
The current state of genetic risk models for the
development of kidney cancer: a review and validation
Hannah Harrison1 , Nicole Li1,2, Catherine L. Saunders1, Sabrina H. Rossi3 , Joe Dennis1, Simon J. Griffin1,
Grant D. Stewart3 and Juliet A. Usher-Smith1

1Department of Public Health and Primary Care, University of Cambridge, 3Department of Surgery, University of
Cambridge, Addenbrooke’s Hospital, Cambridge, and 2Deanary of Biomedical Sciences, University of Edinburgh,
Edinburgh, UK

Objective

To review the current state of genetic risk models for predicting the development of kidney cancer, by identifying and
comparing the performance of published models.

Methods

Risk models were identified from a recent systematic review and the Cancer-PRS web directory. A narrative synthesis of the
models, previous validation studies and related genome-wide association studies (GWAS) was carried out. The
discrimination and calibration of the identified models was then assessed and compared in the UK Biobank (UKB) cohort
(cases, 452; controls, 487 925).

Results

A total of 39 genetic models predicting the development of kidney cancer were identified and 31 were validated in the
UKB. Several of the genetic-only models (seven of 25) and most of the mixed genetic-phenotypic models (five of six) had
some discriminatory ability (area under the receiver operating characteristic curve >0.5) in this cohort. In general, models
containing a larger number of genetic variants identified in GWAS performed better than models containing a small
number of variants associated with known causal pathways. However, the performance of the included models was
consistently poorer than genetic risk models for other cancers.

Conclusions

Although there is potential for genetic models to identify those at highest risk of developing kidney cancer, their
performance is poorer than the best genetic risk models for other cancers. This may be due to the comparatively small
number of genetic variants associated with kidney cancer identified in GWAS to date. The development of improved
genetic risk models for kidney cancer is dependent on the identification of more variants associated with this disease.
Whether these will have utility within future kidney cancer screening pathways is yet to determined.

Keywords
RCC, kidney cancer, genetics, risk models, risk stratification, polygenic risk scores, validation

Background
Recent developments in genetic research have led to the
identification of 100s of genetic variants associated with the
development of different cancers [1]. Advances in
sequencing technologies mean it is now possible to obtain
genetic information from individuals at relatively low cost
($35 per individual [2]). Therefore, there is potential for
genetic risk models, including polygenic risk scores (PRSs)
that combine multiple single nucleotide polymorphisms

(SNPs) together to estimate the risk of a disease or
disease-related trait for an individual, to enhance risk
prediction and improve the efficiency of population-level
screening for cancer [2]. The Breast and Ovarian Analysis
of Disease and Carrier Estimation Algorithm (BODICEA)
model for breast cancer, for example, which includes 313
SNPs alongside phenotypic risk factors, is already used to
support clinical decision-making [2,3] and studies are on-
going to evaluate the role of this model within screening
programmes [4,5].
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There are several features of genetic risk models that will
appeal to both clinicians and researchers. Firstly, germline
genetic risk factors, including SNPs, do not change over the
lifetime of an individual. This facilitates lifetime risk
prediction rather than fixed-time risk predictions (e.g., the
5- or 10-year risk) and may help identify younger
individuals at higher risk before the development of other
risk factors. Secondly, genetic risk models do not rely on
self-reporting and so are not at risk of recall or response bias.
In the future, routine collection of genetic risk factors via a
cheek swab or a pin-prick blood sample may be easier than
the collection of other data. Thirdly, genetic factors are
largely independent of, and hence complimentary to, other
risk factors [2]. Consequently, genetic risk models, unlike
many phenotypic models, do not predispose towards older
and sicker people [6]. There is also evidence, from a recent
population-based survey, that genetic risk models would be
more acceptable to the general public than risk scores that
use lifestyle risk factors, in the context of risk-stratified
screening for cancer [7].

The potential for genetic risk models to enhance disease risk
prediction is appealing in the context of kidney cancer. A
lack of symptoms, even at late stages of the disease, makes
the detection of kidney cancer a challenge: 60% of kidney
cancers in the UK are currently diagnosed incidentally and
~20% of those are late stage (III–IV) at diagnosis with
associated poor 5-year cancer-specific survival rates (6% for
Stage IV) [8]. Together with the observed increase in
incidence of kidney cancer [9], this has led to international
interest in the potential for a screening programme [10].
However, as the incidence of kidney cancer is relatively low
in the general population [11], a targeted, risk-stratified
approach using risk models to identify high-risk individuals
most likely to benefit from screening is likely to be necessary
[12,13]. Risk models could also be used to guide choice of
screening test and may provide opportunities for risk
reduction interventions. In a previous validation study [14],
we demonstrated that phenotypic risk models (incorporating
lifestyle and demographic risk factors) that predict the
development of kidney cancer have reasonable performance
(95% CIs of the area under the receiver operating
characteristic [AUROC] curve 0.50–0.71). However, the
modelled incremental benefit over age was small. Adding
genetic risk factors to phenotypic risk models has been shown
to increase the discriminatory ability for other cancers [15].

In this review, we identify and evaluate existing models that
both predict the development of kidney cancer and include
genetic risk factors (either alone or in combination with
other risk factors) to provide an overview of the current
state of research in this area. We also assess the
performance of the identified risk models in a large UK
population (the UK Biobank [UKB] cohort) to enable a
comparison between the included models and with genetic

risk models for other cancers. A glossary of terms is
provided in Boxes 1.

Methods
We identified risk models from a recent systematic review
[16] and the Cancer-PRS web directory (an on-line
repository for PRSs for major cancer traits) [17]. We
extracted data on the genetic risk factors (including how
they were identified), the performance of the models in
external validation studies and any comparisons to risk
scores for other cancers.

The performance of the models was then assessed in the UKB
cohort, a large population based cohort of ~500 000
individuals aged 40–69 years enrolled between 2006 and 2010
[18]. All participants attended a baseline assessment that
included completion of questionnaires about lifestyle and
medical history and measurement of a range of physical
characteristics. Data on cancer incidence are available for
UKB participants through linkage to national cancer
registries. Full genotype information is available for 488 377
members of the UKB (Appendix S1). To maximise the
number of cases, a closed-cohort analysis with 6-years of
follow-up was used for the validation. Cases of kidney cancer
(all types) were included if they occurred within 6-years of
baseline assessment. Individuals with a diagnosis of kidney
cancer prior to baseline (n = 452) were excluded from the
analysis.

Two of the models included in this review, Fritsche et al.
[17], uses SNPs that were originally identified as having an
association with kidney cancer in a genome-wide association
study (GWAS) that used the UKB cohort. Therefore, the
results presented for the Fritsche et al. [17] models cannot be
considered true external validation. None of the other models
used the UKB cohort as a development cohort or used SNPs
identified in a GWAS that used the UKB cohort.

The performance, both discrimination and calibration, was
measured for all of the models included in the validation.
Discrimination was measured using the AUROC curve and
the mean standardised score (MSS). Calibration was assessed
graphically in deciles (Appendix S1). For models with
sufficient unique values, we calculated the sensitivity,
specificity, positive predictive value (PPV) and negative PV
(NPV) for the deciles of the population with the highest and
lowest scores.

A complete case approach was used for the primary
analysis; each model was only computed for individuals with
data for all of the risk factors used in that model. As this
was done on a model-by-model basis, the cohort size varies
slightly for each validation. Any phenotypic variables with
>5% missing data were multiply imputed using a predictive
mean matching approach (Appendix S1). Several sensitivity
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analyses were carried out; including stratified analyses to
determine variation in performance by sex and ethnicity
(Appendix S1).

Results
A total of 22 studies describing 39 models that predict the
risk of kidney cancer using genetic risk factors were identified
and included in the narrative synthesis [15,17,19,20,
21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38].

Genetic Risk Factors

In all, 90 genetic variants (SNPs) are used in the 39 models.
The number of SNPs included in each of the models ranges
from one (combined with other risk factors in a mixed
genetic-phenotypic models [21,27,28,30]) to 19 [15,26].
Details of the variables (including SNPs) used in each model
are given in Table 1. Most of the SNPs (n = 63) are only
used in a single study; however, the remainder of SNPs
(n = 27) are implemented in models developed in more than
one study. The most commonly used SNPs (rs2241261,
rs11813268, rs10936602, rs74911261, rs4381241, rs718314)
were used in models from six different studies. Further details

of the SNPs used (including effect allele, minor allele fraction
(MAF) and imputation score in the UKB) are given in
Table S7.

Most of the SNPs included in the models were relatively
common variants within the UKB cohort, with only seven
rare alleles (MAF of <5%) identified. In particular, we note
the models developed by Lin et al. [31], Fritsche et al. [25]
and Fritsche et al. [17], which all used more than one rare
allele (MAF of <%5) in their respective models.

Most of the included studies (n = 14), including all of those
published before 2017, selected small numbers of SNPs of
interest to include in models, based on known causal
pathways for RCC [19,20,21,22,23,24,27,28,30,31,35,36,37,38].
Variants on genes associated with vitamin D activity [19],
immunoregulatory responses [22], susceptibility to stress [23],
telomere length [24], DNA repair [28], adiponectin levels
[27], the mammalian target of rapamycin (mTOR) pathway
[35] and microRNA (miRNA) binding sites [36,37] were all
included by different studies based on hypothesised
associations with kidney cancer. Additionally, genes with
known associations to carcinogenesis [20], solid cancers [21],
kidney cancer [30] and RCC [38] were selected by four of
these studies.

Box 1 Glossary of Terms.

SNP (single nucleotide polymorphism) – the most common type of genetic variation, SNPs refer to the difference of a nucleotide in a specific
location in DNA (e.g., the replacement of the nucleotide cytosine [C] with the nucleotide thymine [T]).

GWAS (genome-wide association studies) – a genome-wide association study is an approach that involves scanning markers across complete sets
of DNA of many individuals to find SNPs associated with a particular disease.

Discrimination (of a risk model) – a measure of how well a prediction model distinguishes between individuals with and without the outcome of
interest. A model with discriminative ability will, on average, assign higher risk to the cases than the controls.

Calibration (of a risk model) – a measure of the agreement between the predicted and observed outcomes, the risk predicted by a model and
observed risk.

AUROC (area under the receiver operating characteristic) curve – A ROC curve plots the sensitivity against 1-specificity for a range of cut-off
points. The area under the curve is equal to the probability that an individual with the outcome is assigned a higher risk than a randomly chosen
control. An AUROC value of 1.0 indicates a model with perfect discriminative ability, a value of 0.5 indicates discrimination no better than
random assignment. Harrell’s concordance index (c-index) is an equivalent measure used in open cohort (e.g., survival) analysis.

Population attributable fraction (PAF) – a widely used epidemiological measure of the fraction of all cases of a particular disease or other adverse
condition in a population that is attributable to a specific exposure. This can be interpreted as the proportion of cases that would not have
occurred if the exposure was not present.

Phenotypic – the observable characteristics of an individual resulting from the interaction of their genome with the environment. In this review,
we refer to phenotypic models that may include demographic, lifestyle, and clinical risk factors.

PRS (polygenic risk score) – also referred to as genome-wide score or genetic risk score summarise the estimated effect of many genetic variants
(SNPs) on an individual. Here, we specifically use the term PRS to refer to models constructed from weights derived from a GWAS.

Cancer PRS web directory – an on-line repository for polygenic risk scores for major cancer traits https://prsweb.sph.umich.edu:8443/

Germline mutations – mutations or variation association that are present in germ cells and can be passed on to offspring (as opposed to somatic
mutations that occur outside of germline cells and cannot be passed on to offspring).

Truncating variants – a genetic variation that results in a shorter version of the associated protein being expressed, which can cause loss of
function for the gene in which they are present.

Minor allele fraction (MAF) – the proportion at which the second most common allele occurs in a given population. Common variants are
considered to be those with a MAF of >5% (although a cut-off of >1% is not uncommon). Rare variants, while they can confer a high risk, will
only be present in a small number of the cases and therefore will have little effect on the overall predictive accuracy of the model.
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Eight of the included studies, all published since 2017, used
SNPs found to be associated with kidney cancer in GWAS
[15,17,25,26,29,32,33,34]. In GWAS, the whole genome of a
large cohort is searched for association to the outcome of
interest. This approach can identify large numbers of genetic
variants, but biological mechanisms linking the identified
SNPs to the outcome are not identified. Nine separate GWAS
were given as sources for SNPs used in models included in
this review (Table 4) [33,39,40,41,42,43,44,45,46]. Most (seven
studies) used RCC as the outcome for which associations
were identified [33,39,40,41,42,43,45], while one used the
outcome of Wilms’ tumour [44] and one did not report the
outcome [46]. The size of the GWAS populations ranged
from 2636 [44] to 408 961 (the UKB cohort) [46], with the

number of outcomes ranging from 757 [44] to 10 784 [33].
All of these GWAS except one [33], exclusively used White
(often defined as European ancestry) populations.

Genetic Risk Models

We identified 14 studies (describing 27 models) that used
SNPs located in genes associated with known causal pathways
for kidney cancer [19,20,21,22,23,24,27,28,30,31,35,36,37,38].
All of these studies used a case–control design to develop
models and most recruited patients with RCC as cases
(Table S2). Furthermore, they all recruited majority male
populations (57%–85%) with a mean age of >50 years. A
range of ethnicities are represented, including Asian (eight )

Table 1 Included models.

Model ID Number
of SNPs

Other risk factors Previous external validation
(validation cohort)

Arjumand 2012 2 Smoking, age, sex, BMI, hypertension
Arjumand 2012 2
Chang 2014 2
Chen 2011a 1 Smoking
Chen 2011b 1 Smoking
Chu 2012a 2
Chu 2012b 2
Chu 2012c 2
Coric 2017 4
DeMartino 2016 6 Smoking, age, sex, BMI, hypertension, MNS16A (minisatellite tandem repeat)
Hsueh 2017a 1 Urinary 8-OHdG levels
Hsueh 2017b 1 Urinary total arsenic
Hsueh 2018a 1 Smoking, age, sex, BMI, hypertension, education level, alcohol consumption,

diabetes, urinary creatinine levels, urinary total arsenic
Hsueh 2018b 1 Smoking, age, sex, BMI, hypertension, education level, alcohol consumption,

urinary creatinine levels, urinary total arsenic
Hsueh 2018c 1 Smoking, age, sex, BMI, hypertension, education level, alcohol consumption,

diabetes, urinary creatinine levels, urinary total arsenic
Hsueh 2018d 1 Age, sex, BMI, hypertension, education level, alcohol consumption, diabetes,

urinary creatinine levels, urinary total arsenic
Li 2012a 1 Smoking, age, sex, BMI, hypertension, education, ethnicity
Li 2012b 1 Smoking, age, sex, BMI, hypertension, education, ethnicity
Li 2012c 1 Smoking, age, sex, BMI, hypertension, education, ethnicity
Lin 2008a 12 XPC intron 9 (PAT)
Lin 2008b 7
Machiela 2017a 9
Machiela 2017b 9
Scelo 2016 13
Shu 2013 6
Verma 2015 2
Wei 2014a 5
Wei 2014b 3
Wu 2016a 3
Wu 2016b 3
Graff 2021 19 9 (GERA, UKB)
Shi 2019a 10 9 (TCGA, eMERGE)
Shi 2019b 10 9 (TCGA, eMERGE)
Fritsche 2018 7 9 (MGI)
Fritsche 2020a 12 9 (MGI)
Fritsche 2020b 12 9 (MGI, UKB)
Kachuri 2020 19 9 (UKB)
Jia 2020 15 9 (UKB)

Text in bold indicates variables not available for the UKB cohort. GERA, Genetic Epidemiology Research on Aging; MGI, Michigan Genomics
Initiative; 8-OHdG, 8-hydroxydeoxyguanosine; TCGA, The Cancer Genome Atlas.
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[19,20,21,22,27,28,36,38], White-only (four) [23,31,35] and
mixed ethnicity (one) [30]. The development populations
range in size from 355 (100 cases, 225 controls) [36] to 2050
(894 cases, 1156 controls) [37]. The number SNPs included
in these models ranges from one to 12 (Table 1). Only one
study [38] reported the discrimination of any of these models
in their development population, and to the knowledge of the
authors there have been no prior external validations of these
models. In all, 13 of these models included phenotypic risk
factors alongside genetic factors [19,21,24,27,28,30]. The most
common included risk factors in the mixed models are
smoking (10), sex (nine), body mass index (BMI; nine), age
(eight), and hypertension (eight).

A further eight studies (12 models) combine SNPs identified
through GWAS (eight studies and 12 models)
[15,17,25,26,29,32,33,34]. Both the SNPs and their weighting
are determined in GWAS and then compiled to form a PRS.
The number of SNPs used in these models ranges from
seven to 19.

Published Performance of Genetic Risk Models

Eight of the genetic-only risk models included in this review
have previously been validated in external populations
[15,17,25,26,29,34]. In most of these validations, the genetic
model for kidney cancer is shown to have some ability to
distinguish individuals at high risk (Table S3).

In the study by Kachuri et al. [15], the predictive value of
adding a cancer-specific PRS to a phenotypic model
(including age, family history and modifiable lifestyle risk
factors) is also evaluated. The discrimination, measured by the
c-index, for the kidney cancer model increased from 0.716 to
0.723 when adding the PRS to the model. The authors
estimated that the population attributable fraction (PAF) for
the genetic risk factors included in their model was 4.6%.

All of the external validation studies used populations from
the UK and USA and all limited to either European ancestry
[15,17,25,26,29], Caucasians [34] or self-reported White
individuals [17]. Additionally, all use kidney cancer (all types,
excluding renal cancer of the pelvis), not RCC, as the
outcome of interest.

Comparable Performance of Genetic Risk Models

We validated 31 of the identified models in the UKB cohort
[15,17,20,21,22,23,24,25,26,29,30,31,32,33,34,35,36,37,38].
Eight models were not validated either because some of the
variables included were not available for the UKB cohort
[27,28] or because the information required to validate the
models was not available [19].

We included 438 315 individuals from the UKB cohort,
including 620 cases of kidney cancer, in the primary analysis

(Table 2). In this cohort, the six genetic-only models with
the highest discrimination (all with adequate calibration)
used SNPs derived from GWAS [15,26,29,33,34] (Fig. 1). Of
these, the PRS by Scelo et al. [29] had the highest
discrimination (AUROC curve 0.551, 95% CI 0.528–0.573).
This model also has the highest odds ratio (OR) per
standard deviation (SD) of risk score, 1.189 (SE 0.051). The
Scelo et al. [29] model is adequately calibrated; with some
overestimation in the high-risk deciles (see Appendix S1 for
plots). The genetic-only models with the highest sensitivity
(14.3%) and PPV (0.20%) for the 10% of the population with
the highest scores are the two developed by Shi et al. [34],
which use 10 SNPs weighted for the development and
validation populations respectively (Table S5). The model
developed by Jia et al. [29], which includes 15 SNPs, has the
lowest sensitivity (6.7%) and PPV (0.094%) for the 10% of
the population with the lowest scores. Of the genetic-only
models using variants inferred from a causal pathway, only
the model developed by Verma et al. [36], which used SNPs
from miRNA genes previously shown to be associated with
solid cancers, had discriminative ability (AUROC curve
0.526, 95% CI 0.504–0.549); however, calibration is poor. No
other genetic-only models showed discriminative ability
(Table 2, Fig. 1). In general, the discrimination of the
genetic-only models improves as more SNPs are added to the
models (Fig. 2).

Five of the six mixed phenotypic-genetic models included in
the validation showed discriminative ability (lower bound
of the AUROC curve >0.5) [21,30] (Table 3, Fig. 1). Of these,
the best performing are the three models developed by Li
et al. [30], which all combine a single SNP (from the
apolipoprotein E [APOE] promoter region) with seven
phenotypic risk factors, including age and smoking (95% CI
range of the AUROC curve 0.584–0.636, calibration adequate,
underestimation by the model in high-risk deciles).

The supplementary analyses revealed no clear difference in
discrimination between men and women or between the
entire cohort and White-only members of the UKB. When
removing one of each set of third-degree relatives from the
cohort, the six highest performing genetic-only models
[15,26,29,33,34] had no significant differences in
discrimination (95% CI of the AUROC curves 0.510–0.571),
suggesting that in unrelated individuals in these six models
would be expected to have similar performance. The results
from all sensitivity analyses can be found in Table S8.

Note that at least two of the models validated in this study,
developed by Fritsche et al. [17], use SNPs identified in
GWAS of the UKB cohort (Table 4). There have also been
previously reported external validations of several of the
models that have used the UKB cohort (Table S3)
[15,17,26,29]. The results of this study are in agreement with
these previous validations.
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Comparable Performance of Kidney Genetic Risk
Models to Genetic Risk Models for Other Cancers

Several of the included validation studies reported the
performance of kidney cancer risk models in comparison to
risk models for other cancers in the same cohort. Compared
to the best performing genetic-only models for other types of
cancer, the performance of the kidney cancer genetic models
is relatively poor. In four of the six identified validation
studies [15,17,25,29], the kidney cancer model has the lowest
or second lowest performance of all the cancer-specific
genetic risk scores evaluated. In most of these validations, the
kidney cancer model is outperformed by models for more
common cancers with a greater number of associated SNPs
(including breast, prostate and colorectal, but not lung). For
example, in a study by Jia et al. [29], they report that
individuals with the highest 5% (cancer-specific) PRS have a
two–three-times elevated risk of cancer of the prostate,
breast, pancreas, colorectal and ovary, but only a 1.5-times
elevated risk of lung, bladder or kidney cancer. In their
validation, the genetic risk model (included in this review)

for kidney cancer had the lowest AUROC curve value of the
eight cancer types examined. In the validation of genetic risk
models for 16 types of cancer by Kachuri et al. [15], the
increase in discrimination observed when adding a genetic
risk score (included in this review) to models with other risk
factors for kidney cancer (c-index 0.716–0.723) is also the
second lowest of the included cancer types. The increase in
discrimination is much lower than for breast cancer (where
the c-index increased from 0.572 to 0.635) but comparable to
that seen for bladder cancer (where the c-index increased
from 0.808 to 0.814). The PAF for the genetic risk included
in the kidney cancer model (4.6%) is also lower than seen
for bladder cancer (8.5%) or colorectal cancer (16.8%).
However, in other validations the kidney cancer model
performs adequately compared to genetic models for other
cancers. In Graff et al. [26], the kidney cancer model
(included in this review) ranks 11th out of 15 evaluated, with
an effect size per SD (OR 1.21, 95% CI 1.14–1.26) higher
than four other scores, including the PRS for oral cancer
(OR 1.08, 95% CI 1.02–1.14) and the PRS for lung cancer
(OR 1.12, 95% CI 1.08–1.17).

Table 2 UKB cohort characteristics.

All Controls Cases P* % Incident KCa

Counts n 435 572 434 957 615 0.1412
Age, years Mean (SD) 56.5 (8.09) 56.5 (8.09) 61.0 (6.19) <0.001 –

Missing, n (%) 0 (0) 0 (0) 0 (0) –
Sex Female, n (%) 236 149 (54.2) 235 927 (54.2) 222 (36.1) – 0.0940

Male, n (%) 199 423 (45.8) 199 030 (45.7) 393 (63.9) <0.001 0.1971
Missing, n (%) 0 (0) 0 (0) 0 (0) –

Ethnicity White, n (%) 413 002 (94.8) 412 398 (94.8) 604 (98.2) 0.024 0.1462
Mixed heritage, n (%) 2408 (0.55) 2407 (0.55) 1 (0.16) 0.0415
South East Asian, n (%) 7805 (1.79) 7800 (1.79) 5 (0.81) 0.0641
Black, n (%) 6022 (1.38) 6019 (1.38) 3 (0.49) 0.0498
Chinese, n (%) 1282 (0.29) 1282 (0.29) 0 (0) 0.0000
Other, n (%) 3616 (0.83) 3614 (0.83) 2 (0.33) 0.0553
Missing, n (%) 1437 (0.33) 1437 (0.33) 0 (0) 0.0000

BMI, kg/m2 Median (IQR) 26.7 (24.1–30.0) 26.7 (24.1–30.0) 28.0 (25.4–31.5) <0.001 –
<20, n (%) 10 108 (2.32) 10 099 (2.32) 9 (1.46) 0.0890
20–24.9, n (%) 133 479 (30.6) 133 364 (30.7) 115 (18.7) 0.0862
25–29.9, n (%) 184 866 (42.4) 184 586 (42.4) 280 (45.5) 0.1515
≥30, n (%) 105 546 (24.2) 105 337 (24.2) 209 (34.0) 0.1980
Missing (%) 1573 (0.36) 1571 (0.36) 2 (0.33) 0.1271

Smoking status Never, n (%) 238 042 (54.7) 237 776 (54.7) 266 (43.3) <0.001 0.1117
Former, n (%) 151 068 (34.7) 150 803 (34.7) 265 (43.1) 0.1754
Current, n (%) 46 462 (10.7) 46 378 (10.7) 84 (13.7) 0.1808
Missing, n (%) 2503 (0.56) 2498 (0.56) 5 (0.63) 0.1998

Blood pressure (BP), mmHg Systolic BP, mean (SD) 138.1 (18.7) 138.0 (18.7) 145.2 (19.5) <0.001 –
Diastolic BP, mean (SD) 82.3 (10.2) 82.3 (10.2) 84.1 (10.7) <0.001 –

Alcohol consumption† Never, n (%) 34 612 (8.0) 34 568 (8.0) 44 (7.1) 0.720 0.1273
Light drinkers, n (%) 213 361 (49.0) 213 053 (49.0) 308 (50.1) 0.1446
Heavy drinkers, n (%) 187 215 (43.0) 186 953 (43.0) 262 (42.6) 0.1401
Missing, n (%) 384 (0.09) 383 (0.09) 1 (0.16) 0.2611

Previous cancer diagnosis, n 0, n (%) 395 849 (90.9) 395 314 (90.9) 535 (87.0) <0.001 0.1352
1, n (%) 29 125 (6.7) 29 068 (6.7) 57 (9.3) 0.1957
≥2, n (%) 10 598 (2.4) 10 575 (2.4) 23 (3.7) 0.2170

IQR, interquartile range; KCa, kidney cancer. *Tested for difference in means using t-test, difference in medians using Wilcoxon rank-sum test and
difference in frequency of cases between categories with Pearson’s chi-squared test. †Light drinkers report <14 units/week, heavy drinkers report
≥14 units/week.
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Discussion
In this review, we have identified all existing models that use
genetic risk factors that predict the risk of developing kidney

cancer, and then validated the majority in the UKB cohort.
At least 39 risk models incorporating 90 different genetic
variants have been developed to predict the risk of kidney
cancer. Several genetic-only risk models demonstrate potential
to discriminate between those at higher and lower risk of
kidney cancer (lower bound of the AUROC curve >0.5).
However, the best performing genetic-only model has an
AUROC curve value of 0.551 (95% CI 0.528–0.573) [33],
considerably lower than the AUROC curve seen for genetic-
only risk models in some other cancers. The incremental
benefit of adding a genetic risk model for kidney cancer to a
phenotypic risk model is also marginal (an increase in the
AUROC curve of 0.007 from 0.716 [SE 0.011] to 0.723 [SE
0.011]), and lower than observed for other cancers (the
AUROC curve increases by 0.063 from 0.572 [SE 0.005] to
0.635 [SE 0.004] for breast cancer) [15].

The performance of the kidney cancer models in the UKB
also compares poorly with genetic risk models for other
cancers validated in the UKB. For example, the genetic model
developed by Huyghe et al. [47] for colorectal cancer has a
AUROC curve value of 0.63 (95% CI 0.61–0.64) [48] and the
model developed by Mavaddat et al. [49] for breast cancer
has an AUROC curve value of 0.63 (95% CI 0.63–0.65) in a
validation cohort of women (largely drawn from the UKB).
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Two observations suggest that the comparatively poor
performance of current genetic risk models for predicting
kidney cancer is probably due to the limited number of SNPs
currently identified and included within the models. Firstly,
the number of SNPs included in the kidney cancer models is
considerably lower than for other cancers. In Graff et al. [26],
19 SNPs are included in the kidney cancer model (the highest
number of any model included in this review), whereas in the
same study 103 and 187 SNPs are used in the scores for
colorectal and breast cancer, respectively. Further, the analysis
in this review suggests that discrimination improves as the
number of SNPs increases (Fig. 2). This has been seen in
other cancers, e.g., in a previous validation of genetic risk
models for colorectal cancer (also in the UKB) models with
similar numbers of SNPs; Yarnall 2013 (15 SNPs) [50] and
Ibanez-Sanz 2017 (23 SNPs) [51] have comparable
performance (AUROC curves of 0.56, 95% CI 0.54–0.57; and
0.56, 95% CI: 0.54–0.58) to the Graff et al. [26] model (19
SNPs) for kidney cancer. The best performing model [47]
from that validation of includes 120 SNPs and has an
AUROC curve of 0.63 (95% CI 0.61–0.64).

Secondly, the PAF for one of the best genetic-only risk
models for kidney cancer included in this review [15] (19
SNPs) is estimated to be only 4.6%. However, a study of

environmental and heritable risk, using a large Nordic cohort
of twins, estimates that the true PAF of genetic risk factors
for kidney cancer could be as high as 38% [52]. Similarly, a
2015 study found that that the genetic variants identified by
GWAS (at that time) explained only 14.7% of the heritability
associated with kidney cancer [53]. This suggests that there
may be up to 100 SNPs associated with kidney cancer risk
that have not yet been identified.

The limited number of SNPs identified to date is likely due to
the relatively small number of GWAS for kidney cancer.
Compared with the nine GWAS studies used to develop
kidney cancer risk models [33,39,40,41,42,43,44,45,46], there
have been >100 different breast cancer GWAS [54]. If the
potential for genetic risk models for kidney cancer is going to
be realised, there is a need for further GWAS studies to
identify as of yet unknown variants associated with the
development of this disease. Given the relatively low
prevalence of kidney cancer (0.17, 95% CI 0.09–0.27, in
Europe [11]), larger cohort sizes or longer follow-up periods
than studies for more common cancers will likely be needed
to include sufficient case numbers in the analysis.

Alongside these efforts to identify further SNPs, there are also
a number of other areas that need considering before any of

Table 3 Primary analysis (external validation in the UKB): discrimination measures (models ordered by type and publication date).

Model name Type Cases, n Cohort, n AUROC curve (95% CI)

Lin 2008a Causal genes 615 435 572 0.500 (0.478–0.523)
Lin 2008b Causal genes 605 426 092 0.496 (0.475–0.518)
Chu 2012b Causal genes 610 433 036 0.515 (0.494–0.536)
Chu 2012a Causal genes 610 431 465 0.514 (0.494–0.534)
Chu 2012c Causal genes 612 432 797 0.508 (0.487–0.528)
Shu 2013 Causal genes 615 435 572 0.505 (0.483–0.526)
Wei 2014b Causal genes 593 415 664 0.51 (0.491–0.530)
Chang 2014 Causal genes 613 433 109 0.492 (0.472–0.513)
Wei 2014a Causal genes 615 435 572 0.49 (0.468–0.511)
Verma 2015 Causal genes 604 428 885 0.526 (0.504–0.549)
Wu 2016b Causal genes 615 435 572 0.509 (0.485–0.533)
Wu 2016a Causal genes 615 435 572 0.504 (0.48–0.527)
Coric 2016 Causal genes 615 435 572 0.492 (0.471–0.513)
Scelo 2017 PRS 615 435 572 0.551 (0.528–0.573)
Machiela 2017a PRS 615 435 572 0.521 (0.499–0.544)
Machiela 2017b PRS 615 435 572 0.520 (0.497–0.543)
Fritsche 2018b PRS 614 434 969 0.488 (0.465–0.510)
Fritsche 2018a PRS 614 434 969 0.484 (0.461–0.508)
Shi 2019a PRS 615 435 572 0.546 (0.523–0.569)
Shi 2019b PRS 615 435 572 0.546 (0.523–0.569)
Jia 2020 PRS 615 435 572 0.560 (0.537–0.582)
Kachuri 2020 PRS 615 435 572 0.547 (0.525–0.57)
Graff 2021 PRS 615 435 572 0.553 (0.530–0.576)
Fritsche 2021a* PRS 614 434 969 0.509 (0.486–0.533)
Fritsche 2021b* PRS 614 434 969 0.509 (0.486–0.533)
Chen 2011a Mixed 612 434 120 0.556 (0.536–0.577)
Chen 2011b Mixed 612 434 439 0.534 (0.513–0.554)
Li 2012b Mixed 608 425 903 0.614 (0.592–0.636)
Li 2012a Mixed 608 425 903 0.612 (0.59–0.635)
Li 2012c Mixed 608 425 903 0.607 (0.584–0.629)
DeMartino 2016 Mixed 516 368 911 0.506 (0.481–0.53)

*Some of the SNPs identified in a GWAS study using UKB participants, so not a true external validation.
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these genetic risk models can be incorporated into clinical
practice. Perhaps the most significant is the lack of data from
individuals of non-White ethnicity. Given the small numbers
of individuals who self-report non-White ethnicity in the
UKB, it was not possible to conduct analyses stratified by
ethnicity in the validation performed in this review. The best
performing genetic models use SNPs identified in GWAS that
included almost exclusively White-only populations
(Table S3) and all previous external validations have excluded
all non-White individuals from their analyses (Table S2). The
performance of these models across different ethnic groups is,

therefore, a key question for this area of research. This is not
unique to kidney cancer, a lack of ethnically diverse
populations is a challenge across the field of genetics [55],
with nearly 80% of individuals included in published GWAS
being of European descent [56]. There is an urgent need for
the prioritisation of genetic data generation from individuals
from under-represented ethnic groups (including African and
Asian ancestries) [2]. Other considerations common across all
cancers include how best to collect, store, and share genetic
data [57]; how to communicate the results of genetic risk
scores to individuals to minimise any psychosocial harms;

Table 4 GWAS studies used to develop PRSs.

Study
(first author,
year)

Studies that
used SNPs
identified
in this GWAS

Disease Country Ethnicity Cases Controls Named cohorts

Scelo 2017 Jia 2020
Kachuri 2020
Fritsche 2020
Shi 2019
Graff 2021
Scelo 2017

RCC Norway, Slovakia,
France, UK,
Russia, Finland,
and USA (plus
other European
countries)

A mixture of White
and cohorts of
unrestricted
ethnicity

10 784 20 406 International Agency for
Research on Cancer
(IARC)

MD Anderson Cancer
Patients (MDA)

Mayo Clinic Cohort
Henrion 2015 Jia 2020

Kachuri 2020
Shi 2019
Scelo 2017

RCC UK, various
European
countries, and
USA

White/European
ancestry

2498 8799 UK-GWAS (MRC SORCE and
ICR/RM NHS, WTCCC2 UK
Blood Service)

US National Cancer Institute
(NCI)

Purdue 2011 Jia 2020
Shi 2019
Scelo 2017

RCC Various European
countries, USA,
UK

European
background

3772 8505 IARC
Centre National de
G�enotypage (CNG)

NCI
Henrion 2012 Jia 2020

Shi 2019
Scelo 2017

RCC UK White/European
ancestry

1045 5200 UK-GWAS (MRC SORCE and
ICR/RM NHS, WTCCC2 UK
Blood Service)

Wu 2012 Jia 2020
Shi 2019
Scelo 2017

RCC USA European descent
(self-reported
Caucasian)

894 1516 MDA

Zhou 2018 Fritsche 2020 Unclear UK White British 408 961 UKB
Turnbull 2012 Fritsche 2020

Fritsche 2018
Wilms’
tumour

UK, USA European ancestry 757 1879 Factors Associated with
Childhood Tumours
(FACT)

Children’s Cancer and
Leukaemia Group (CCLG)

National Wilms’ Tumour Study
Group (NWTSG)

Children’s Oncology Group
(COG)

Han 2012 Jia 2020 RCC USA, Finland,
Russia, Romania,
Poland, and
Czech Republic

European
background

2278 3719 Prostate, Lung, Colorectal
and Ovarian Cancer
Screening Trial (PLCO)

Alpha-Tocopherol, Beta-
Carotene Cancer
Prevention (ATBC)

Central and Eastern
European RCC (CEERCC)

US Kidney Cancer (USKC)
Gudmundsson
2013

Jia 2020 RCC Iceland, the
Netherlands

Self-reported
European
descent

2411 71 497 Icelandic RCC sample
collection

deCODE genetics
Dutch RCC sample series
Comprehensive Cancer
Centre East
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how to address the training needs of healthcare professionals;
and the need for clear regulatory frameworks to ensure
responsible and equitable use of genetic risk models [2].
Modelling and cost-effectiveness analyses are also needed to
assess the potential benefits of incorporating genetic-risk
based stratification within the specific context of potential
kidney cancer screening programmes once a suitable model
had been developed.

Although it is encouraging to see the potential for genetic risk
models to predict the development of kidney cancer, their
relatively weak performance leads us to conclude that this
area of research is not yet ready for transition into clinical
practice. The low discrimination of even the best models
included in this validation, means that they would not be as
good as existing phenotypic models at selecting high-risk
individuals for screening. Although there has been rather
limited research into combining genetic and phenotypic
models for kidney cancer, the recent study showing that the
Kachuri et al. [15] genetic model only marginally improved
the performance of a phenotypic model is not promising.
Without compelling evidence that the use of a genetic model
could lead to a significantly better selection of high-risk
individuals, the additional expense and burden of collecting
genetic information cannot be justified.

Conclusions
While 90 genetic risk factors have been included in nearly 40
published genetic models predicting the risk of the
development of kidney cancer, only a small number of these
show any discriminative ability and the addition of genetic
risk to phenotypic risk models results in only marginal
improvement [15].

Overall, the best genetic models for kidney cancer perform
poorly compared to the best genetic models developed for
other cancers. Estimates suggest that the currently identified
SNPs account for only 10%–20% of hereditable risk for
kidney cancer. This may be due to the relatively small
number of GWAS studies carried out for kidney cancer
outcomes compared with those for other cancers, and hence,
the relatively small number of variants associated with kidney
cancer that have been identified.

Therefore, although in principle it is possible to identify
individuals at higher risk of kidney cancer using existing
models, these models are unlikely to have utility within
clinical practice. If more, large GWAS studies are conducted,
and more variants associated with kidney cancer are
identified it seems likely that the development of higher
performing PRSs will be achievable. Whether these will have
utility within future kidney cancer screening pathways is yet
to determined. On-going research in other disease areas is
also needed to ensure the responsible and equitable use of
genetic risk scores in this context [2].
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