.com/scientificreports/

To reaffirm the predictive power of the proposed image complexity measures for segmentation performance, 
we trained U-Net (Section "Segmentation networks") with the original images and separately with downsampled 
images (factors 2, 3, 4) from two relatively high-complexity datasets (DRIVE and CHASE-DB1) and two relatively 
low-complexity datasets (DRISHTI-OC and DRISHTI-OD). From the quantitative results (Table 5) we again 
observe that segmentation performance consistently decreases with increasing downsampling factor, and the 
loss is more pronounced for the high-complexity datasets. For example, in this experiment the performance loss 
was 17% in J, with an increase of 41% in E, for a downsampling factor of 4 on the DRIVE dataset. Similarly, a 
decrease of 9% in J and an increase of 23% in E was seen in the CHASE-DB1 dataset for the same downsampling 
factor. By contrast, as expected, no noteworthy loss in segmentation performance was observed in either of the 
DRISHTI datasets, due to their low complexity. This is confirmed by visual inspection (Figs. 2 and 3). We also 
notice that with increasing downsampling, the number of false negatives increased more than the number of 
false positives in the DRIVE dataset. This was to be expected, as it is increasingly harder for the deep networks to 
capture the tiny vessels, which tend to get lost in the downsampling process. In the DRISHTI dataset, on the other 
hand, the loss due to downsampling is negligible. Further segmentation results for the DRIVE dataset (Fig. 4) 
and DRISHTI-OC dataset (Fig. 5) illustrate the performance of the four different networks. The percentages 
of foreground (FG) and background (BG) pixels (Table 5), which represent the class imbalance in the datasets, 
are not affected by image downsampling, as expected. Plotting the class imbalance of the datasets against the 
proposed complexity measures showed no direct relationship between these variables (Fig. 6).

Experiment II: network selection based on image complexity.  In this experiment, we investigated 
the suitability of image complexity as a guideline in choosing a deep large-size, deep lightweight, shallow large-
size, or shallow lightweight network for segmentation. The assumption here was that training a deep network 
on moderate hardware would necessitate downsampling of the input images. To evaluate the impact of this, we 
used the DRIVE dataset, which has high image complexity, and a combination of datasets, ISIC-2016 (training 
set) and PH2 (test set), which have low complexity. Since we learned from the previous experiment (Table 5) that 
performance on the DRIVE dataset decreases as the amount of downsampling increases, in the second experi-
ment we examined the impact of formidable downsampling (factor 4) on both high and low-complexity sets on 
the performance of the considered networks.

The experimental results (Table 6) show that when image complexity is high, downsampling by 4 has a nega-
tive impact on the performance of all four networks. For example, for DeepLabV3+, the J for the downsampled 
data was about 18% lower than the original data, and E about 36% higher. We can see that on the high-complexity 
dataset DRIVE, the shallow large-size U-Net performed better than the other three networks. The shallow 

Measure DoF R
2

AR
2 RMSE MAE AIC AICc

DE

1 0.968211 0.962913 0.034523 0.025492 − 51.8580 − 51.1913

2 0.970937 0.959316 0.033010 0.024596 − 50.5752 − 48.1752

3 0.990215 0.982877 0.019153 0.013639 − 57.2843 − 51.2843

4 0.994972 0.988268 0.013730 0.010878 − 60.6105 − 47.2772

5 0.999867 0.999536 0.002231 0.001323 − 87.6878 − 57.6878

6 0.999885 0.999193 0.002079 0.001114 − 86.8103 − 2.81032

MNF

1 0.986812 0.984614 0.022236 0.018458 − 58.8966 − 58.2299

2 0.997850 0.996990 0.008978 0.006973 − 71.4084 − 69.0084

3 0.998171 0.996799 0.008281 0.006226 − 70.7005 − 64.7005

4 0.999691 0.999278 0.003406 0.002665 − 82.9140 − 69.5806

5 0.999909 0.999682 0.001847 0.001183 − 90.7113 − 60.7113

6 0.999958 0.999709 0.001248 0.000668 − 94.9813 − 10.9813

MDF

1 0.987747 0.985705 0.021433 0.017538 − 59.4849 − 58.8182

2 0.995947 0.994325 0.012328 0.009407 − 66.3344 − 63.9344

3 0.996180 0.993315 0.011968 0.008978 − 64.8085 − 58.8085

4 0.999414 0.998633 0.004686 0.003487 − 77.8094 − 64.4761

5 0.999990 0.999964 0.000622 0.000438 − 108.118 − 78.1177

6 1.000000 1.000000 6.54E-06 3.52E-06 − 179.008 − 95.0082

PC

1 0.924150 0.911508 0.053327 0.032039 − 44.9009 − 44.2342

2 0.954159 0.935823 0.041457 0.030712 − 46.9295 − 44.5295

3 0.974786 0.955876 0.030746 0.023560 − 49.7118 − 43.7118

4 0.999678 0.999250 0.003473 0.002166 − 82.6055 − 69.2721

5 0.999721 0.999023 0.003235 0.001967 − 81.7402 − 51.7402

6 0.999977 0.999836 0.000937 0.000526 − 99.5720 − 15.5720

Table 4.   Performance comparison of image complexity measures in terms of regression performance in 
predicting the error measure E for various downsampling factors and degrees of freedom (DoF) of the 
regression model based on the results of all datasets. Best values are indicated in bold.
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lightweight U-Net Lite, which has nearly 100 times fewer parameters than the U-Net, performed well too. Thus, 
we can conclude that shallow networks are best suited for high-complexity datasets in general. For high-resolu-
tion, high-complexity datasets, a shallow lightweight network is most practical, as it is computationally faster.

We also observe that when image complexity is low, each of the four networks performed comparably on the 
original and the downsampled images (Table 6). For example, for DeepLabV3+, the J for the downsampled data 
was only about 1% lower than the original data, and E only about 5% higher. Overall, this network performed 
better than the other three, and the deep lightweight M2U-Net performed better than the two shallow networks. 
The J for M2U-Net was only about 3% lower than for DeepLabV3+, and E around 15% higher, while the former 
network has 36 times fewer trainable parameters. Our results advocate the choice of deep networks for low-
complexity datasets. Moreover, a deep lightweight alternative achieves competitive performance when dealing 
with high-resolution, low-complexity datasets, but at considerably lower computational cost.

Network design framework for medical image segmentation.  Networks for medical image seg-
mentation often have a large number of model parameters and require multi-GPU compute resources for train-
ing. Leaderboard methods in polyp, retinal vessel, and skin lesion segmentation benchmarks are a few rep-
resentative examples45,61,62. Image downsampling is common in applying these methods in order to offset the 
computational load during training20,61. Lightweight approaches for medical and generic image segmentation 
targeted at embedded platforms either predetermine the architectural choices28 or iteratively search for topol-
ogies to minimize some objective13. Common to all these approaches is dataset (task) independent network 
design. In this work, we recommend that the complexity of the dataset be an important factor in macro-level 
network design, specifically the depth of the network and the number of feature channels per layer.

Based on our experiments, we put forward a generic framework for designing neural networks for medical 
image segmentation (Fig. 7). The macro-level design choices include the number of layers in the network (deep 
versus shallow) and the representational power within each layer (large-size versus lightweight). Depending on 
the complexity and resolution of the dataset, one of the four macro-level design combinations can be adopted for 
network design. We note that image complexity guides the choice between deep and shallow networks, whereas 
the resolution is important in deciding between lightweight and large-size networks. Categorically, for high-
complexity datasets, shallow architectures are a fitting choice, whereas deep networks are more appropriate for 
low-complexity datasets. We demonstrate the efficacy of the proposed framework by mapping ten benchmark 
medical datasets to network design choices based on their complexity and resolution. These mappings are sup-
ported by the quantitative and qualitative results of Experiment II (Section 4.6). Our complexity-based frame-
work can be employed to guide network design for any new medical image segmentation benchmark or challenge.

Table 5.   Effect of input image downsampling on the segmentation performance of U-Net compared to no 
downsampling for selected high- and low-complexity datasets.

Image size Se Sp A BA D J E %FG %BG

DRIVE ( MDF = 0.2301)

Original 0.8312 0.9828 0.9693 0.9069 0.8257 0.7036 0.2964 8.6947 91.3053

Downsampled by 2 0.8018 0.9801 0.9551 0.8910 0.8011 0.6521 0.3479 8.6650 91.3350

Downsampled by 3 0.7541 0.9774 0.9579 0.8658 0.7576 0.6102 0.3898 8.6451 91.3549

Downsampled by 4 0.7293 0.9758 0.9542 0.8526 0.7357 0.5822 0.4178 8.6278 91.3722

CHASE-DB1 ( MDF = 0.1967)

Original 0.8289 0.9848 0.9739 0.9069 0.8179 0.6915 0.3085 7.3391 92.6609

Downsampled by 2 0.8119 0.9829 0.9714 0.8974 0.7995 0.6698 0.3302 7.3991 92.6009

Downsampled by 3 0.7977 0.9821 0.9671 0.8899 0.7731 0.6391 0.3609 7.4457 92.5543

Downsampled by 4 0.7809 0.9801 0.9667 0.8846 0.7569 0.6219 0.3781 7.5866 92.4134

DRISHTI-OC ( MDF = 0.0072)

Original 0.9449 0.9990 0.9971 0.9803 0.9117 0.8441 0.1559 1.7148 98.2852

Downsampled by 2 0.9446 0.9980 0.9968 0.9798 0.9113 0.8433 0.1567 1.7139 98.2861

Downsampled by 3 0.9411 0.9989 0.9965 0.9788 0.9098 0.8392 0.1608 1.7119 98.2881

Downsampled by 4 0.9344 0.9977 0.9960 0.9760 0.9018 0.8359 0.1641 1.7122 98.2878

DRISHTI-OD ( MDF = 0.0045)

Original 0.9681 0.9990 0.9980 0.9836 0.9560 0.9207 0.0793 3.1343 96.8657

Downsampled by 2 0.9679 0.9980 0.9970 0.9830 0.9558 0.9202 0.0798 3.1323 96.8677

Downsampled by 3 0.9673 0.9980 0.9970 0.9827 0.9557 0.9198 0.0802 3.1290 96.8710

Downsampled by 4 0.9669 0.9980 0.9970 0.9825 0.9555 0.9195 0.0805 3.1289 96.8711
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Conclusion
Based on image complexity measures, we presented a framework to guide developers in making several critical 
macro-level neural network design choices for medical image segmentation. The proposed framework is inde-
pendent of the segmentation task at hand and the image modalities used. This is possible because the design 
choices are based solely upon the information contained in the dataset. Extensive experiments on 10 different 
medical image segmentation benchmarks demonstrated the suitability of our framework. We conclude that 
the proposed image complexity measures help address the following critical issues in designing a neural net-
work for medical image segmentation: (1) design and train neural networks for high-resolution medical images 
using generally available moderate computing resources, (2) minimizing the effects of downsampling the input 

Figure 2.   Sample segmentation results with U-Net on the DRIVE dataset. Four examples are shown from top 
to bottom. From left to right: the input images, the ground truth manually annotated by an expert, and the 
results on 2× , 3× , and 4× downsampled input images. Correctly segmented foreground and background pixels 
are shown in, respectively, green and black. False positive and false negative pixels are shown in, respectively, red 
and blue.
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Figure 3.   Sample segmentation results with U-Net on the DRISHTI-OC dataset. Four examples are shown 
from top to bottom. From left to right: the input images, the ground truth manually annotated by an expert, and 
the results on 2× , 3× , and 4× downsampled input images. Correctly segmented foreground and background 
pixels are shown in, respectively, green and black. False positive and false negative pixels are shown in, 
respectively, red and blue (visible around the object edges only at very high magnification).

images (usually to aid training) on segmentation performance, and (3) deciding on the depth and size of the 
architecture (number of layers/parameters) for a given medical image segmentation task. We suggest that our 
framework complements NAS approaches and can be employed at the macro-level stage in conjunction with 
NAS for micro-level architectural optimization. In future work we aim to test this hypothesis and perform more 
extensive experiments on a wider range of different neural network architectures for medical image segmenta-
tion as well as other applications.
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Figure 4.   Sample segmentation results of the four different networks on the DRIVE dataset. Five examples are 
shown from top to bottom. From left to right: the input images, the ground truth manually annotated by an 
expert, and the results on DeeplabV3+, M2U-Net, U-Net, and U-Net Lite. Correctly segmented foreground and 
background pixels are shown in, respectively, green and black. False positive and false negative pixels are shown 
in, respectively, red and blue.
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Figure 5.   Sample segmentation results of the four different networks on the DRISHTI-OC dataset. Five 
examples are shown from top to bottom. From left to right: the input images, the ground truth manually 
annotated by an expert, and the results on DeeplabV3+, M2U-Net, U-Net and U-Net Lite. Correctly segmented 
foreground and background pixels are shown in, respectively, green and black. False positive and false negative 
pixels are shown in, respectively, red and blue (visible around the object edges only at very high magnification).
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Figure 6.   Effect of class imbalance on complexity measures.

Figure 7.   Framework for designing medical image segmentation networks. Macro-level network design choices 
are depicted in red. The ranges are indicative based on our experiments and are subject to the task at hand.
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Data availability
The datasets analyzed for this study are accessible via the URLs listed in the URL column of Table 7.
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Table 6.   Performance of DeepLabV3+, M2U-Net, U-Net, and U-Net Lite on the high-complexity DRIVE 
dataset and the low-complexity ISIC-2016/PH2 dataset. For each dataset and network, two rows of 
performance values are given, where the top values are the performances at normal image resolution and the 
bottom values are the performances when the images are downsampled by a factor of 4. The number of layers 
and parameters (millions) of each network are also listed for reference.

Network Se Sp A BA D J E Layers Parameters

DRIVE ( MDF = 0.2301)

DeepLabV3+
0.8157 0.9798 0.9654 0.8978 0.8048 0.6737 0.3263

100 20M
0.6946 0.9463 0.9243 0.8205 0.6552 0.5556 0.4444

M2U-Net
0.8229 0.9826 0.9630 0.9028 0.8091 0.6960 0.3040

155 0.55M
0.7275 0.9782 0.9571 0.8579 0.7505 0.6009 0.3991

U-Net
0.8312 0.9828 0.9693 0.9069 0.8257 0.7036 0.2964

58 30M
0.7552 0.9759 0.9566 0.8656 0.7525 0.6036 0.3956

U-Net Lite
0.8144 0.9826 0.9678 0.8985 0.8179 0.6984 0.3016

46 0.28M
0.7248 0.9778 0.9558 0.8513 0.7409 0.5889 0.4111

Trained on ISIC-2016 / Tested on PH2 ( MDF = 0.0017/0.0049)

DeepLabV3+
0.8996 0.9096 0.9468 0.9026 0.9026 0.8290 0.1710

100 20M
0.8911 0.9059 0.9398 0.9026 0.8985 0.8210 0.1790

M2U-Net
0.9089 0.9046 0.9339 0.9048 0.8887 0.8015 0.1985

155 0.55M
0.9130 0.8799 0.9279 0.8965 0.8774 0.7982 0.2018

U-Net
0.9136 0.8799 0.9297 0.8907 0.8750 0.7966 0.2034

58 30M
0.8820 0.8711 0.9290 0.8766 0.8723 0.7904 0.2096

UNet Lite
0.8898 0.8756 0.9247 0.8611 0.8611 0.7803 0.2197

46 0.28M
0.8891 0.8732 0.9233 0.8612 0.8607 0.7783 0.2217

Table 7.   URLs of public datasets used in the experiments.

Dataset URL

STARE https://​cecas.​clems​on.​edu/​~ahoov​er/​stare/

DRIVE https://​drive.​grand-​chall​enge.​org/

CHASE-DB1 https://​blogs.​kings​ton.​ac.​uk/​retin​al/​chase​db1/

MC https://​lhncbc.​nlm.​nih.​gov/​LHC-​publi​catio​ns/​pubs/​Tuber​culos​isChe​stXra​yImag​eData​Sets.​html

PH2 https://​www.​fc.​up.​pt/​addi/​ph2da​tabase.​html

ISIC-2016 https://​chall​enge.​isic-​archi​ve.​com/​landi​ng/​2016
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