
Received: 13October 2021 Revised: 2 February 2022 Accepted: 13 February 2022

DOI: 10.1111/tbed.14488

OR I G I N A L A RT I C L E

Modelling and assessing additional transmission routes for
porcine reproductive and respiratory syndrome virus: Vehicle
movements and feed ingredients

Jason A. Galvis1 Cesar A. Corzo2 GustavoMachado1

1Department of Population Health and Pathobiology, College of VeterinaryMedicine, North Carolina State University, Raleigh, North Carolina, USA

2Veterinary PopulationMedicine Department, College of VeterinaryMedicine, University ofMinnesota, St Paul, Minnesota, USA

Correspondence

GustavoMachado, Department of Population

Health and Pathobiology, College of Veterinary

Medicine, North Carolina State University,

Raleigh, NC, USA.

Email: gmachad@ncsu.edu

Funding information

Fats and Proteins Research Foundation; Food

and Agriculture Cyberinformatics and Tools,

Grant/Award Number: 2020-67021-32462;

USDANational Institute of Food and

Agriculture, Grant/Award Number:

2019-07452

Abstract

Accounting for multiple modes of livestock disease dissemination in epidemiological

models remains a challenge. We developed and calibrated a mathematical model for

transmissionof porcine reproductive and respiratory syndromevirus (PRRSV), tailored

to fit nine modes of between-farm transmission pathways including: farm-to-farm

proximity (local transmission), contact network of batches of pigs transferred between

farms (pig movements), re-break probabilities for farms with previous PRRSV out-

breaks, with the addition of four different contact networks of transportation vehicles

(vehicles to transport pigs to farms, pigs to markets, feed and crew) and the amount

of animal by-products within feed ingredients (e.g., animal fat or meat and bone meal).

The model was calibrated on weekly PRRSV outbreaks data. We assessed the role of

each transmission pathway considering the dynamics of specific types of production

(i.e., sow, nursery). Although our results estimated that the networks formed by trans-

portation vehicles weremore densely connected than the network of pigs transported

between farms, pigmovements and farmproximitywere themain PRRSV transmission

routes regardless of farm types. Among the four vehicle networks, vehicles trans-

porting pigs to farms explained a large proportion of infections, sow = 20.9%; nurs-

ery= 15%; and finisher= 20.6%. The animal by-products showed a limited association

withPRRSVoutbreaks throughdescriptive analysis, andourmodel results showed that

the contribution of animal fat contributedonly 2.5%andmeat andbonemeal only .03%

of the infected sow farms. Our work demonstrated the contribution of multiple routes

of PRRSV dissemination, which has not been deeply explored before. It also provides

strong evidence to support the need for cautious, measured PRRSV control strategies

for transportation vehicles and further research for feed by-products modelling.

Finally, this study provides valuable information and opportunities for the swine indus-

try to focus effort on themost relevant modes of PRRSV between-farm transmission.
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1 INTRODUCTION

Porcine reproductive and respiratory syndrome virus (PRRSV) remains

a major economic burden in North America (Holtkamp et al., 2013) as

it continues to spread acrossmultiple pig-producing companies (Galvis

et al., 2022; Jara et al., 2020; Sanhueza et al., 2019). A recent study

developed a mathematical model to reconstruct the between-farm

PRRSV dynamics to reveal the role of between-farm pig movements,

farm-to-farm proximity and the continued circulation of PRRSVwithin

infected sites (named as re-break) on PRRSV transmission (Galvis et al.,

2022). Despite the promising results, the study did not fully consider

indirect contacts through between-farm transportation vehicles (e.g.,

vehicles transporting pigs, feed or farm personnel) contact networks,

which has been previously described as one of the major modes of

between-farm transmission of diseases in swine (Büttner & Krieter,

2020; Niederwerder, 2021; Porphyre et al., 2020), such as PRRS (Dee

et al., 2002, 2004; Pitkin et al., 2009; Thakur, Sanchez et al., 2015) and

African swine fever (ASF) (Gao et al., 2021; Gebhardt et al., 2021).

Detailed data regarding transportation vehicle movement and

routes, coming in and out pig premises, can be difficult to obtain,

which indeed could help explaining the lack of models considering

this transmission pathway (Bernini et al., 2019; EFSA Panel on Animal

Health andWelfare (AHAW) et al., 2021). Previous studies which have

approached indirect transmission by transportation vehicles have

either used simulated probabilities to define indirect contact between

farms such as the studies by Thakur et al., 2015 andWiltshire, 2018, or

observed truck movements such as the study by Büttner (2020) using

between-farms movements in Germany. The potential of viral stability

on vehicle surfaces has been demonstrated to be dependent on envi-

ronmental conditions such as temperature, pH, moisture and vehicle

disinfection procedures (Dee et al., 2002, 2003; Jacobs et al., 2010).

For example, Dee et al. (2002) isolated PRRSV under field conditions

from surfaces such as concrete, floor mats and fomites between 2 and

4 h after surface contamination. PRRSV has been shown to be more

stable at low temperatures (−20 to −70◦C), surviving for long periods

of time (>4 months) (Benfield et al., 1992), and becoming unstable as

the temperature increases (Jacobs et al., 2010). In addition, dry con-

ditions, low pH ranging between 5 and 7 (Benfield et al., 1992), iodine,

quaternary ammoniumor chlorine compounds used in vehicle disinfec-

tion were successful in inactivating PRRSV (Shirai et al., 2000). Thus, if

environmental conditions favour PRRSV survivability and the vehicles

are poorly cleaned and disinfected, the potential for pathogens to dis-

seminate within highly connected networks could indeed play a major

role in disease spread (Büttner & Krieter, 2020; Gebhardt et al., 2021).

In addition to transportation movements, contaminated feed could

represent a possible route for pathogen transmission (Gebhardt et al.,

2021; Niederwerder, 2021), but the probability of PRRSV transmis-

sion through feed has been described as relatively low (Blázquez et al.,

2020; Cochrane et al., 2017; Ochoa et al., 2018). However, a report

by Dee et al. (2020), demonstrated under experimental conditions that

pigswhich consumedpellet feed contaminatedwith 1×105 TCID50/ml

of PRRSV became infected. As such, cross-contamination of pellet

feed may occur when coming into direct contact with contaminated

fomites or feedmill workers after the pelleting process (Niederwerder,

2021). In addition, it is important to acknowledge that inadequate tem-

perature applied during the pelleting process could reduce the prob-

ability to inactivate PRRSV from contaminated feed ingredients, as

observed in an experimental study with porcine epidemic diarrhea

virus (Cochrane et al., 2017). InNorth America, most feed formulations

include some animal by-products, such as animal fat, dried plasma or

meat and bone meal in order to increase growth performance (Lewis

& Southern, 2001). Without adequate processes to inactivate PRRSV,

these ingredients could potentially be a source of contamination and

later infection. Magar and Larochelle (2004) surveyed two Canadian

slaughterhouses and found 4.3% of animal serum samples and 1.2% of

the meat samples were positive for PRRSV by polymerase chain reac-

tion. The same study also demonstrated that the consumption of con-

taminated raw animal by-products caused infection in pigs (Magar &

Larochelle, 2004).

In this study, we built a novel mathematical model of PRRSV trans-

mission tailored to nine modes of between-farm propagation: local

transmission by the farm-to-farm proximity, between-farm animal and

re-break for farmswith previous PRRSVoutbreaks (Galvis et al., 2022),

with the addition of between-farm vehicle movements (feed, shipment

of live pigs between farms and to slaughterhouses and farm personnel

[crews]), and the quantity of animal by-products which was restricted

to animal fat, meat and bone meal in pig feed ingredients. The model

was used to estimate theweekly number of newPRRSV outbreaks and

their spatial distribution, which were compared to available data, and

to quantify the contribution of each transmission route.

2 MATERIAL AND METHODS

2.1 Databases

In this study, we used weekly PRRSV records captured by the Mor-

rison Swine Health Monitoring Program (MSHMP) (MSHMP, 2020).

Data included outbreaks between 22 January 2009 and 31 December

2020, from 2294 farms from three non-commercially related pig pro-

duction companies (coded as A, B and C) in a U.S. region (not disclosed

due to confidentiality). Additional details about the study population

and PRRSV classification in theUSA are available in (Galvis et al., 2022;

Holtkamp et al., 2011). Individually, each PRRSV record was classified



GALVIS ET AL. e1551

F IGURE 1 Framework of the indirect farm contacts formed by
transportation vehicle movements. The transportation vehicle
networks were reconstructed based on consecutive farm visits of each
vehicle. Because the stability of PRRSV in the environment is directly
impacted by the environmental conditions, a contact network was
reconstructed considering all edges between-farm visits that
happenedwithin 72 h for coldmonths (fromOctober until March) and
within 24 h for warmmonths (fromApril until September)

as anewor recurrentoutbreakaccording to the timebetweenconsecu-

tiveoutbreaksper farm (Galvis et al., 2022). A list of pig farmswas avail-

able from the MSHMP database (MSHMP, 2020), which included indi-

vidual national premises identification number, farm type (sow [which

included farrow, farrow-to-wean and farrow-to-feeder farms], nurs-

ery, finisher [which included wean-to-feeder, wean-to-finish, feeder-

to-finish], gilt development unit [which could be either part in finisher

or sow farms depending upon farm type used by pig production com-

pany], isolation and boar stud), pig spaces per farm and geographic

coordinates. Between-farm pig movement data from 1 January 2020

to 31 December 2020 were used to reconstruct directed weekly con-

tact networks. Each movement batch included movement date, farm

of origin and destination, number of pigs transported and purpose of

movement (e.g., weaning). Movement data missing either the num-

ber of animals transported, farm type, farm of origin or destination

were excluded prior to analysis (731 [1.2%] unique movements were

excluded). In addition, four networks formed by transportation vehi-

cles were recorded from the global positioning system (GPS) vehicle

tracker for which included tracking of all farms from company A (76%

of all farms within the study region for 2020) from 1 January 2020 to

31 December 2020. These movements comprise near-real time GPS

records of each transporting vehicle, which include geographic coor-

dinates for every 5 s, of any vehicle. Overall, 398 vehicles were mon-

itored which included: (i) 159 trucks used to deliver feed to farms, (ii)

118 trucks utilized in the transportation of live pigs between farms,

(iii) 89 truck used in the transportation of pigs to markets (slaughter-

house) and (iv) 32 vehicles used in the transportation of crewmembers,

which by the information we collected correspond to themovement of

additional personnel needed for vaccination, pig loading and unload-

ing among other activities which included power washing (Figure 1).

Each movement batch included a unique identification number, speed,

date and time alongwith coordinates of each vehicle location recorded

every 5 s. A vehicle visit was defined as a vehicle coordinate (latitude

and longitude) and speed of zero km/h for at least 5minwithin a radius

of 1.5 km of any farm or cleaning station (time and distance radius

selected after discussion with personnel in charge of vehicle logistics

and data observation). In case more than one farm was located within

a 1.5 km radius, we assumed all these farms were at-risk of transmis-

sion, and therefore the vehicle contacted all of them. It is worth not-

ing that in some cases where farms are located at distances <1.5 km

from other farms, it is because they belong to the same pig produc-

tion (personal communication). We calculated the time in minutes the

vehicle remained within each farm’s perimeter and the vehicle con-

tact networks between the farms was built considering the elapsed

time a vehicle visited two ormore different farms (Figure 1). To accom-

modate PRRSV survivability in the environment, we considered two

seasons (cold and warm weather) based on previous literature (Dee

et al., 2002; Jacobs et al., 2010). Under laboratory conditions, it was

reported that PRRSVpreserved stability formore than 72 hwhen tem-

peratures oscillated between 4 and 10◦C (cold temperatures) and less

than 24 h when temperatures were equal or higher than 20◦C (warm

temperatures) (Jacobs et al., 2010). Thus, an edge among two different

farms was recorded if the elapsed time the vehicle visited both farms

was less than 72 or 24 h, for the cold and warm seasons, respectively.

However, we did not consider the formation of edges between con-

secutive farms after vehicles were observed via GPS driving through

clean stations (Figure 1). The edges for all four vehicle networks were

weighted by the elapsed time each vehicle visited two different farms,

whichwas later transformed to a probability assuming a decreasing lin-

ear relationship of PRRSV stability in the environment (Figure 1 and

Figure S1). Additionally, we collected feed load out records from all

(three) feedmills of company A for 2020, with each feed record includ-

ing feed mill identification with individualized feed formulation (ingre-

dients), amount of feed delivered, destination farm identification and

destination farmdelivery data. From the feed records, we collected the

amount in pounds (lb) of animal by-products (parts of a slaughtered ani-

mal that included animal fat, pig plasma and meat and bone meal) of

each feed formulation received by the farms for each week of 2020

(Figures S2 and S3). Although companies B and C data about vehicle

movements and feed delivery were not available, we kept the farms

from both companies in the transmission model to complement the

PRRSV dissemination by the local transmission (Jara et al., 2020).

2.2 Descriptive analysis

2.2.1 Between-farm animal and transportation
vehicles movement

The networks formed by movement of live pigs transported between

farms and four types of transportation vehicles visiting farms were

reconstructed and analyzed. A set of network metrics, including size,

general properties and heterogeneity at node level, was evaluated for

each directed static and temporal network (Table S1 for terminology

and network metric description). To determine if the static networks
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of pig and vehicle movements could represent the temporal variation

of the between-farm contacts over a year, we calculated the causal

fidelity (Lentz et al., 2016). Briefly, causal fidelity quantifies the error of

the static representation of temporal networks through a ratio among

the number of paths between both representations. Thus, a casual

fidelity of 100% would mean that a temporal network is well repre-

sented by its static counterpart, and conversely, a value close to 0%

means the network should not be considered as a static system (Lentz

et al., 2016).We then estimated whether farmswith PRRSV outbreaks

records were more frequently connected with other infected farms

through the ingoing and outgoing contact chain compared with farms

without PRRSV records. Finally, we estimated if the time transporta-

tion vehicles remained within farms premises was higher in the farms

with PRRSV outbreaks compared with farms without PRRSV breaks.

The association for the contact chain and the time the vehicles stayed

in the farms with PRRSV outbreaks was evaluated through a Mann–

Whitney test.

2.2.2 Animal by-products in feed ingredients

We calculated the total amounts of animal fat, pig plasma, animal pro-

tein blend 58%, protein blend (animal protein blend and protein blend

wasmadeof a combinationof ingredients such asmeatmeal, corn germ

meal, hominy and dried distillers grains with solubles), and meat and

bone meal present in each of the 23 feed formulations delivered to

farms with and without PRRSV outbreaks in 2020 (Figures S2 and S3).

In order to further evaluate the association between PRRSV outbreaks

and the delivery of feedwith animal by-products, we performed a logis-

tic regression analysis for each farm type and ingredient in which the

response variable was positive or negative for PRRSV from 1 January

2020 to 31 December 2020, and the predictor was the amount of ani-

mal by-product divided by the farm’s pig capacity to avoid confusion by

the farm size.

2.3 Transmission model

The analysis of spatiotemporal distribution of farm-level PRRSV out-

breakswasbasedonour previously developed stochasticmodel (Galvis

et al., 2022),whichherewas extended to include vehicle transportation

networks and the delivery of animal by-products. The model was cali-

brated on theweekly PRRSV outbreaks and considering nine transmis-

sion modes including: (1) contact network of discrete pig movements;

(2) the local transmissioneventsbetweenneighbouring farmsdrivenby

distances among farms; (3) re-break by a previous exposure to PRRSV;

indirect contact by vehicles coming into farms, including for (4) feed,

animal delivery to (5) farms and (6) market, and (7) vehicles used by

personnel (crew) involved in the loading and unloading of pigs; amount

of (8) animal fat and (9) meat and bone meal in feed formulation deliv-

ered to farms (Figure 2). The model simulates between-farm transmis-

sion among three farm-level infectious states, susceptible–infected–

outbreak, and we defined susceptible status as farms free of PRRSV,

infected status as farms with PRRSV but not yet detected and out-

breaks status as infected farm that detected PRRSV. Thus, farms in a

susceptible state (i) receive the force of infection of infected and out-

break farms (j) in each time step t and become infected at probabil-

ity Yit (Figure 2). It is worth noting that the latent period of PRRSV

is not explicitly modelled, as it is typically a few days after infection,

and often viral shedding starts within 7 days post-infection (Chase-

Topping et al., 2020; Pileri & Mateu, 2016), thus it is embedded in the

weekly timestep. Local transmission was modelled through a gravity

model where the probability of infection is proportional to the animal

capacity of the farms and inversely related to the distance between

the two farms (i.e., lower transmission at longer distances), with the

maximum distance set at 35 km, similar to our previous study to facil-

itate the comparison of results (Galvis et al., 2022). Local transmission

is also dependent on the enhanced vegetation index (EVI) around the

farm i (Galvis et al., 2022; Jara et al., 2020), such that the probability

of transmission decreases with high EVI values (Figure S4). The trans-

mission associated with between-farm pig movements is modelled by

the number of all infected and outbreak farms sending pigs to suscepti-

ble farms. The dissemination via transportation vehicle networks (e.g.,

vehicles transporting pigs to farms) is modelled by the edge weight (E)

and the time the vehicles remained on the susceptible farm premise

(Zit) (Figure 1 and Figures S1 and S5). The transmission via animal fat

and meat and bone meal was only considered to sow farms and mod-

ulated simply by the amounts delivered to susceptible farms (Ait). Pig

plasma, animal protein blend meal 58% and protein blend were only

delivered to nursery and finisher farms, thus were not considered. For

the re-break rate which is only considered for sow farms, we assumed

that subsequent new infections at an individual farm, within a time

period of two years, were associated with the same strain as the previ-

ous outbreak, and the probabilitywas based on a survival analysis eval-

uating the time farms re-break after recovering (Wit) (Holtkamp et al.,

2010) (Figure S6). Then, for each transmission route, the force of infec-

tion (λ) of infectedandoutbreak farmsvarieswith a seasonality derived

from analysis of the PRRSV records from 2015 to 2019 (Figure S7).

In addition, sow farms without a record of PRRSV outbreaks since

2009 were assumed to have high biosecurity levels (H) that reduce the

force of infection received by infected and outbreak farms, being H

higher than zero and calibrated according to the observed outbreaks

(Table S2). Otherwise, farms with outbreaks records were assumed to

have low biosecurity levels andHwas defined as zero.

The transition from infected to an outbreak farm is estimated

through a detection rate f(x) (Figure 2). Thus, the probability that farms

transit to outbreak state is assumed to be dependent on the maxi-

mum detection probability (L), considered equal to cases reported to

MSHMP (MSHMP, 2020), and the average time it takes a farm to detect

the disease (x0), assumed to be 4 weeks (estimated from information

provided by local swine veterinarians and previous literature) (Neira

et al., 2017). The proportion of infected and outbreak sow farms that

return to a susceptible state is drawn from a Poisson distribution with

mean of 41weeks, which is the average time to stability described else-

where (Sanhueza et al., 2019). Nursery and finisher farms’ transition to

susceptible status is driven by pig production movement scheduling of
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F IGURE 2 Transmissionmodel framework. (a) Model flowchart of the farm’s infectious status and routes of PRSV transmission, and (b)
description of themodel transmission parameters. In the example, for the local infection force, j takes the values from 1 and 2 because these are
the only two farmswithin themaximum radius distance

the all-in all-out management schemes of closeouts or by incoming or

outgoingmovements, whichever came first (Galvis et al., 2022). Briefly,

nurseries and finisher farms become susceptiblewithin 7 and25weeks

of pig placement, respectively, or when at least one new pig movement

is recorded before the farm reaches the scheduled production phase

timeline described earlier. A detailed description of the model can be

found inFigure2, andpreviousworkdescribesothermodel parameters

in greater detail (Galvis et al., 2022). Finally, we used an Approximate

BayesianComputation rejection algorithm (Minter&Retkute, 2019) to

estimate the posterior distribution of unknownmodel parameters (list

of model parameters available in Table S3) by selecting the 100 parti-

cles (number of particles accepted defined according to our computa-

tional resources) that best fitted the temporal and spatial distribution

of observed PRRSV outbreaks (Figures S8–S10).

2.4 Model outputs

The model outputs included (a) the force of infection for each farm

type and transmission route, (b) the weekly number of infected unde-

tected and detected farms (outbreaks) and (c) the sensitivity perfor-

mance to detect PRRSV outbreak locations (Supplementary Material

Section 2). We carried out 1000 simulations, each simulation choos-

ing at random one of the 100 accepted particles, to estimate the rel-

ative contribution of each transmission route and the weekly number

of cases. For the sensitivity performance, 100 simulations were used

for each particle to estimate the risk of infection, and only 100 parti-

cleswere used due to computational resources (additional information

see Figure S10). For the contribution of the routes, we evaluated the

number of infected farms resulting from each transmission route indi-

vidually, which were then divided by the number of simulated infected

farms fromall the combined routes and commercial companies. In addi-

tion, the average contribution for each route was estimated by sum-

ming the weekly contributions divided by the number of simulated

weeks, and credible intervals (CI) were estimated from theweekly con-

tribution distribution by using an equal-tailed interval method. The

modelwasdeveloped in theR (3.6.0RCoreTeam,Vienna,Austria) envi-

ronment, and all simulations were run in RStudio Pro (1.2.5033; RStu-

dio Team, Boston, MA) and transmission model framework is available

at https://github.com/machado-lab/pigspread.

3 RESULTS

The comparison among the five networks showed that vehicles trans-

porting feed, pigs to farms, pigs to markets and movement of crews

were significantly more connected than the pig movement network

(Table 1). The network density formed by vehicles transporting feed

exhibited the highest density (edge density = .2). Comparing the paths

between the static and temporal networks of pig movement and trans-

portation vehicles movements, we found that causal fidelity was above

32% for all networks (Table 1), which means that a significant num-

ber of the causal paths described by the static networks can be

found in the temporal networks. The networks of vehicles transport-

ing feed and pigs to farms exhibited the highest causal fidelity values

(causal fidelity > 90%), which means these networks are the closest

https://github.com/machado-lab/pigspread
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TABLE 1 Summary of the networkmetric of pig movements and vehicle movements of the three different pig producing companies, with data
from January 2020 until December 2020

Company A B C

Vehicles transporting

Networkmetric/type

Pig

movement*
Feed to

farms

Pigs to

farms

Pigs to

markets Crew

Pig

movement*
Pig

movement*

Number of nodes (farms) 1745 1745 1745 1745 1745 228 321

Number of edges, weekly temporal network 34,833 3,182,144 386,730 35,854 109,675 4344 3882

Number of edges, static network 5664 603,977 43,968 18,836 53,880 692 553

Network density .002 .2 .014 .006 .018 .013 .005

Causal fidelity 43.2% 98.7% 89.6% 58% 76.9% 32.9% 61.9%

Number of strong connected components

(SCC) groups1
9 2 6 7 3 1 0

Number of farms in the Largest SCC 11 1591 1479 976 1058 61 1

In-degree2 3 319 19 5 14 2 1

Out-degree2 1 304 21 6 16 1 0

Betweenness centrality2 0 552.3 920.66 111.25 51.32 0.53 0

Ingoing contact chain2 34 1515 27 12 131 15 4

Outgoing contact chain2 0 1502 32 14 119 15 4

1Number of SCC groups withmore than two farms.
2Median values.

*Pig movement stands for themovement of live pigs between farms.

representation of causal paths between the static and temporal net-

work. Analyzing the network components of each vehicle network for

companyA,we found that the Largest Strongly ConnectedComponent

(LSCC) had between 976 and 1591 farms, thus these vehicle move-

ment networks connected between 55% and 90% of company A farms

(Table 1). For the pig movement network, company B showed the high-

est number of farms in the LSCCwith61 farms,which represented27%

of the farms from that company, whereas companies A and C showed a

low level of connectivity with the LSCC representing less than 1% of

the farms. Comparing pig movement networks also showed that com-

pany B had the highest edge density of .013, followed by company

C (edge density of = .005) and company A the lowest (edge density

of= .002).

The vehicles transporting feed static network had a median in-

degree and out-degree of 319 and 304, respectively, which was the

highest in comparison with vehicles transporting pigs to farms, pigs

to markets and vehicles used in the transportation of crew (Table 1

and Figures S11 and S12). The networks of vehicles transporting pigs

to farms and crew had a median in-degree and out-degree ranging

between 14 and 21, whereas vehicles transporting pigs to markets

and pig movements for all three companies showed median in-degree

and out-degree less than 7 (Table 1). The network of vehicles trans-

porting pigs to farms showed the highest median betweenness cen-

trality, followed by vehicles transporting feed, vehicles transporting

pigs to markets and then crew networks, whereas pig movements had

the lowest betweenness (Figure S13). Interestingly, despite the net-

work of vehicles transporting feed being more densely connected, the

network of vehicles transporting pigs to farms showed the highest

median betweenness centrality values, indicating that this network has

the highest number of shortest paths by farm to connect other farms

(Table 1 and Figure S13). Considering the result from the temporal net-

works, vehicles transporting feed showed the highest median ingoing

and outgoing contact chain (ICC and OCC) (Table S1), which indicates

that feed routes create the largest sequential paths over time that

allow for more connections between farms than any transportation or

pigmovementsnetwork (Table1andFigures S14andS15). The ICCand

OCC from vehicles transporting crew showed the second highest val-

ues, followed by vehicles transporting pigs to farms and then vehicles

transporting pigs to markets. When considering pig movement, com-

pany A had the highest median ICC among the different companies

(ICC = 34), and a median OCC of zero. Companies B and C showed

lower ICC values, but a higher median OCC of 15 and 4, respectively

(Table 1 and Figures S14 and S15).

Furthermore, we evaluated the association of PRRSV outbreaks

frequency within both ICC and OCC from infected and non-infected

farms. The results showed that PRRSV-infected farms were more fre-

quently found within the ICC and OCC of infected farms for the net-

works of vehicles transporting feed, pigs to farms and pigs to mar-

kets networks (p < .05), whereas such association was not observed

for vehicles transporting crew, and for pig movement networks, it was

only significant for OCC (Figures S16 and S17). We also evaluated the

association between the time transportation vehicles remained within

infected and non-infected farms. The vehicles transporting feed and

crew members spent more time within infected nursery farms when

compared with the non-infected farms (p < .05), whereas no asso-

ciation was found with PRRSV at sow and finisher farms for these
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vehicles (p > .05) (Figures S18). In addition, no differences were found

among the time spent on infected farms compared with the non-

infected farms for the vehicles transporting pigs to farms and pigs to

markets for any farm type (p > .05). Finally, the amount of animal by-

products in feed (animal fat, pig plasma, protein blend and meat and

bone meal) was not significantly associated with PRRSV outbreaks

(p> .05) (Figures S19–S21).

From theweeklymodel simulations from 1 January until 31Decem-

ber 2020, we estimated the total number of infected farms at 1790

(95%CI: 1776−1804), 113 (95%CI: 112−113) of which corresponded

to infected sow farms, 715 (95% CI: 704−726) to nursery farms and

960 (95%CI: 952−967) to finisher farms (isolation andboard stud farm

were excluded from the results because no outbreaks were reported

in the studied period). It is worth noticing that, just as in the data,

in our simulations, the same farm could have been at infected state

more thanonce over the simulated year.Overall, results showeda good

agreement between theweekly observed number of PRRSV outbreaks

and simulated outbreaks (Figure S9). The model inferred that, at the

end of the 52 weeks, on average, 158 (8.8%) of all PRRSV-infected

farms would be detected, in which 90% of the infected sow farms

weredetected,whereas amuch lowerproportionof detectionwasesti-

mated for nurseries (4.8%) and finishers farms (2%). The model’s pre-

dictive performance to correctly identify the weekly spatial distribu-

tion of known PRRSV outbreaks showed an area under the ROC curve

of .7 (more details are available in SupplementaryMaterial Section 2).

Evaluating the contribution of nine transmission routes over the

simulated PRRSV spread for company A’s farms demonstrated that for

sow farms, the most important route was the local transmission con-

tributing to an average of 32.4% (95% CI 15−67%) of the farm infec-

tions, followed by pig movements with 28.3% (95% CI 1.9−68%), vehi-

cles transporting pig to farms with 20.9% (95% CI 5−45%), vehicles

transporting feed12% (95%CI .5−32%), re-break3.2% (95%CI0−6%),

amount of animal fat within feed formulation 2.5% (95% CI .7−6%),

vehicles transporting pigs to markets .4% (95% CI 0−2.5%), vehicles

transporting crew .2% (95% CI 0−1.5%) and amount of meat and bone

mealwithin feed formulation .03% (95%CI 0−.5%) (Figure 3). For nurs-

ery farms, pig movements were the most important route contribut-

ing to 76.4% (95% CI 57−89%) of the farm infections, followed by

vehicles transporting pigs to farms 15% (95% CI 5−26%), local trans-

mission with 5.8% (95% CI 3−16%), vehicles transporting feed 2.3%

(95% CI .3−6%), vehicles transporting pigs to markets .44% (95% CI

0−1.4%) and vehicles transporting crew .1% (95% CI 0−.5%). For fin-

isher farms, local transmission was also the most important route con-

tributing to 35.5% (95% CI 17−58%) of the farm infections, followed

by pig movements with 30.1% (95%CI 12−52%), vehicles transporting

pigs to farms 20.6% (95% CI 7−38%), vehicles transporting feed 9.2%

(95% CI 3−19%), vehicles transporting pigs to markets 3.8% (95% CI

.13−11%) and vehicles transporting crew .61% (95% CI .01−1.8%). As

transportation vehicle data were not available for companies B and C,

the results were restricted to three transmission pathways (pig move-

ments, local transmission and re-break) and are available in Supple-

mentaryMaterial section 4 and Figures S22.

4 DISCUSSION

In this study, we demonstrated the contribution of nine pathways in

PRRSV dissemination dynamics which included pig movements net-

work, farm-to-farm proximity, different types of transportation vehicle

networks (vehicles transporting feed, pigs to farms, pigs tomarkets and

crew), the delivery of animal by-products, in particular animal fat and

meat and bone meal in the feed and re-break. We demonstrated that

the transportation vehicle networks connected more farms than the

pig movement networks, therefore between-farm contacts by trans-

portation vehicles have the potential to propagate PRRSV to more

sites and more quickly than moving live pigs between farms. Thus, we

remark that the greater potential for PRRSV transmission via trans-

portation vehicle networks pose a great challenge to surveillance and

effective control of endemic disease inNorth America and future erad-

ication of possible introduction of foreign animal diseases such as ASF

(Brown et al., 2020; Gao et al., 2021). Our regression results also sug-

gest that the overall volume of animal by-product delivery to the farms

was not associated with the PRRSV outbreaks, and our mathematical

model results indicated that animal fat and meat and bone meal deliv-

ered to sow farms combined contributed to<2.6% farm infection in the

simulations.

Our study addressesmajor gaps in the understanding of howPRRSV

propagates between farms by modelling multiple modes of transmis-

sion, which expand the understanding of PRRSV propagation, thus

far restricted to studies that have only considered the dissemination

of PRRSV throughout animal movement networks (Lee et al., 2017;

Makau et al., 2021; Thakur, Revie et al., 2015). Our previous study

(Galvis et al., 2022) and the information about the transmission dynam-

ics of PRRSV (Dee et al., 2002; Jara et al., 2020; Perez et al., 2015;

Pileri & Mateu, 2016; Silva et al., 2019; Thakur, Revie et al., 2015)

highlighted limitations of model accuracy and paucity evaluation of

PRRSV dissemination by not considering well known modes of trans-

mission, such as indirect contacts formed by transportation vehicles. In

this study, we have further extended the previous transmission model

(Galvis et al., 2022), by including six additional transmission routes,

including the contact networks formed by transportation vehicles and

animal by-products delivered to sow farms via feed ingredients. Our

results demonstrate that pig movements and local transmission were

the main transmission routes, regardless of farm types (sow, nursery

and finisher) (Figure 3). However, the contribution of transportation

vehicles used to transfer pigs to farms explained a significant number

of infected farms as follows, 20.9% of sow farms, 15% of nurseries and

20.6% of finisher farms. Our examination of feed delivery to farms,

more specifically the volumeof animal by-products animal fat andmeat

andbonemeal, indicated that thismodedid not contribute significantly

toPRRSVtransmission, contributing toonly2.5%and .03%of the infec-

tion in sow farms, respectively. Although our results tend to prove a

small role of feed, the approach used in this study is limited by several

factors that affect the contributionof feed in thePRRSVdissemination;

therefore, these results must be taken with caution (more details in a

section below). Finally, for companies B and C, the dominant routes of
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F IGURE 3 Farm infection contribution for each transmission route of each farm type (rows). The y-axis represents the proportion of
transmission by each transmission route, whereas the x-axis shows eachweek in the simulation.Weekly proportions of transmission were
calculated by dividing the number of simulated infected farms for the total number of routes combined

transmission were similar to the results for company A, with pig move-

ments having the greatest contribution to infection at nursery farms,

whereas local transmission mainly affected finishers (Figure 3). How-

ever, re-break contributed to a high number of infections that was not

observed in our previous study (Galvis et al., 2022). Overall, our results

have also reinforced the findings from previous studies which high-

light the role of vehicles in the transmission of infectious diseases that

pose a significant threat to or have a particular impact on the swine

industry (Dee et al., 2003, 2004, 2007; Melmer et al., 2020) and the

potential risk of contaminated animal by-products in the feed meals to

contribute to between-farm transmission of PRRSV (Dee et al., 2020;

Niederwerder, 2021).

From individual vehicle GPSmovement data, we reconstructed net-

works while considering the elapsed time between-farm visits and

the time vehicles spent within each farm to define effective contacts

among them. In addition, we considered contact between farms to end

once a truck drove through a cleaning station (Figure 1), as previous

studies suggest that vehicle disinfection can reduce the probability of

pathogens’ introduction into pig farms, for example, PRRSV (Thakur

et al., 2017) and ASFV (Yoo et al., 2021). In the current work, the inclu-

sion of cleaning stations reduced around half the edges of the four

types of transportation vehicle networks, which represent valuable

information for the analysis of disease transmission given that includ-

ing or not cleaning stations provide different results of the pathogen

dissemination among the farms through vehicles. It is worth to notice

thatweassumed that the cleaningprocesswas always effective to inac-

tivate PRRSV (Shirai et al., 2000), even though the literature about

probability of PRRSV survival on vehicle surfaces after cleaning and

disinfection remains limited (Dee et al., 2004). Thus, further studies

evaluating the presence and infectivity of PRRSV after vehicle cleaning

and disinfection are necessary.

Previous studies attempting to model transportation vehicle net-

works were limited to either static or simulated between-farm contact

networks, thus limiting our ability to further compare our networks

results (Thakur, Sanchez et al., 2015; Wiltshire, 2018; Sterchi et al.,

2019; Porphyre et al., 2020; Yang et al., 2020). However, our result

demonstrated that for the four vehicle networks described in this

study, the static networks provided a close representation of the

actual temporal networks, in which the ratio of the number of paths

between the static and temporal network varied from 58% for vehicles

transporting pigs to markets to 98.7% for vehicles delivering feed

(Table 1). Because of the high fidelity of the vehicle networks, our

results demonstrate that the static networks may be sufficient to

explain causal paths among farms formed by vehiclemovements (Lentz

et al., 2016). Although these results were only evaluated by comparing

the static and temporal network from a single commercial company

and with one year of GPS data, our results strongly suggest that

static views of transportation vehicles networks can be used either to

describe such networks or to be used in disease transmission models

when researchers only have access to a static view of a network.

The transportation vehicle networks were more densely connected

than the networks of between-farm pig movements, ranging from 3

to 100 times more connect considering the network of vehicles trans-

porting pigs to markets and feed, respectively. Other studies have also

found that vehicle movements between farms used for animal hauling

increased the indirect contacts among farms by more than 50% (Por-

phyre et al., 2020), consequently the network weak connected compo-

nent became 50% larger (Sterchi et al., 2019). Among the transporta-

tion vehicle networks analyzed here, the network of feed deliveries

was the most connected; for instance, more than 85% of all farms of

company A were connected through sequential paths in the tempo-

ral network (ICC and OCC; Table 1). On the contrary, the network of

trucks transporting live pigs between farms was less connected, but in

our transmission model, it represented between 15% and 20% of the

total transmissions. In turn, the probability of transportation vehicles

being contaminated with PRRSV is more likely in vehicles transporting
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animals than feed, mainly because of the direct contact with infected

animals. Vehicles transporting pigs to markets could in the same way

play a similar risk of contamination as vehicles transporting pigs to

farms; however, the former vehicles tend to visit mostly finisher farms

with pigs ready for slaughter, thus less likely to re-introduce PRRSV

back into the transmission chain by visiting breeding farms (Passafaro

et al., 2020). It is worth noting that this is not the case for farms with

complete production cycles, such as farrow to finisher farms, in which

movements returning from slaughterhouses are likely to pose a great

risk (Henry et al., 2018). Our studywas also the first to collect and con-

sider in a transmission model the contact networks of vehicles trans-

porting crew between farms. It is known that the number of farm visi-

tors increases the probability of introduction of infectious pathogens

(e.g., PRRSV); thus, the movement of additional personnel often

involved in loading and unloading pigs have been previously associated

with PRRSVdissemination and outbreaks (Dee et al., 2002; Pitkin et al.,

2009; Rossi et al., 2017). It is worth noting that in our study, we mod-

elled the consecutive contacts between farms formed by the vehicles

used by crew as a route of PRRSV dissemination, by evaluating indi-

vidual vehicles connecting farms thatwere visited consecutively rather

than the group of crewmembers, which is known to vary between each

farmvisit. Therefore, the risk of infection by vehicles transporting crew

could be more related to the vehicle itself as fomite, which in turn is

likely to represent a lower risk of infection compared with the risk of

infection related to the personnel. In general, all four transporting vehi-

cle networks evaluated in this study contributed to PRRSV transmis-

sion, similarly to previous studies (Thakur, Sanchez et al., 2015; Rossi

et al., 2017; Porphyre et al., 2020; Yang et al., 2020). It is important

to remark that the contribution of the networks described above may

have been underestimated, mainly because we have not fully consid-

ered the effectiveness of cleaning and disinfection to reduce PRRSV

contamination in vehicles driving through cleaning stations. The lack of

studies measuring the effectiveness of cleaning and disinfections sta-

tions in reducing PRRSV and the contribution of additional on-farm

biosecurity cleaning anddisinfection such as the presence of automatic

cleaning stations at the entrance of farms (Dee et al., 2004, 2007; Silva

et al., 2019) is clearly needed in order to better specify the reduction of

such procedures in the force of PRRSV transmission.

The potential propagation of infectious diseases within feed ingre-

dients has been of concern not only to the swine industry but across

other livestock systems; more recently, studies have attempted to

relate different feed categories: blood products from livestock ani-

mals (animal by-products), cereal grains (i.e. soybeans, corn, wheat), oil

(canola, corn, soybean), forage, pellets (complete compound feed) and

straw (bedding material) with the propagation of ASFV (Gordon et al.,

2019; EFSA Panel on Animal Health andWelfare (AHAW) et al., 2021;

Niederwerder, 2021). Despite the concerns about feed as a route of

PRRSV transmission, many uncertainties remain, including the mini-

mal infection dosage required to cause disease, the effectiveness of

feed processing such as pelleting, extruding and roasting and the use

of feed additives (Dee et al., 2020; Niederwerder, 2021). In addition, it

is important tomention that feed contaminationmay also occur within

the feed mill facility either by contaminated environments, person-

nel, equipment, birds or rodents, or even contaminated trailers com-

ing in and out feed mill facilities (Dee et al., 2020; Gebhardt et al.,

2021; Niederwerder, 2021); our model does not explicitly consider

such uncertainties nor attempt to account for such complexity. In this

study, we assumed that all feed meals with any amount of animal by-

products were still able to cause infection once delivered. In addition,

we also assumed that the pelleting process did not eliminate PRRSV

contamination, and feed was delivered with enough viral load to cause

infection. Even though our results showed a relatively small role of ani-

mal by-products (less than 2.6%), there are limitations to our approach

and also limited information about the risk and pathways of collateral

contamination during or after feed manufacturing. For example, the

effect of high temperatures and pressure used during pelleting in inac-

tivating PRRSV remains unknown (Benfield et al., 1992; Van Alstine

et al., 1993; Bloemraad et al., 1994; Cochrane et al., 2017); if once such

data become available, it will be possible to better assess the role of

animal by-products in PRRSV transmission.

4.1 Limitations and final remarks

We identify a number of limitations related to the simulated scenar-

ios and data availability. First, our calculation approaches for the con-

tribution of each transmission route were based on simulations that

best calibrated to the observed PRRSV cases in space and time. How-

ever, although the sensitivity of the final simulations to detect PRRSV

outbreaks was good, results may change once more data about other

routes of transmission (e.g., rendering networks) or other relevant dis-

ease control interventions are considered such as vaccination pro-

grams or on-farm biosecurity. Additionally, the lack of data on trans-

portation vehicles movements and feed delivery of companies B and

C limited our ability to examine possible differences and similarities

about the contribution of those routes among companies. Even with

such limitations, it is important to mention that companies B and C

were included in themodel because of the relevance of the local trans-

mission in the company-to-company spread of PRRSV, described in

details elsewhere (Jara et al., 2020). The 1.5 km radius used to define

when a vehicle visited a farm or cleaning station was a limitation for

reconstructing the vehicle networks for sites that were 1.5 km from

each other; thus, in some cases, the contacts were counted towards

two or more instead of a single farm (median number of neighbours

into 1.5 km = 1). A future alternative to reduce such events would

require geographic information of each farms’ feed bins, for exam-

ple. Additionally, the on-farm model parameters were oversimplified,

since we have based those estimations through historical records of

PRRSV outbreaks, in which farms with fewer infections were con-

sidered to have better biosecurity levels. Although there are several

ways that the current version of PigSpread model can be expanded,

the inclusions of specific on-farm biosecurity practices and infrastruc-

ture (e.g., present of cleaning and disinfection stations) could not only

improve model calibration but also analyze the role of individualized

and combined biosecurity on PRRSV dissemination (Sykes et al., 2021).

Another important limitation of our modelling work was the lack of
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information about the vaccination strategies used by each farm, which

could have contributed to the probability of new PRRSV outbreaks

(Galvis et al., 2022). Finally,wehighlight that additional studies are nec-

essary to understand the effect of EVI and seasons on the local trans-

mission and to evaluate the performance of the gravity model against

other transmission methods, such as density kernels, to fit PRRSV out-

break locations. Despite the limitations, this is the first studymodelling

simultaneously nine routes involved in PRRSV dissemination dynam-

ics over an entire year of outbreak data. This study is unique because

it provides the swine industry and regulatory agencies with robust and

essential results about the dynamics of between-farms swine disease

transmission and the most relevant routes of transmission, offering a

unique opportunity to enhance the control of endemic disease and also

prepare for future threats (Herrera-Ibatá et al., 2018; Jurado et al.,

2019; Brown et al., 2020).

5 CONCLUSION

We expanded a previously developed stochastic PRRSV simulation

model (Galvis et al., 2022) to account and quantify the contribution

of nine different routes of between-farm transmission, including for

the first time the role of animal by-products delivered via feed meals

andmultiple transportation vehicle networks.Our results demonstrate

that transportationvehicle networkshaveagreater potential to spread

PRRSV when compared with the movement of pigs between farms. In

addition, vehicles transporting feed represented the highest risk for

PRRSV propagation in comparison with other vehicle networks, con-

necting around 85% of farms. The temporal network was well rep-

resented by its static view for the networks of vehicles transporting

feed, and pigs to farms, with causal fidelity values > 89%; thus, we

infer that studies using a static view for vehicle networks are well

supported when temporal data are not accessible. Our model demon-

strated that pig movements and local transmission remained the main

routes of PRRSV transmission regardless of farm types, but vehicles

transporting pigs to farms also explained a significant proportion of the

farm infections: sow = 20.9%; nursery = 15%; and finisher = 20.6%.

As expected, vehicles transporting pigs to markets were more impor-

tant for PRRSV introduction into finisher farms (3.8%), while vehicles

transporting feed showed thehighest transmission contribution to sow

farms (12%), while the vehicles transporting crew had limited contri-

bution in the propagation of PRRSV regardless of farm types. Finally,

animal fat and meat and bone meal delivered via feed contributed to

2.5% and .03% of sow farm infections, respectively. Even though we

were able to uncover the contribution of by-products and networks

of several transportation vehicles in the dissemination of PRRSV, we

highlight the need for experimental or observational studies as they

are able tomeasure the viability of PRRSVwithin feed formulation and

the exterior or transportation vehicles. Ultimately, this study provides

a better understanding of the role of several transmission routes for

PRRSV dissemination and can provide bases to the swine industry to

evaluateand strengthen the surveillanceof transportationvehicles and

feed delivery to better contain the propagation of PRRSV.
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