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Evaluating the ecological hypothesis: early =

life salivary microbiome assembly predicts
dental caries in a longitudinal case-control
study
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Abstract

Background: Early childhood caries (ECC)—dental caries (cavities) occurring in primary teeth up to age 6 years—is a
prevalent childhood oral disease with a microbial etiology. Streptococcus mutans was previously considered a primary
cause, but recent research promotes the ecologic hypothesis, in which a dysbiosis in the oral microbial community
leads to caries. In this incident, density sampled case-control study of 189 children followed from 2 months to 5 years,
we use the salivary bacteriome to (1) prospectively test the ecological hypothesis of ECC in salivary bacteriome com-
munities and (2) identify co-occurring salivary bacterial communities predicting future ECC.

Results: Supervised classification of future ECC case status using salivary samples from age 12 months using bac-
teriome-wide data (AUC-ROC 0.78 95% Cl (0.71-0.85)) predicts future ECC status before S. mutans can be detected.
Dirichlet multinomial community state typing and co-occurrence network analysis identified similar robust and repli-
cable groups of co-occurring taxa. Mean relative abundance of a Haemophilus parainfluenzae/Neisseria/Fusobacterium
periodonticum group was lower in future ECC cases (0.14) than controls (0.23, P value < 0.001) in pre-incident visits,
positively correlated with saliva pH (Pearson rho = 0.33, P value < 0.001) and reduced in individuals who had acquired
S. mutans by the next study visit (0.13) versus those who did not (0.20, P value < 0.01). In a subset of whole genome
shotgun sequenced samples (n = 30), case plaque had higher abundances of antibiotic production and resistance
gene orthologs, including a major facilitator superfamily multidrug resistance transporter (MFS DHA2 family Py, value
=1.9 x 107%), lantibiotic transport system permease protein (Pg, value = 6.0 x 107°) and bacitracin synthase | (Pg
value = 5.6 x 107°). The oxidative phosphorylation KEGG pathway was enriched in case plaque (Pg, value = 1.2 x
1078), while the ABC transporter pathway was depleted (P, value = 3.6 x 1079).

Conclusions: Early-life bacterial interactions predisposed children to ECC, supporting a time-dependent interpreta-
tion of the ecological hypothesis. Bacterial communities which assemble before 12 months of age can promote or
inhibit an ecological succession to S. mutans dominance and cariogenesis. Intragenera competitions and intergenera
cooperation between oral taxa may shape the emergence of these communities, providing points for preventive
interventions.
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Background

In 2015-2016, 21% of US children aged 2-5 years showed
evidence of early childhood caries (ECC), i.e., at least
one primary tooth with one or more decayed, missing
or filled tooth surfaces [1, 2]. ECC can be painful, may
negatively impacts self-esteem, and is a strong predictor
of future oral health problems [3, 4]. Microbial diges-
tion of carbohydrates to acids which demineralize tooth
enamel is the proximate cause [5-7]. Acid-producing
bacteria, particularly Streptococcus mutans (S. mutans),
are frequently associated with ECC [5, 8]. No single bac-
terial species, however, has been conclusively identified
as a necessary and sufficient cause of ECC across human
populations [5, 8, 9]. Recent research emphasizes the
ecologic hypothesis, which posits that overall shifts in the
composition, structure, functional potential of the oral
microbial community leads to dental decay [5, 10]. The
oral microbiome assembles rapidly over the first 2 years
of life [11]. However, few studies of ECC have prospec-
tively tested the ecologic hypothesis during this early life
period of assembly.

To assess the bacterial community in saliva and plaque
samples, 16S rRNA gene amplicon sequencing is used
to simultaneously measure many bacterial populations
(although archaeal populations can also be measured
using 16S amplicon sequencing, typical primers result in
bias against archaea) [11-15]. However, common meth-
ods for analyzing 16S rRNA gene data fail to capture
the spirit of the ecological hypothesis. Estimating the
effect of each identified taxa as an independent predictor
ignores how bacteria interact to affect risk, which is a key
component of the ecological hypothesis [5, 16]. Diversity
metrics, such as alpha and beta diversity, conveniently
and efficiently summarize information across all meas-
ured taxa, but findings using associations between diver-
sity metrics and cariogenesis are mixed [17-21]. The lack
of consistency may be attributed to differences in study
design, conduct and analysis, but also may reflect the
inherent limitations of diversity metrics. These metrics
ignore taxonomic, ecologic, and functional differences
between bacteria which can impact disease processes
such as cariogenesis [22]. Common methods for analyz-
ing 16S rRNA gene data do not adequately encapsulate
the ecologic hypothesis.

Microbial communities are dynamic, and early child-
hood is a susceptible life-period for short- and long-term
oral microbial community assembly. The oral microbiome
is acquired after birth and influenced by environmental

factors [11, 12, 23]. Very few studies have prospectively
tested the effect of oral microbial community assembly
on ECC risk. A 2019 Australian study of 134 children
followed for 5 years noted a shift in salivary microbiome
composition at 39 and 48.6 months of age associated
with future ECC [14]. Microbial taxa, including Strepto-
coccus sobrinus and Scardovia wiggsiae, were identified
as potential biomarkers of ECC onset. The percentage
of S. mutans in saliva was the best prospective predictor
of future ECC [13, 14]. The authors concluded, however,
that the magnitude of change in the salivary microbiome
was inadequate to differentiate between health and dis-
ease at clinical levels. A smaller 2020 study of 56 children
aged 1-3 years followed for 2 years demonstrated that
the early life salivary microbiome could prospectively
classify future ECC onset (area under the receiver oper-
ating curve = 0.71) and identified several taxa that may
serve as biomarkers of ECC [15]. These studies prospec-
tively link community-wide shifts in the early-life salivary
microbiome to ECC. However, they did not evaluate how
co-occurrence or functional interactions between taxa
influence ECC risk. Few longitudinal cohorts have explic-
itly evaluated how co-occurring groups of oral bacteria or
functional interactions influence ECC risk.

To understand the influence of oral microbial com-
munity assembly on future oral health, explicit tests of
the ecological hypothesis and identification of influen-
tial microbial populations is required. We used a longi-
tudinal cohort of children to (1) prospectively test the
ecological hypothesis of ECC in salivary bacterial com-
munities and (2) identify co-occurring salivary bacte-
rial populations influencing the risk of future ECC. We
performed 16S rRNA gene amplicon sequencing on 855
longitudinal saliva samples from 99 children with ECC
and 90 incidence-density sampled control children fol-
lowed from 2 months to 5 years of age. We show that
bacteriome-wide taxonomic information at 12 months
of age better classifies future ECC status than S. mutans
amplicon abundance alone. We identify robust and rep-
licable communities of co-occurring bacteria using unsu-
pervised clustering techniques, including a protective
community of Neisseria/Haemophilus parainfluenzae/
Fusobacterium periodonticum which was less abundant
in future ECC cases. Finally, we comment on ecological
and functional interactions that may shape the assembly
of these communities using clinical data and functional
potential measurements from a subcohort with shotgun
metagenonomic sequencing data.
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Results

Description of cohort

We selected an incidence density-matched case-con-
trol subset from the Center for Oral Health Research in
Appalachia 2 (COHRAZ2) cohort. In the entire COHRA2
cohort, 47% of children were female, 79% were White and
71% were delivered vaginally. At 2 months of age, 58%
of children were breastfed; this decreased to 32% by 12
months of age and 6% by 24 months of age. By 24 months
of age, 3.8% of children in COHRA?2 had a carious lesion
or white spot. We analyzed a nested case-control sample
of 99 children who developed a carious lesion or white
spot at or before 60 months of age and 90 control chil-
dren who were free of dental lesions at the age of case
diagnosis (Additional file 1: Figure S1). Of the 189 chil-
dren, 169 were White and 20 were bi- or multi-racial,
100 were from West Virginia and 89 from Pennsylvania,
and 97 male and 92 female. None of these characteristics
differed between cases and controls (Table 1). The moth-
ers of controls were more likely to be educated beyond
high school (63%) than the mothers of cases (33%, P <
0.001). Cases and controls were similar in the distribu-
tion of delivery mode, recent antibiotic exposure, breast-
feeding, and count of erupted primary teeth (Table 1).
Sampled controls were representative of the underlying
disease-free cohort, although the proportion of bi- and
multi-racial children was lower in the nested case-control
sample (Additional file 2). Among the 99 ECC case chil-
dren, the youngest age of diagnosis was 12 months, with
a mean age of diagnosis of 38 months, additional infor-
mation on case severity is presented in Additional files
3 and 4. We sequenced the V4 16S rRNA gene region in
saliva samples from the visit corresponding to ECC diag-
nosis (incident visit) and all preceding visits (pre-incident
visits) for case and control children (Fig. 1, Figure S1-3
in Additional files 1 and 5). From the 855 saliva samples
across all incident and pre-incident visits, we identified
3194 amplicon sequence variants (ASVs). We labeled
ASVs that did not classify to the species level with ASV
numbers. Alpha diversity of the salivary microbiome
increased as children aged. Alpha diversity was incon-
sistently associated with future ECC diagnosis across
visits (Table 2). For a subcohort of 15 cases and matched
controls, we also performed shotgun metagenomic
sequencing on plaque and saliva samples from the visit
corresponding to the time of case diagnosis (Additional
files 1 and 6).

S. mutans did not associate with future ECC diagnosis
before 24 months of age, but was elevated in cases

at the visit of first ECC diagnosis

A single ASV identified as S. mutans. We validated
the identity of this ASV using BLAST and shotgun
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metagenomic sequencing data (Additional file 7; Addi-
tional file 1: Figure S4). At the 2- and 12-month visits,
S. mutans was rare and not associated with future ECC
diagnosis (Table 2). By the 24-month visit, S. mutans was
more prevalent in future cases (Table 2; P value < 0.001).
S. mutans prevalence and abundance was elevated in
cases at the visit of ECC diagnosis: 13 of 20 ECC cases
diagnosed at 24 months had S. mutans at the 24-month
visit vs 2 of 18 matched controls (Additional file 8; P
value = 0.001). Similarly, Scardovia wiggsiae was elevated
at the visit of ECC diagnosis but not in visits preceding
diagnosis (Table 2, Additional file 8).

At 12 and 24 months of age, supervised random forest
using the salivary bacteriome can predict ECC status
before S. mutans detection

We investigated whether future ECC status could be
predicted from a random forest classifier using the 273
most abundant and prevalent ASVs sequenced from
saliva samples. Separate classifiers were built using sam-
ples from the 12- and 24-month visits. Only pre-incident
samples were used, i.e., we predicted if a child would go
on to be diagnosed with white spots or cavities at any of
the 24-, 36-, 48-, or 60-month visits using their 12-month
saliva sample. Children who were diagnosed with white
spots or cavities at the 12-month visit and their incidence
density-matched controls were excluded from the classi-
fier. Similarly, we predicted if a child would go on to be
diagnosed at any of the 36-, 48-, or 60-month visits using
their 24-month saliva sample, excluding saliva samples
from children diagnosed at 12 or 24 months. Thus, each
random forest classifier predicted future ECC diagnosis
using saliva samples from before disease was clinically
apparent and diagnosed.

The random forest using 273 ASVs showed good classi-
fication of future ECC status at the 12-month (AUC (95%
CI): 0.78, (0.71-0.85)) and 24-month visits (AUC (95%
CI) 0.72, (0.63-0.81)) (Fig. 2A). The mean decrease in the
Gini coefficient provides a measure of how important a
feature is for classification, with a larger decrease cor-
responding to a greater importance. In Fig. 2B, we show
the 10 ASVs with the largest decrease in Gini coefficient
from the 12- and 24-month supervised random forest
classifiers. The Gini coefficient for Streptococcus mutans
is included for comparison. In Fig. 2C, the distribution
of the square root of ASV abundance is shown for cases
(black) and controls (grey) for the ASVs with the largest
decreases in Gini coefficient at the 12- and 24-month vis-
its. Several of the important features from the random
forest classifiers were more abundant in controls than in
ECC cases (protective ASVs). Protective ASVs Fusobac-
terium periodonticum and Neisseria ASV9 were among
the top 10 most important features in both the 12- and
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Fig. 1 Histogram of available samples in this incidence-density case-control sample of 189 children from Appalachia. Children were followed from
birth until 60 months of age, attending regularly scheduled study visits at birth (Pennsylvania children only), ~ 2 months, 1st-tooth emergence
(Pennsylvania children only, average 9 months of age), ~ 12 months, ~ 24 months, ~ 36 months, ~ 48 months and ~ 60 months of age. Children
who were diagnosed with white spots or enamel lesions were selected as cases. For each visit at which cases were diagnosed (incident-visit,
dark-grey histogram), a similar number of controls were selected from the group of children free of white spots and enamel lesions at that time.
Children could be selected as a control more than once or as a case and a control. In our sample, 1 child was selected as a control at both the

36- and 60-month visit, and 1 child was selected as a control at the 36-month visit and a case at the 60-month visit. The number of diagnosed
cases/matched control children at each visit is shown in the dark-grey box and double counts these twice-sampled children at lines denoted with
asterisk (*). All the available saliva samples from the incident-visit and all preceding visits for cases and selected controls were sequenced for the V4
region of the 16S rRNA gene (light-grey box and light-grey histogram). For a subsample of 15 children diagnosed with enamel lesions at or after the

sequenced (black box and black histogram)

36-month visit and their 15 matched controls both saliva and plague samples from the visit of diagnosis/matching were shotgun metagenomic

24-month classifiers. Haemophilus parainfluenzae and
Porphyromonas ASV42 were among the top 10 most
important features in only the 12-month classifier while
Lachnoanaerobaculum umeaense and Porphyromonas
ASV120 were among the top 10 most important features
in only the 24-month classifier. Other important features
were more abundant in ECC cases (cariogenic ASVs).
Of these, only Prevotella histicola was among the top 10
most important features in both the 12- and 24-month
classifier. Two Streptococcus ASVs were among the top 10
most important features in the 12-month classifier, but
neither were identified as S. mutans. Streptococcus ASV8
was likely Streptococcus salivarius. Streptococcus ASV14
was closely related to Streptococcus lactarius/peroris
(Additional file 7; Additional file 1: Figure S4).

Unsupervised clustering techniques identify similar groups
of co-occurring taxa, which associate with ECC

Next, we attempted to identify ecologically meaning-
ful groups of co-occurring taxa. To do so, we used two
different unsupervised clustering techniques. One tech-
nique, Dirichlet multinomial community state typing,

groups together samples with similar distributions of
taxa into discrete clusters or community state types
(CSTs). Thus, each sample is assigned to a single CST.
The other technique, weighted co-occurrence network
analysis, groups together taxa which co-occur across
samples using graphs. ASVs are network nodes joined by
edges weighted by the frequency and correlation strength
at which two nodes co-occur across samples. Clusters of
co-occurring ASVs, or network modules, are identified
from the graph.

Using Dirichlet multinomial community state typing,
we identified 6 community state types (CSTs) (Fig. 3,
Additional file 1: Figure S5-6). We named CSTs after
the ASVs defining their separation. CSTs corresponded
to child age and ECC status. At the 2-month visit, most
children’s samples belonged to one of two Streptococ-
cus-dominated CSTs. Similar proportions of case and
control samples were assigned to these two CSTs. At
the 12-month visit, most control samples belonged to a
more diverse H. parainfluenzae-Neisseria ASV9-Gemella
ASV2 CST while most cases samples belonged to a Strep-
tococcus ASV8—Neisseria ASV12 CST (Fig. 3). By the
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Table 2 Associations between future early childhood caries and salivary microbiome measures, among pre-incident children from

Appalachia
Characteristic  ~2-month visit® ~12-month visit® ~24-month visit?
Case, N=99" Control, N=  pvalue’ Case, N=89' Control, N=  pvalue’ Case, N=73" Control, N=  pvalue?
91’ 81’ 69’
Shannon 2.1(0.5) 1.9(0.5) 0.01 29(04) 3.0(04) 0.05 35(03) 3.5(04) 04
Missing 7 6 5 5 4 4
Chao1 31.8(12.3) 27.8(10.0) 0.03 574 (16.8) 62.7 (14.6) 0.05 85.9(19.3)) 88.1(19.2) 0.5
Missing 7 6 5 5 4 4
S. mutans 0.0 (0.0) 0.0 (0.0) >09 0.0 (0.0) 0.0 (0.0) 0.07 0.0 (0.0) 0.0 (0.0) < 0.001
abundance
Missing 7 6 5 5 4 4
S. mutans ASV >09 0.12 <0.001
detected
No 90 (98%) 83 (98%) 78 (93%) 75 (99%) 50 (72%) 64 (98%)
Yes 2(2.2%) 2 (2.4%) 6(7.1%) 1(1.3%) 19 (28%) 1(1.5%)
Missing 7 6 5 5 4 4
S. wiggsiae 0.0 (0.0 0.0 (0.0 0.7 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0) 03
abundance
Missing 7 6 5 5 4 4
S. wiggsiae ASV 0.7 >09
detected
No 86 (93%) 78 (92%) 84 (100%) 76 (100%) 68 (99%) 65 (100%)
Yes 6 (6.5%) 7 (8.2%) 1(1.4%) 0 (0%)
Missing 7 6 5 5 4 4

" Mean (SD); n (%)

2 Wilcoxon rank sum test; Fisher’s exact test; Pearson’s chi-squared test

9 Includes duplicate records for 1 child selected as a control at 36 months and a case at 60 months, and 1 child selected as a control for both 36- and 60-month risk
sets. Excludes samples from children diagnosed as a case at that visit and their corresponding risk-set controls (N = 6 at 12 months, N = 37 at 24 months)

24-month visit, most control samples transitioned to a
second Hemophilus parainfluenzae and Neisseria ASV9
CST, while most case samples transitioned to a Neis-
seria ASVI12-Veillonella ASV5 CST (Fig. 3, Additional
files 8 and 9). The odds of future ECC diagnosis were 8
(95%CI: (3, 22)) times higher for children assigned to the
Streptococcus ASV8-Neisseria ASVI12 CST as compared
to children assigned to the H. parainfluenzae-Neisseria
ASV9-Gemella ASV2 CST at 12 months after controlling
for maternal education, count of emerged primary teeth,
mode of birth delivery, breastfeeding, antibiotic expo-
sure within 3 months and visit of case diagnosis (P value
< 0.001, Table 3). Similarly, the odds future ECC diag-
nosis were 5 (95% CI (2, 12)) times higher for children
assigned to the Neisseria ASV12-Veillonella ASV5 CST
as compared to those assigned to the H. parainfluenzae-
Neisseria ASV9 at 24 months, after controlling for mater-
nal education, count of emerged primary teeth, mode of
birth delivery, breastfeeding, antibiotic exposure within
3 months and visit of case diagnosis (P value < 0.001,
Table 3).

Using weighted co-occurrence network analysis, we
identified five network modules of co-occurring ASVs.

Network modules were named after the top 2 most abun-
dant ASVs in the network and the most highly connected
or central ASV in the module (Fig. 4A, B; Figures S7-8
Additional files 1 and 10). We create a single summary
measure for each network module by summing the rela-
tive abundance of all taxa assigned to the module. A Hae-
mophilus parainfluenzae and Neisseria ASV9 network
module with a Fusobacterium periodonticum as the most
central taxa was more abundant in controls at 12 and 24
months. For every 1 percentage point increase in rela-
tive abundance of this network module at 12 months, the
odds of ECC at a future visit were 0.94 (95% CI 0.91, 0.97)
times higher, after controlling for maternal education,
count of emerged primary teeth, breastfeeding, antibiotic
exposure within 3 months, and visit of case diagnosis (P
value < 0.0001, Table 4). Conversely, a Veillonella ASV5
and Streptococcus ASV8 network module with a central
taxon of Lachnoaerobaculum orale was more abundant in
cases (Fig. 4B). For every 1 percentage point increase in
relative abundance of this network module at 12 months,
the odds of ECC at a future visit were 1.04 (95% CI (1.02,
1.07)) times higher, after controlling for maternal edu-
cation, count of emerged primary teeth, breastfeeding,
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Fig. 2 Taxa-wide supervised 5-repeat, 10-fold random forest classification models predict future early childhood caries status when using 12- (n

= 158) and 24-month (n = 133) 16S rRNA gene amplicon sequenced saliva samples of children from Appalachia in an incidence density sampled
case-control study (Center for Oral Health Research in Appalachia 2 cohort). A Area under the curve receiver operating curves from supervised
random forests predicting future early childhood caries using the 273 most prevalent and abundant amplicon sequence variants at 12 months
(black line) and 24 months (grey line). B Importance plots showing the top ten most important amplicon sequence variants from the 12- and
24-month supervised random forest classifiers performed on 273 amplicon sequence variants, as determined by mean decrease in the Gini
coefficient, with the importance of the S. mutans amplicon included for comparison. C Joy plots showing the relative abundance distribution of the
top 10 most important amplicon sequence variants and S. mutans among cases (black) and controls (grey) at the 12- and 24-month visits
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ECC case status:

D Control

Control

antibiotic exposure within 3 months and visit of case
diagnosis (P value = 0.001, Table 4). Three other net-
work modules were not consistently associated with den-
tal decay (Figure S7-8, Additional file 1). S. mutans was
a member of one of these networks, which had Strepto-
coccus ASV1 and Neisseria ASV12 as the most abundant
ASVS and Actinomyces ASV41 as the most central.
Although one unsupervised method clustered samples
and the other clustered taxa, they identified similar clini-
cally relevant patterns in bacterial compositional data.
Both identified a pattern of H. parainfluenzae and Neis-
seria co-occurrence elevated in controls, and a pattern
of Streptococcus and Veillonella elevated in cases. Nine
of the ten ASVs used to name the networks (top 2 most
abundant ASVs in each of five network modules) were
also in the top 10 most important ASVs for defining the
separation of CSTs (Additional file 1: Figure S9).

The ECC-associated communities identified through
unsupervised clustering were robust to varying hyper-
parameters. In the CST analysis, we varied the number
of k CSTs (k = 4 vs 5 vs 6, Additional file 11, Additional
file 1: Figure S10). In the network analysis, we varied the
normalization transform function (Hellinger vs center-
log, Additional file 1: Figure S11). We also performed
a sensitivity analysis to determine if these associations
were robust to adjustment for cariogenic food consump-
tion and oral hygiene. Very few children were eating or
drinking high-sugar foods or beverages at 12 months
of age, except for fruit juice (Additional file 12). The
association between the CSTs and future ECC diagno-
sis remained unchanged when controlling for fruit juice
consumption and tooth brushing/wiping in a sensitiv-
ity analysis (Table 3), as did the association between the
network modules and future ECC diagnosis (Table 4).
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cleaned 16S rRNA gene amplicon saliva data for that visit). Only samples
sequenced, thus fewer samples were available at later ages

(months)

Streptococcus ASV1 dominated w/ Gemella ASV2
Gemella ASV2 - H. parainfluenzae-Neisseria ASV9
H. parainfluenzae - Neisseria ASV9

Streptoccous ASV1 dominated w/ G. elegans
Streptococcus ASV8 - Neisseria ASV12

Neisseria ASV12 - Veillonella ASV5

No microbiome data

Unclassified at P>80%

Fig. 3 Community state typing clusters samples into 6 community state types (colors) corresponding to age (x-axis) and early childhood caries
case status (facets) when performed on 855 longitudinal, 165 rRNA gene sequenced pre-incident and incident saliva samples from 189 children
from Appalachia (191 records) in an incidence-sampled case-control study (Center for Oral Health Research in Appalachia 2 study). Alluvial plot
showing the proportion of the sample in each community state type at each visit and the transitions between visits, faceted by early childhood
caries case status. Bars are annotated at the top with the sample size N of cases and controls (excluding children who missed visit or did not have

from the visit at which a case was diagnosed and preceding samples were

Communities identified through unsupervised clustering
are reproducible in an external cohort
To examine the reproducibility of these bacterial com-
munity networks, we performed the same analytic pipe-
line (see “Methods” section) on publicly available 16S
rRNA gene sequencing data from longitudinal saliva
samples of similarly aged children with a 10% prevalence
of early childhood caries (Holgerson et al.; PRJEB35824
[12];). We were unable to obtain access to metadata for
these samples.

A Haemophilus parainfluenzae and Neisseria per-
flava network module with central taxa Fusobacterium

periodonticum was also identified in the Holgerson
et al. sample (Fig. 4C Additional file 1: Figures S12—
13). The Neisseria ASV9 amplicon from our cohort
was closely related to the Neisseria perflava amplicon
from the Holgerson et al. cohort (Additional file 1: Fig-
ure S14A).

A similar Veillonella dispar/Streptococcus/Prevotella
network module was also identified in the Holgerson
et al. sample (Fig. 4C). The Veillonella ASV5 amplicon
from our cohort was closely related to the Veillonella
dispar amplicon from the Holgerson et al. cohort (Addi-
tional file 1: Figure S14B).
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Early-life bacterial communities are associated

with concurrent salivary pH, future S. mutans prevalence,
and primary teeth count

We tested if bacterial communities from our unsuper-
vised clustering associated with etiologically relevant
variables in our cohort. Although salivary pH did not dif-
fer between cases and controls at the 12- and 24-month
visit (Additional file 1: Figure S15), abundance of the H.
parainfluenzae-Neisseria ASV9 network module was
correlated with increasing salivary pH (12-month rho =
0.33, P value < 0.001; 24-month rho = 0.30; P value =
< 0.001; Fig. 5A). Mean salivary pH was also higher in
samples in CSTs characterized by H. parainfluenzae and
Neisseria ASV9 (12-month mean: 6.78; 24-month mean
6.71) than in those characterized by Streptococcus ASVS,
Neisseria ASV12 and Veillonella ASV5 (12-month: 6.54,
Wilcoxon P value = 0.05; 24-month 6.55, Wilcoxon P
value = 0.01; Fig. 5B).

Children who acquired S. mutans by their next visit
had lower abundances of the Haemophilus parainfluen-
zae-Neisseria ASV9 network and higher abundances of
the Veillonella ASV5-Streptococcus ASV8 network than
children who did not go on to have S. mutans (Fig. 6A).
Children assigned to CSTs characterized by Streptococcus
ASVS8, Neisseria ASV12, and Veillonella ASV5 at the 12-
and 24-month visits were more likely to have S. mutans
detected at their next visit than children with communi-
ties characterized by Haemophilus parainfluenzae and
Neisseria ASV9 (percent with S. mutans at 24-months:
35% vs 9%, Fisher’s exact P value < 0.01; at 36 months:
44% vs 21%, Fisher’s exact P value < 0.01, Fig. 6B).
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The average number of primary teeth present was
higher in children assigned to CSTs from later ages. The
relative abundance of the Streptococcus ASV1-Neisseria
ASV12 network, which included both S. mutans and
Streptococcus sanguinis, correlated with the number of
primary teeth present at the 12- and 24-month visits.
This was not true for the protective H. parainfluenzae-
Neisseria ASV9 network (Additional file 1: Figure S16).
For children from Pennsylvania, the approximate age at
first tooth emergence was available but was not associ-
ated with CST nor network modules.

Whole-genome shotgun metagenomics of 15 incident
case samples and matched controls revealed significant
differences in taxa and KEGG ortholog abundances
between incident case- and control-samples
We tested for differences in the community composition
and functional potential of cases and controls using saliva
and plaque samples from the visit of case ECC diagno-
sis for 15 cases and 15 matched controls. Among others,
Scardovia wiggsiae, Prevotella histicola, Veillonella dis-
par, Streptococcus mutans and Streptococcus salivarius
were more abundant in case than matched control saliva
and plaque samples at the time of diagnosis (Fig. 7; Addi-
tional file 13). Prevotella salivae was more abundant in
case than matched control saliva but not plaque samples
(Benjamini-Hochberg Py value < 0.05). The fungal genus
Candida was only present in case plaque samples.

Cases and controls differed in the abundance of gene
orthologs (Fig. 8). Associations with case status were
stronger in plaque than saliva. Gene orthologs related to

(See figure on next page.)

For visualization purposes, edges with weights < 0.03 were not included

Fig. 4 Weighted co-occurrence network graphs identifies two clusters of co-occurring taxa which were associated with age and early childhood
caries case status among 855 longitudinal, 165 rRNA gene sequenced saliva samples from 189 children from Appalachia (191 records) in an
incidence-sampled case-control study (Center for Oral Health Research in Appalachia 2 (COHRA2) study) and were reproducible in an independent
longitudinal cohort of similarly aged children with a 10% prevalence of early childhood caries. A Spaghetti plots showing the summed module
relative abundance of two of the five identified network modules from weighted co-occurrence networks. Networks were named using the

two most abundant amplicon sequence variants in the network and the most central amplicon sequence variant. Summed module relative
abundance calculated by summing the relative abundance of all amplicon sequence variants assigned to the same cluster. Thin, transparent lines
are individuals over time, thick lines represent smoothed means, dots and bars are mean and bootstrapped 95% confidence intervals at each visit,
including both pre-incident and incident visits. B Network graphs of the two network modules shown in A. On the left, the protective network
module was dominated by H. parainfluenzae (turquoise) and a Neisseria taxon (gold), with central taxon Fusobacterium periodonticum (green).

On the right, the cariogenic network module was dominated by Streptococcus (red) and Veillonella (brown), with additional Actinomyces (pink)

and Prevotella (purple) members. Amplicon sequence variants (nodes) that were more abundant in cases are shown as triangles, those more
abundant in controls are shown as squares. Larger nodes represent more abundant amplicon sequence variants, and nodes are colored by genus.
Amplicon sequence variants which were among the top 10 most important features in the supervised random forests are annotated with an
asterisk, *. Thicker edges represent stronger correlations between amplicon sequence variants. C Repeating the co-occurrence graph analysis in an
independent longitudinal cohort of similarly aged children (Holgerson et al.) identified a Haemophilus (turquoise) and Neisseria (gold) dominated
network with central taxon Fusobacterium periodonticum, similar in composition and structure to the protective network module identified in
COHRA2. A Veillonella dispar (brown), Prevotella (purple), and Streptococcus (red) network module was similar in composition to the cariogenic
network module identified in COHRA2. Larger nodes represent more abundant amplicon sequence variants, and nodes are colored by genus.
Amplicon sequence variants which were shared between the corresponding modules in COHRA2 and the Holgerson et al. cohort are annotated.
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Fig. 5 Network modules from weighted co-occurrence network (WCN) graphs and community state types (CST) from community state typing are
associated with salivary pH among incident and pre-incident saliva samples from an incidence density-matched nested case-control study selected
form the Center for Oral Health Research in Appalachia 2 cohort study. A The protective H. parainfluenzae and Neisseria ASV9 network is positively
correlated with salivary pH at 12 and 24 months (n = 95 at 12 months, with n = 71 missing or outlier salivary pH data, n = 162 at 24 months with

n = 10 missing salivary pH data). B Salivary pH is also lower in saliva samples that were assigned to the Neisseria ASV12-Veillonella ASV5 CST when
compared to saliva samples assigned to the Haemophilus parainfluenzae—Neisseria ASV9 CST (n = 94 at 12 months, with n = 71 missing or outlier
salivary pH data and n = 1 with unassigned CST, n = 162 at 24 months, with n = 10 missing salivary pH data)

CST at current visit

Streptococcus ASV8 - Neisseria ASV12

$ H. parainfluenzae - Neisseria ASV9

antibiotic production and resistance were more abundant
in case plaque, including a major facilitator superfam-
ily multidrug resistance transporter (Ppy value = 1.9 x
107%®) and lantibiotic transport system permease protein
(Pgyy value = 6.0 x 107°) (Additional file 14). The oxida-
tive phosphorylation KEGG pathway was enriched in case
plaque (Pgy; value = 1.2 x 10~8), while the ABC transporter
pathway was depleted (Pg;; value = 3.6 x 1073, Additional
file 15). All the case-associated gene orthologs annotating
to oxidative phosphorylation were found only in Candida
(Additional file 16 and Additional file 1: Figure S17).

Discussion

Results of our analysis of 99 ECC cases and 90 incidence
density-matched children supports the ecologic hypoth-
esis for ECC. We showed that bacteriome-wide informa-
tion classified future ECC status before reliable detection
of salivary S. mutans. We expanded on previous work

by identifying replicable groups of co-occurring bacte-
ria, which may represent true ecological interactions.
We showed that these groups associate with concur-
rent salivary pH, future S. mutans acquisition and future
ECC diagnosis, suggesting an ecological succession to
cariogenesis. By incorporating shotgun metagenomic
sequencing data, we identified functional mechanisms
for ecological interactions between bacteria, including
pathways related to antibiotic production and resistance.
Together, these observations suggest early-life bacterial
interactions during a susceptible life period can predis-
pose individuals to ECC.

Our findings on salivary bacteriome assembly and
association with ECC fit within the previous literature.
We observed a well-documented succession from Strep-
tococcus-dominated, low-diversity communities to more
diverse communities by 24 months of age with stabili-
zation thereafter [11, 12, 24, 25]. As in cross-sectional
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dental research, we found an association between S.
mutans and ECC at the time of ECC diagnosis [8]. Like
previous prospective studies of ECC, we found evidence
for an association between early life salivary bacteriome
composition and future ECC [14, 15]. We were able to
distinguish ECC cases from controls more accurately and
at an earlier age than reported by Dashper et al., while the
AUC-ROC for our 12-month random forest (0.78) is close
to that of Grier et al. (0.71) [14, 15]. While S. mutans, S.
sobrinus, and Scardovia wiggsiae were elevated in cases
at diagnosis, we found that the salivary bacteriome could
prospectively predict ECC as early as 12 months, before
reliable detection of these risk taxa. This supports a time-
dependent interpretation of the ecological hypothesis,
in which dysbiosis in the oral microbial community pre-
cedes salivary S. mutans detection, a marker of late-stage
cariogenesis. Our findings highlight the first 2 years of
life as a susceptible period for assembly of a cariogenic
oral microbial community.

Unlike most previous work, we identified specific and
reproducible ECC-associated bacterial communities

using unsupervised clustering techniques. These unsu-
pervised techniques better encapsulate the ecologi-
cal hypothesis than diversity metrics, which may be too
coarse to summarize finer level differences in communi-
ties [22]. In our cohort, alpha diversity was weakly and
inconsistently associated with future ECC status, echo-
ing previous mixed findings [17-21]. In contrast, groups
of taxa from unsupervised clustering techniques were
strongly and prospectively associated with ECC: a Hae-
mophilus parainfluenzae, Neisseria, and Fusobacterium
periodonticurn community was depleted in cases while
a Prevotella, Streptococcus, and Veillonella community
was more abundant. These communities were distin-
guished by genetically distinct sequence variants of Neis-
seria, Veillonella, and Fusobacterium. These bacterial
communities were consistent across clustering methods,
reproducible in an external cohort [12], and in line with
previous work on co-occurrence patterns in oral bacterial
communities [26—28].

As our analysis is observational, we can only sug-
gest possible biological explanations for these observed
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bacterial communities based on previous studies in the
literature. These communities could result from habi-
tat filtering by diet, wherein organisms co-occur due to
similar nutrient preferences [29]. However, they could
also be the result of both cooperative and antagonist
ecological interactions, including metabolic exchanges,
coaggregation, and interference competition. Streptococ-
cus and Veillonella species are known to exchange lactic
acid and exhibit transcriptional regulation under coag-
gregation [30, 31]. Fusobacteria are known to play crucial
roles in coaggregation with strain-specific impacts on
biofilm formation [32—-34]. Streptococcus [35] and Neisse-
ria [36—38] are known to engage in interference competi-
tion to outcompete related species, including through the
production of bacteriocins such as lantibiotics. Notably,
our analysis of shotgun metagenomic sequences identi-
fied case-enrichment for gene orthologs for bacteriocin
exporters [39] and lantibiotic production [40]. Cariogenic
species such as Streptococcus mutans are known to use
bacteriocins to outcompete other streptococci [35]. Thus,

the groups of ECC-associated taxa identified from our
unsupervised clustering may reflect ecological inter-
actions, including both intergenera cooperations and
intragenera competitions. Future experimental work is
necessary to investigate these possibilities.

We also tested how these bacterial communities
were associated with etiologically relevant variables.
The protective Haemophilus parainfluenzae, Neisse-
ria, and Fusobacterium periodonticum network was
correlated with salivary pH and inversely associated
with future S. mutans detection. In a recent in vitro
study, Neisseria was positively correlated with sali-
vary pH [41]. This community may therefore be pro-
tective by buffering against increases in acidity and
subsequent Streptococcus mutans colonization. Such
a capacity would likely be influenced by host diet and
oral hygiene, known etiologic factors in dental decay.
In sensitivity analyses, the prospective association
between the protective community and ECC diagno-
sis remained even after adjusting for oral hygiene and
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diet variables. However, diet is complicated to measure
and further investigation is necessary. Future research
should investigate relationships between the early-life
microbial community, diet, and ECC.

The sample type for assessment of the oral microbi-
ome is an important consideration. We performed 16S
rRNA gene sequencing on longitudinal saliva samples,
and shotgun metagenomic sequencing on a subsample of
cross-sectional plaque and saliva samples. Saliva washes
over many oral surfaces with different microbial commu-
nities [7, 42—44]. Therefore, differences in bacterial com-
position of saliva may reflect differences in the bacterial
abundance of oral surfaces. Consequently, the co-occur-
rence patterns we identified may reflect niche-sharing
of oral surfaces rather than cooperation between taxa.
Although the protective and cariogenic communities we
identified were not associated with primary tooth count,
we cannot conclusively rule out this explanation. Func-
tional and taxonomic differences were larger in shotgun
metagenomic sequenced plaque samples than in saliva
samples, and some caries-associated taxa, including Can-
dida albicans, were only identified in plaque samples.
This may reflect true etiologic differences as plaque, not
saliva, is the most proximate tissue in cariogenesis. How-
ever, the shotgun metagenomic sequenced saliva sam-
ples in our analysis had lower microbial read counts than
the plaque samples post-processing, as saliva samples
had higher amounts of human DNA, which is expected
given that we did not chemically deplete host reads [45].
This could also decrease the power for detecting differ-
ences when using saliva samples, especially among low-
abundance taxa or functions. Additionally, plaque is
more difficult to collect from edentulous children, has a
low biomass, and is unlikely to be used as a prognostic
marker in a clinical setting. Thus, the predictive power
of the early-life salivary microbiome demonstrated in
our analysis is of practical, clinical interest. While having
both saliva and plaque samples in the shotgun metagen-
omic sequencing subsample is a strength, our analysis is
limited by not including longitudinal plaque samples and
by the small sample sizes of this analysis.

Our analysis has several other limitations. The V4
region of the 16S rRNA gene is limited in ability to
resolve fine-level taxonomic differences. This could
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affect the identification and measurement of Streptococ-
cus amplicons in our dataset. We validated the identity
of Streptococcus amplicons using BLAST and shotgun
metagenomic data, but nondifferential exposure misclas-
sification of S. mutans prevalence is possible. The 16S
rRNA gene also does not measure virus, eukaryotes, or
interspecies functional variation. Both 16S rRNA gene
and shotgun metagenomic sequencing data is inherently
compositional. We instituted transformations to address
compositionality but did not have absolute abundance
data. While we validated the unsupervised clustering
methods in an external cohort, we did not have a valida-
tion dataset for the supervised random forest.

Our study design is observational, so causality cannot
be conclusively proved. However, our exposure meas-
urements precede our outcome, fulfilling a key causal
requirement. Our study population was primarily chil-
dren of European descent from northern and north
central Appalachia. Although some of the unsupervised
clusters from our cohort were replicable in the Swedish
Holgerson et al. cohort, microbial communities can dif-
fer by geography, race, and ethnicity. Thus, the generaliz-
ability of our findings may be limited. Further studies in
additional populations, incorporating shotgun metagen-
omic sequencing, quantification of absolute microbial
loads, and site-specific measures of oral bacterial com-
munities are warranted.

Conclusions

We found that the early-life salivary microbiome asso-
ciated with risk of ECC before S. mutans could be
detected, supporting a time-dependent interpretation of
the ecological hypothesis. Our analysis is strengthened
by a longitudinal design, balanced case-control ratios,
incorporation of both amplicon and shotgun metagen-
omic sequencing, and replication analyses. Our obser-
vations on the suitability of diversity measures vs other
clustering techniques to detect fine scale differences are
applicable in other microbial contexts. Our findings on
ecological succession and bacterial interactions in early
life may also be generalizable to other systems of micro-
biome development. Overall, our analyses support a
developmental interpretation of the ecological hypoth-
esis and raise the possibility that ecological interactions

(See figure on next page.)
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Fig. 8 Incident-visit plaque and saliva samples exhibited significantly different abundances of KEGG ortholog groups among 15 early childhood
caries cases and 15 incidence density-matched controls selected from the Center for Oral Health Research in Appalachia 2 study. A Volcano plots
showing the —log10 pvalue and log2 fold change between cases and controls of KEGG orthologs in plaque and saliva samples. Points are colored
black if Benjamini-Hochberg P value > 0.05 and by the first top-level KEGG annotation from the KEGG hierarchy of the KEGG ortholog if the adjusted
P value < 0.05. The top 6 most significant KEGG orthologs are annotated with the name of the KEGG ortholog and the taxa in which that KEGG
ortholog was found in our sample. B Count of KEGG orthologs with Benjamini-Hochberg adjusted P value < 0.05 by 3rd level KEGG annotation
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and successions in early life, in addition to etiologic risk
factors such as diet and oral hygiene, may predispose
children to ECC.

Methods

Study cohort

We used data from the Center for Oral Health Research in
Appalachia 2 study (COHRAZ2) [46]. COHRAZ2 recruited
White, pregnant women between 2011 and 2015 from
Pennsylvania and West Virginia. Healthy women who
were in the 12th to 29th week of pregnancy, of European
descent, over 18 years of old, fluent in English, and with
a singleton pregnancy were eligible for inclusion. Women
and their babies were followed longitudinally through
the early years of the baby’s life. Women were excluded
if they had tuberculosis, were immunocompromised,
thought they might soon leave the general regions of
West Virginia or southwestern Pennsylvania, or did not
have a reliable telephone contact. Mother-child pairs also
were excluded from the study if the child was delivered
before the 35th week of pregnancy or if the mother or
child developed a serious medical condition.

Participants completed in-person visits when the child
was 2 months and 12 months old, then yearly thereafter.
Mother-child pairs from the Pennsylvania site had addi-
tional in-person visits at birth and when the child’s first
primary tooth erupted. At in-person visits mothers and
children underwent a comprehensive dental assessment
by a trained and calibrated dental professionals (train-
ing and calibration described in detail in Neiswanger
et al. [46]); participants were asked not to eat or drink
for 2 hours prior to the examination. The examination
included caries assessment via the PhenX Toolkit Den-
tal Caries Experience Prevalence Protocol (http://www.
phenxtoolkit.org/, protocol number 080300) which
allows for the decayed, missing, and filled tooth count
to be calculated either including or excluding white
spots. The dental examination also included collection
of microbial samples from saliva, plaque, and gingival
swabs using OMNIgene Discover kits (OM-501 or 505
DNA Genotek); only saliva and plaque samples were used
in this analysis. Saliva was collected via swabs for chil-
dren too young to spit into a collection tube and via spit-
ting otherwise. Pooled plaque samples were taken with
a Stimudent or curette from three intact tooth surfaces
(in UNS/FDI notation: 8-buccal/51-buccal, 24-buccal/71-
buccal, 31-occlusal/84-occusal or nearby surfaces if these
were not intact). Plaque was also taken from tooth sur-
faces with untreated dental lesions. Salivary pH was also
measured at visits where the child was old enough to spit
(most by 12 months, all by 24 months) using a pH strip.

A 30-45-min telephone interview was administered
to the mothers at approximately 6-month intervals to

Page 19 of 24

capture sociodemographic and behavioral data. These
interviews included questions about oral hygiene and
approximate frequency of child consumption of specific
foods and beverages.

Sampling and case definition

For this analysis we selected 99 children who had any den-
tal lesions, including white spots (d1mft), at or prior to the
60-month visit in the 2019 data freeze of the COHRA2
cohort as early childhood caries (ECC) cases. The visit in
which a child was first identified as having a dental lesion
or white spot was the incident-visit for that child. We then
selected a similar number of children who were free of
dental lesions and white spots at the same visit as the cases
to serve as incidence-density sampled controls (n = 90).
Incidence density sampling does not preclude the reselec-
tion of a control as a case at later time points; controls can
also be selected as controls for multiple cases (Fig. 1) [47].
In this analysis, one control was later selected as a case and
one control was selected as a control twice (# = 92 con-
trol records). Duplicate records of the case/control and
control/control children were not used in the supervised
random forest: the case/control was only included as a
case and the control/control was only included as a control
once. In both unsupervised clustering techniques, we did
not include duplicate records from these individuals when
performing initial clustering or in the supervised random
forests but did include them when graphing and testing
associations between identified clusters and variables of
interest (i.e., in Table 1, Figs. 1, 2, and 3). The number of
total unique individuals in the analysis was 189, with 191
unique person-records (Additional file 5).

All available saliva samples from cases and controls,
up to and including the incident-visit saliva sample, were
pulled for 16S rRNA amplicon sequencing (Fig. 1). Note
that selected individuals occasionally missed visits, did
not have a saliva sample available, or had a saliva sample
which failed 16S amplicon quality control (Additional
file 5). Additionally, we randomly selected a subcohort
of 15 cases presenting with enamel lesions at or after
the 36-month visit and 15 corresponding controls.
Plaque and saliva samples from the visit of case diagno-
sis for these 30 individuals were submitted for shotgun
metagenomic sequencing.

Laboratory and bioinformatics pipeline for 16S rRNA
amplicon metagenomic sequencing

Bacterial DNA was extracted from aliquots of saliva.
Library preparation and sequencing of the 16S rRNA
V4 amplicon was performed by the Michigan Micro-
bial Systems Molecular Biology Laboratory using pre-
viously validated protocols [48]. DNA extraction was
performed using the Eppedorf EpMotion liquid handling
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system following the Qiagen MagAttract PowerMicrobi-
ome kit protocol. The V4 variable region was amplified
from extracted DNA using barcoded dual-index primers
and sequenced on the [llumnia MiSeq platform using the
MiSeq Reagent Kit V2 500 cycles. Each plate of samples
was submitted with a positive mock community control,
a DNA extraction kit control, and a negative water control
(Additional file 2: Figures S3—4). Reads were processed
to amplicon sequence variants (ASVs) using DADA2
(version 1.14.1) [49] and the Human Oral Microbiome
Database (HOMD) version 15.2 [50]. To identify contami-
nants, we used the R package decontam (version 1.8.0)
[51]. We filtered out samples with less than 1000 reads (n
= 6 samples lost). Diversity metrics were calculated using
the estimate_richness function from the R package phy-
loseq all ASVs. However, to limit the number of features
used in supervised and unsupervised learning, we insti-
tuted a prevalence-abundance ASV filter. ASVs which
were present in less than 5% of all samples and which rep-
resented less than 5% of all sequences in the samples in
which they were present were excluded from the analytic
subset for supervised random forest and unsupervised
clustering techniques (m = 273 ASVs in analytic subset).
ASVs were not collapsed at the genus or species level.

Random forest

We used the 12- and 24-month visits as inputs for the
random forest as these visits preserved a large subset
of pre-incident samples. Only pre-incident cases and
matched controls were used in the random forest: indi-
viduals with incident-visit saliva samples were excluded
(6 individuals with available samples who were identified
as cases or controls at the 12-month visit and 37 individ-
uals identified at the 24-month visit were excluded, total
sample size of n = 158 and n = 132). Hellinger trans-
formed ASV counts from the 273 ASVs in our analysis
subset were used in the random forest. Using the train
function in the R package caret [52], we ran 5 repeats
of 10-fold cross validated random forest machine algo-
rithms with 500 trees. We allowed the mtry parameter
(number of parameters randomly sampled as candidates
at each tree split) to be tuned from a choice of 2, 136, or
271 using the receiver operating characteristic curve; for
both the 12-month and 24-month all taxa random for-
est an mtry parameter of 2 was selected. Area under the
receiver operating curve and other evaluation statistics
were calculated using the R package MLeval [53].

Dirichlet multinomial community state typing
We used the R package DirichletMultinomial to clus-
ter samples into community state types (CSTs) using
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Dirichlet multinomial mixture models [54]. We fit ten
Dirichlet multinomial models, using as input the count
matrix of the 855 samples by 273 ASVs in the analytic
subset and varying the number of Dirichlet components
(i.e., CSTs) from 1 to 10. We calculated the Laplace
measure of fit for each model and plotted against k&,
identifying k = 6 as the best model. We varied k = {4,
5} as a sensitivity analysis. Samples were assigned to the
single k CST for which they had the highest posterior
probability of membership; if a sample assigned to no
CST at a posterior probability > 80%, the sample was
not assigned to any CST.

Weighted co-occurrence networks

We used the R package WGCNA to build a signed
weighted network of ASVs using the Hellinger-trans-
formed count matrix of 855 samples and 273 ASVs [55].
As a sensitivity analysis, we used the center-log ratio
transformed count matrix. The soft thresholding power
of the signed network was selected to maximize the
R”2 of the model fit while preserving the mean connec-
tivity of the network using the pickSoftThreshold func-
tion in WCGNA. We used a dynamic tree cut and the
cutreeDynamic function in WCGNA to identify net-
work modules or clusters using a minimum module size
of 5 and a deep split value of 4, with the aim of produc-
ing more fine-grained clusters. Intramodular connec-
tivity statistics were calculated for each ASV using the
intramodularConnectivity function. Finally, per-sample
module relative abundances were calculated by sum-
ming the relative abundances of all ASVs belonging to
the same module.

Replication cohort

We performed the exact same bioinformatics and analytic
pipeline on publicly available V3--V4 16S rRNA gene
data from the Holgerson cohort (PRJEB35824) [12], as we
did to the COHRA?2 samples. This cohort was also com-
posed of sequential salivary samples from similarly aged
children, the prevalence of ECC was 10% by 60 months
of age. The laboratory methods for these samples are
described in Holgerson et al. [12]. All the bioinformatics
parameters and steps were the same as described above,
with the exception that decontam was not used to iden-
tify potential contaminants as the publicly available data
did not include DNA quantification data. Since we could
not obtain access to any metadata characteristics of these
samples, including ECC status, the random forest mod-
els could not be run. For visualization purposes, the two
matching networks shown in Fig. 4C were filtered to only
edges with a weight > 0.03. The full, unfiltered network
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images are shown in Additional file 1. To compare the
relatedness of the amplicon sequence variants assigned to
various network modules across the COHRA2 and Holg-
erson cohort, we performed multiple sequence align-
ment of the amplicons using the R packages msa, using
the ClustalW algorithim [56]). We computed pairwise
distances from the DNA sequences using the r function
dist.dml from the r package phangorn [57], using the
JC69 model. We created a neighbor joining tree using the
phangorn function NJ, then fit a generalized time-revers-
ible with gamma rate maximum likelihood tree using the
neighbor joining tree as a starting point. We obtained
100 bootstrap values for the tree using bootstrap.pml and
plotted the tree using ggtree [58] and collapsed branches
present in < 50 of the bootstrapped trees.

Statistical analyses

We investigated differences between cases and controls
in salivary pH using boxplots and Wilcoxon’s test. At 12
months, n = 97 children had both clean 16S amplicon
data and salivary pH measurements and at 24 months, n
= 168 children did. As we could not exclude the possibil-
ity of technical errors associated with measuring salivary
pH using a test strip, we excluded from consideration
samples with a salivary pH < 5.5 (n = 2) or > 8 (n = 6),
leaving n = 95 and n = 162. We investigated associations
between salivary pH and summed module abundance
using Pearson’s correlation coefficient and scatter plots.
We investigated associations between salivary pH and
CST using Fisher’s exact test and bar graphs (additional
n = 1 child excluded at 12 months due to unassigned
CST). Among n = 157 with both 12- and 24-month 16S
amplicon data and # = 116 with both 24- and 36-month
amplicon data, we investigated differences in summed
module abundance by next-visit Streptococcus mutans
detection using boxplots and Wilcoxon’s rank sum test
and differences in proportions of children with CSTs by
next-visit Streptococcus mutans detection using bar plots
and Fisher’s exact test (additional #» = 2 children with
unassigned CST excluded). We used logistic regression
to test for associations between summary metrics from
unsupervised clustering and ECC separately at the 12-
and 24-month visits while controlling for potential con-
founders identified from literature review and directed
acyclic graphic. For each time point only pre-incident
cases and controls were included in the regression, i.e.,
cases diagnosed at 12 months of age and age-matched
controls were not included in the 12-month regression
models. This ensures that the regression models test
for prospective associations between current salivary
bacteriome and future ECC diagnosis. To test for asso-
ciations between CST and future ECC diagnosis, ECC
status was used as the outcome and CST assignment
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was included as a categorical predictor. To test for asso-
ciations between network modules and future ECC diag-
nosis, ECC status was used as the outcome and relative
abundance of the network module was included as a con-
tinuous predictor ranging from 0 to 100. This allows the
exponentiated coefficient to be interpreted as the odds
ratio for a 1 percentage point increase in network module
abundance. In adjusted models we included the follow-
ing covariates: binary indicator for child being currently
breastfed at the visit, binary indicator for maternal report
of child antibiotic use within 3 months of visit, count
of emerged primary teeth, binary indicator for birth
delivery mode, binary indicator for maternal education
greater than high school, and categorical variable for visit
of case diagnosis/control matching. As a sensitivity anal-
ysis we also controlled for tooth brushing/wiping (none,
yes without toothpaste and yes with toothpaste) and past
week juice consumption frequency (never or once, a few
days, every day, several times per day).

Laboratory and bioinformatics pipeline for shotgun
metagenomic sequencing

DNA was extracted from plaque and saliva samples using
the Zymobiomics miniprep kit according to the manu-
facturer’s instructions. Isolated DNA was quantified by
Qubit. DNA libraries were prepared using the Illumina
Nextera XT library preparation kit according to the
manufacturer’s protocol. Library quantity and quality
was assessed with Qubit (ThermoFisher) and Tapesta-
tion (Agilent Technologies, CA, USA). Libraries were
then sequenced on Illumina HiSeq platform 2 x 150 bp.
Quality filtering and adapter trimming were performed
using Trimmomatic and the Nextera PE adapters. Host
DNA was removed using bowtie2 and the GRCh38 index.
Trimmed, cleaned and decontaminated reads were pro-
cessed through both the Humann3 short-read profiling
pipeline [59] and the SqueezeMeta assembly-based pipe-
line (version 1.4.0) [60]. Plaque and saliva samples were
run separately through the assembly pipeline. Briefly,
assembly was done using Megahit, ORFs were predicted
using Prodigal, and similarity searches against GenBanlk,
eggnog and KEGG were conducted using Diamond. Read
mapping against contigs was performed using Bowtie2.
Binning was done using MaxBin2 and Metabat2 and bins
were combined using DAS Tool. To test for differential
abundance of KEGG orthologs and taxa abundance esti-
mated from contigs, we used DESeq2, first filtering out
KEGG or taxa with fewer than 500 reads from the test-
ing subset. We tested for enrichment in KEGG pathways
using gene set enrichment analysis and the R package
fgsea separately on plaque and saliva samples. We used
the package SQMTools to extract functional and taxo-
nomic subsets of interest, such as the KEGG orthologs
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which annotated to oxidative phosphorylation. To test
correlations between 16S rRNA gene amplicon sequence
variants and abundances of taxa from whole genome
sequencing, we used a partial spearman correlation while
controlling for incident visit and case status.

Abbreviations
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ribosomal RNA; CST: Community state type.
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