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Abstract 

Background:  Early childhood caries (ECC)—dental caries (cavities) occurring in primary teeth up to age 6 years—is a 
prevalent childhood oral disease with a microbial etiology. Streptococcus mutans was previously considered a primary 
cause, but recent research promotes the ecologic hypothesis, in which a dysbiosis in the oral microbial community 
leads to caries. In this incident, density sampled case-control study of 189 children followed from 2 months to 5 years, 
we use the salivary bacteriome to (1) prospectively test the ecological hypothesis of ECC in salivary bacteriome com-
munities and (2) identify co-occurring salivary bacterial communities predicting future ECC.

Results:  Supervised classification of future ECC case status using salivary samples from age 12 months using bac-
teriome-wide data (AUC-ROC 0.78 95% CI (0.71–0.85)) predicts future ECC status before S. mutans can be detected. 
Dirichlet multinomial community state typing and co-occurrence network analysis identified similar robust and repli-
cable groups of co-occurring taxa. Mean relative abundance of a Haemophilus parainfluenzae/Neisseria/Fusobacterium 
periodonticum group was lower in future ECC cases (0.14) than controls (0.23, P value < 0.001) in pre-incident visits, 
positively correlated with saliva pH (Pearson rho = 0.33, P value < 0.001) and reduced in individuals who had acquired 
S. mutans by the next study visit (0.13) versus those who did not (0.20, P value < 0.01). In a subset of whole genome 
shotgun sequenced samples (n = 30), case plaque had higher abundances of antibiotic production and resistance 
gene orthologs, including a major facilitator superfamily multidrug resistance transporter (MFS DHA2 family PBH value 
= 1.9 × 10−28), lantibiotic transport system permease protein (PBH value = 6.0 × 10−6) and bacitracin synthase I (PBH 
value = 5.6 × 10−6). The oxidative phosphorylation KEGG pathway was enriched in case plaque (PBH value = 1.2 × 
10−8), while the ABC transporter pathway was depleted (PBH value = 3.6 × 10−3).

Conclusions:  Early-life bacterial interactions predisposed children to ECC, supporting a time-dependent interpreta-
tion of the ecological hypothesis. Bacterial communities which assemble before 12 months of age can promote or 
inhibit an ecological succession to S. mutans dominance and cariogenesis. Intragenera competitions and intergenera 
cooperation between oral taxa may shape the emergence of these communities, providing points for preventive 
interventions.
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Background
In 2015–2016, 21% of US children aged 2–5 years showed 
evidence of early childhood caries (ECC), i.e., at least 
one primary tooth with one or more decayed, missing 
or filled tooth surfaces [1, 2]. ECC can be painful, may 
negatively impacts self-esteem, and is a strong predictor 
of future oral health problems [3, 4]. Microbial diges-
tion of carbohydrates to acids which demineralize tooth 
enamel is the proximate cause [5–7]. Acid-producing 
bacteria, particularly Streptococcus mutans (S. mutans), 
are frequently associated with ECC [5, 8]. No single bac-
terial species, however, has been conclusively identified 
as a necessary and sufficient cause of ECC across human 
populations [5, 8, 9]. Recent research emphasizes the 
ecologic hypothesis, which posits that overall shifts in the 
composition, structure, functional potential of the oral 
microbial community leads to dental decay [5, 10]. The 
oral microbiome assembles rapidly over the first 2 years 
of life [11]. However, few studies of ECC have prospec-
tively tested the ecologic hypothesis during this early life 
period of assembly.

To assess the bacterial community in saliva and plaque 
samples, 16S rRNA gene amplicon sequencing is used 
to simultaneously measure many bacterial populations 
(although archaeal populations can also be measured 
using 16S amplicon sequencing, typical primers result in 
bias against archaea) [11–15]. However, common meth-
ods for analyzing 16S rRNA gene data fail to capture 
the spirit of the ecological hypothesis. Estimating the 
effect of each identified taxa as an independent predictor 
ignores how bacteria interact to affect risk, which is a key 
component of the ecological hypothesis [5, 16]. Diversity 
metrics, such as alpha and beta diversity, conveniently 
and efficiently summarize information across all meas-
ured taxa, but findings using associations between diver-
sity metrics and cariogenesis are mixed [17–21]. The lack 
of consistency may be attributed to differences in study 
design, conduct and analysis, but also may reflect the 
inherent limitations of diversity metrics. These metrics 
ignore taxonomic, ecologic, and functional differences 
between bacteria which can impact disease processes 
such as cariogenesis [22]. Common methods for analyz-
ing 16S rRNA gene data do not adequately encapsulate 
the ecologic hypothesis.

Microbial communities are dynamic, and early child-
hood is a susceptible life-period for short- and long-term 
oral microbial community assembly. The oral microbiome 
is acquired after birth and influenced by environmental 

factors [11, 12, 23]. Very few studies have prospectively 
tested the effect of oral microbial community assembly 
on ECC risk. A 2019 Australian study of 134 children 
followed for 5 years noted a shift in salivary microbiome 
composition at 39 and 48.6 months of age associated 
with future ECC [14]. Microbial taxa, including Strepto-
coccus sobrinus and Scardovia wiggsiae, were identified 
as potential biomarkers of ECC onset. The percentage 
of S. mutans in saliva was the best prospective predictor 
of future ECC [13, 14]. The authors concluded, however, 
that the magnitude of change in the salivary microbiome 
was inadequate to differentiate between health and dis-
ease at clinical levels. A smaller 2020 study of 56 children 
aged 1–3 years followed for 2 years demonstrated that 
the early life salivary microbiome could prospectively 
classify future ECC onset (area under the receiver oper-
ating curve = 0.71) and identified several taxa that may 
serve as biomarkers of ECC [15]. These studies prospec-
tively link community-wide shifts in the early-life salivary 
microbiome to ECC. However, they did not evaluate how 
co-occurrence or functional interactions between taxa 
influence ECC risk. Few longitudinal cohorts have explic-
itly evaluated how co-occurring groups of oral bacteria or 
functional interactions influence ECC risk.

To understand the influence of oral microbial com-
munity assembly on future oral health, explicit tests of 
the ecological hypothesis and identification of influen-
tial microbial populations is required. We used a longi-
tudinal cohort of children to (1) prospectively test the 
ecological hypothesis of ECC in salivary bacterial com-
munities and (2) identify co-occurring salivary bacte-
rial populations influencing the risk of future ECC. We 
performed 16S rRNA gene amplicon sequencing on 855 
longitudinal saliva samples from 99 children with ECC 
and 90 incidence-density sampled control children fol-
lowed from 2 months to 5 years of age. We show that 
bacteriome-wide taxonomic information at 12 months 
of age better classifies future ECC status than S. mutans 
amplicon abundance alone. We identify robust and rep-
licable communities of co-occurring bacteria using unsu-
pervised clustering techniques, including a protective 
community of Neisseria/Haemophilus parainfluenzae/
Fusobacterium periodonticum which was less abundant 
in future ECC cases. Finally, we comment on ecological 
and functional interactions that may shape the assembly 
of these communities using clinical data and functional 
potential measurements from a subcohort with shotgun 
metagenonomic sequencing data.



Page 3 of 24Blostein et al. Microbiome          (2022) 10:240 	

Results
Description of cohort
We selected an incidence density-matched case-con-
trol subset from the Center for Oral Health Research in 
Appalachia 2 (COHRA2) cohort. In the entire COHRA2 
cohort, 47% of children were female, 79% were White and 
71% were delivered vaginally. At 2 months of age, 58% 
of children were breastfed; this decreased to 32% by 12 
months of age and 6% by 24 months of age. By 24 months 
of age, 3.8% of children in COHRA2 had a carious lesion 
or white spot. We analyzed a nested case-control sample 
of 99 children who developed a carious lesion or white 
spot at or before 60 months of age and 90 control chil-
dren who were free of dental lesions at the age of case 
diagnosis (Additional file  1: Figure S1). Of the 189 chil-
dren, 169 were White and 20 were bi- or multi-racial, 
100 were from West Virginia and 89 from Pennsylvania, 
and 97 male and 92 female. None of these characteristics 
differed between cases and controls (Table 1). The moth-
ers of controls were more likely to be educated beyond 
high school (63%) than the mothers of cases (33%, P < 
0.001). Cases and controls were similar in the distribu-
tion of delivery mode, recent antibiotic exposure, breast-
feeding, and count of erupted primary teeth (Table  1). 
Sampled controls were representative of the underlying 
disease-free cohort, although the proportion of bi- and 
multi-racial children was lower in the nested case-control 
sample (Additional file 2). Among the 99 ECC case chil-
dren, the youngest age of diagnosis was 12 months, with 
a mean age of diagnosis of 38 months, additional infor-
mation on case severity is presented in Additional files 
3 and 4. We sequenced the V4 16S rRNA gene region in 
saliva samples from the visit corresponding to ECC diag-
nosis (incident visit) and all preceding visits (pre-incident 
visits) for case and control children (Fig. 1, Figure S1–3 
in Additional files 1 and 5). From the 855 saliva samples 
across all incident and pre-incident visits, we identified 
3194 amplicon sequence variants (ASVs). We labeled 
ASVs that did not classify to the species level with ASV 
numbers. Alpha diversity of the salivary microbiome 
increased as children aged. Alpha diversity was incon-
sistently associated with future ECC diagnosis across 
visits (Table 2). For a subcohort of 15 cases and matched 
controls, we also performed shotgun metagenomic 
sequencing on plaque and saliva samples from the visit 
corresponding to the time of case diagnosis (Additional 
files 1 and 6).

S. mutans did not associate with future ECC diagnosis 
before 24 months of age, but was elevated in cases 
at the visit of first ECC diagnosis
A single ASV identified as S. mutans. We validated 
the identity of this ASV using BLAST and shotgun 

metagenomic sequencing data (Additional file  7; Addi-
tional file  1: Figure S4). At the 2- and 12-month visits, 
S. mutans was rare and not associated with future ECC 
diagnosis (Table 2). By the 24-month visit, S. mutans was 
more prevalent in future cases (Table 2; P value < 0.001). 
S. mutans prevalence and abundance was elevated in 
cases at the visit of ECC diagnosis: 13 of 20 ECC cases 
diagnosed at 24 months had S. mutans at the 24-month 
visit vs 2 of 18 matched controls (Additional file  8; P 
value = 0.001). Similarly, Scardovia wiggsiae was elevated 
at the visit of ECC diagnosis but not in visits preceding 
diagnosis (Table 2, Additional file 8).

At 12 and 24 months of age, supervised random forest 
using the salivary bacteriome can predict ECC status 
before S. mutans detection
We investigated whether future ECC status could be 
predicted from a random forest classifier using the 273 
most abundant and prevalent ASVs sequenced from 
saliva samples. Separate classifiers were built using sam-
ples from the 12- and 24-month visits. Only pre-incident 
samples were used, i.e., we predicted if a child would go 
on to be diagnosed with white spots or cavities at any of 
the 24-, 36-, 48-, or 60-month visits using their 12-month 
saliva sample. Children who were diagnosed with white 
spots or cavities at the 12-month visit and their incidence 
density-matched controls were excluded from the classi-
fier. Similarly, we predicted if a child would go on to be 
diagnosed at any of the 36-, 48-, or 60-month visits using 
their 24-month saliva sample, excluding saliva samples 
from children diagnosed at 12 or 24 months. Thus, each 
random forest classifier predicted future ECC diagnosis 
using saliva samples from before disease was clinically 
apparent and diagnosed.

The random forest using 273 ASVs showed good classi-
fication of future ECC status at the 12-month (AUC (95% 
CI): 0.78, (0.71–0.85)) and 24-month visits (AUC (95% 
CI) 0.72, (0.63–0.81)) (Fig. 2A). The mean decrease in the 
Gini coefficient provides a measure of how important a 
feature is for classification, with a larger decrease cor-
responding to a greater importance. In Fig. 2B, we show 
the 10 ASVs with the largest decrease in Gini coefficient 
from the 12- and 24-month supervised random forest 
classifiers. The Gini coefficient for Streptococcus mutans 
is included for comparison. In Fig.  2C, the distribution 
of the square root of ASV abundance is shown for cases 
(black) and controls (grey) for the ASVs with the largest 
decreases in Gini coefficient at the 12- and 24-month vis-
its. Several of the important features from the random 
forest classifiers were more abundant in controls than in 
ECC cases (protective ASVs). Protective ASVs Fusobac-
terium periodonticum and Neisseria ASV9 were among 
the top 10 most important features in both the 12- and 
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24-month classifiers. Haemophilus parainfluenzae and 
Porphyromonas ASV42 were among the top 10 most 
important features in only the 12-month classifier while 
Lachnoanaerobaculum umeaense and Porphyromonas 
ASV120 were among the top 10 most important features 
in only the 24-month classifier. Other important features 
were more abundant in ECC cases (cariogenic ASVs). 
Of these, only Prevotella histicola was among the top 10 
most important features in both the 12- and 24-month 
classifier. Two Streptococcus ASVs were among the top 10 
most important features in the 12-month classifier, but 
neither were identified as S. mutans. Streptococcus ASV8 
was likely Streptococcus salivarius. Streptococcus ASV14 
was closely related to Streptococcus lactarius/peroris 
(Additional file 7; Additional file 1: Figure S4).

Unsupervised clustering techniques identify similar groups 
of co‑occurring taxa, which associate with ECC
Next, we attempted to identify ecologically meaning-
ful groups of co-occurring taxa. To do so, we used two 
different unsupervised clustering techniques. One tech-
nique, Dirichlet multinomial community state typing, 

groups together samples with similar distributions of 
taxa into discrete clusters or community state types 
(CSTs). Thus, each sample is assigned to a single CST. 
The other technique, weighted co-occurrence network 
analysis, groups together taxa which co-occur across 
samples using graphs. ASVs are network nodes joined by 
edges weighted by the frequency and correlation strength 
at which two nodes co-occur across samples. Clusters of 
co-occurring ASVs, or network modules, are identified 
from the graph.

Using Dirichlet multinomial community state typing, 
we identified 6 community state types (CSTs) (Fig.  3, 
Additional file  1: Figure S5–6). We named CSTs after 
the ASVs defining their separation. CSTs corresponded 
to child age and ECC status. At the 2-month visit, most 
children’s samples belonged to one of two Streptococ-
cus-dominated CSTs. Similar proportions of case and 
control samples were assigned to these two CSTs. At 
the 12-month visit, most control samples belonged to a 
more diverse H. parainfluenzae-Neisseria ASV9–Gemella 
ASV2 CST while most cases samples belonged to a Strep-
tococcus ASV8–Neisseria ASV12 CST (Fig.  3). By the 

Fig. 1  Histogram of available samples in this incidence-density case-control sample of 189 children from Appalachia. Children were followed from 
birth until 60 months of age, attending regularly scheduled study visits at birth (Pennsylvania children only), ~ 2 months, 1st-tooth emergence 
(Pennsylvania children only, average 9 months of age), ~ 12 months, ~ 24 months, ~ 36 months, ~ 48 months and ~ 60 months of age. Children 
who were diagnosed with white spots or enamel lesions were selected as cases. For each visit at which cases were diagnosed (incident-visit, 
dark-grey histogram), a similar number of controls were selected from the group of children free of white spots and enamel lesions at that time. 
Children could be selected as a control more than once or as a case and a control. In our sample, 1 child was selected as a control at both the 
36- and 60-month visit, and 1 child was selected as a control at the 36-month visit and a case at the 60-month visit. The number of diagnosed 
cases/matched control children at each visit is shown in the dark-grey box and double counts these twice-sampled children at lines denoted with 
asterisk (*). All the available saliva samples from the incident-visit and all preceding visits for cases and selected controls were sequenced for the V4 
region of the 16S rRNA gene (light-grey box and light-grey histogram). For a subsample of 15 children diagnosed with enamel lesions at or after the 
36-month visit and their 15 matched controls both saliva and plaque samples from the visit of diagnosis/matching were shotgun metagenomic 
sequenced (black box and black histogram)
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24-month visit, most control samples transitioned to a 
second Hemophilus parainfluenzae and Neisseria ASV9 
CST, while most case samples transitioned to a Neis-
seria ASV12–Veillonella ASV5 CST (Fig.  3, Additional 
files 8 and 9). The odds of future ECC diagnosis were 8 
(95%CI: (3, 22)) times higher for children assigned to the 
Streptococcus ASV8-Neisseria ASV12 CST as compared 
to children assigned to the H. parainfluenzae-Neisseria 
ASV9-Gemella ASV2 CST at 12 months after controlling 
for maternal education, count of emerged primary teeth, 
mode of birth delivery, breastfeeding, antibiotic expo-
sure within 3 months and visit of case diagnosis (P value 
< 0.001, Table  3). Similarly, the odds future ECC diag-
nosis were 5 (95% CI (2, 12)) times higher for children 
assigned to the Neisseria ASV12-Veillonella ASV5 CST 
as compared to those assigned to the H. parainfluenzae-
Neisseria ASV9 at 24 months, after controlling for mater-
nal education, count of emerged primary teeth, mode of 
birth delivery, breastfeeding, antibiotic exposure within 
3 months and visit of case diagnosis (P value < 0.001, 
Table 3).

Using weighted co-occurrence network analysis, we 
identified five network modules of co-occurring ASVs. 

Network modules were named after the top 2 most abun-
dant ASVs in the network and the most highly connected 
or central ASV in the module (Fig. 4A, B; Figures S7–8 
Additional files 1 and 10). We create a single summary 
measure for each network module by summing the rela-
tive abundance of all taxa assigned to the module. A Hae-
mophilus parainfluenzae and Neisseria ASV9 network 
module with a Fusobacterium periodonticum as the most 
central taxa was more abundant in controls at 12 and 24 
months. For every 1 percentage point increase in rela-
tive abundance of this network module at 12 months, the 
odds of ECC at a future visit were 0.94 (95% CI 0.91, 0.97) 
times higher, after controlling for maternal education, 
count of emerged primary teeth, breastfeeding, antibiotic 
exposure within 3 months, and visit of case diagnosis (P 
value < 0.0001, Table 4). Conversely, a Veillonella ASV5 
and Streptococcus ASV8 network module with a central 
taxon of Lachnoaerobaculum orale was more abundant in 
cases (Fig. 4B). For every 1 percentage point increase in 
relative abundance of this network module at 12 months, 
the odds of ECC at a future visit were 1.04 (95% CI (1.02, 
1.07)) times higher, after controlling for maternal edu-
cation, count of emerged primary teeth, breastfeeding, 

Table 2  Associations between future early childhood caries and salivary microbiome measures, among pre-incident children from 
Appalachia

1  Mean (SD); n (%)
2  Wilcoxon rank sum test; Fisher’s exact test; Pearson’s chi-squared test
a  Includes duplicate records for 1 child selected as a control at 36 months and a case at 60 months, and 1 child selected as a control for both 36- and 60-month risk 
sets. Excludes samples from children diagnosed as a case at that visit and their corresponding risk-set controls (N = 6 at 12 months, N = 37 at 24 months)

Characteristic ~2-month visita ~12-month visita ~24-month visita

Case, N = 991 Control, N = 
911

p value2 Case, N = 891 Control, N = 
811

p value2 Case, N = 731 Control, N = 
691

p value2

Shannon 2.1 (0.5) 1.9 (0.5) 0.01 2.9 (0.4) 3.0 (0.4) 0.05 3.5 (0.3) 3.5 (0.4) 0.4

  Missing 7 6 5 5 4 4

Chao1 31.8 (12.3) 27.8 (10.0) 0.03 57.4 (16.8) 62.7 (14.6) 0.05 85.9 (19.3)) 88.1 (19.2) 0.5

  Missing 7 6 5 5 4 4

S.  mutans 
abundance

0.0 (0.0) 0.0 (0.0) > 0.9 0.0 (0.0) 0.0 (0.0) 0.07 0.0 (0.0) 0.0 (0.0) < 0.001

  Missing 7 6 5 5 4 4

S. mutans ASV 
detected

> 0.9 0.12 < 0.001

  No 90 (98%) 83 (98%) 78 (93%) 75 (99%) 50 (72%) 64 (98%)

  Yes 2 (2.2%) 2 (2.4%) 6 (7.1%) 1 (1.3%) 19 (28%) 1 (1.5%)

  Missing 7 6 5 5 4 4

S. wiggsiae 
abundance

0.0 (0.0) 0.0 (0.0) 0.7 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.3

  Missing 7 6 5 5 4 4

S. wiggsiae ASV 
detected

0.7 > 0.9

  No 86 (93%) 78 (92%) 84 (100%) 76 (100%) 68 (99%) 65 (100%)

  Yes 6 (6.5%) 7 (8.2%) 1 (1.4%) 0 (0%)

  Missing 7 6 5 5 4 4
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antibiotic exposure within 3 months and visit of case 
diagnosis (P value = 0.001, Table  4). Three other net-
work modules were not consistently associated with den-
tal decay (Figure S7–8, Additional file 1). S. mutans was 
a member of one of these networks, which had Strepto-
coccus ASV1 and Neisseria ASV12 as the most abundant 
ASVS and Actinomyces ASV41 as the most central.

Although one unsupervised method clustered samples 
and the other clustered taxa, they identified similar clini-
cally relevant patterns in bacterial compositional data. 
Both identified a pattern of H. parainfluenzae and Neis-
seria co-occurrence elevated in controls, and a pattern 
of Streptococcus and Veillonella elevated in cases. Nine 
of the ten ASVs used to name the networks (top 2 most 
abundant ASVs in each of five network modules) were 
also in the top 10 most important ASVs for defining the 
separation of CSTs (Additional file 1: Figure S9).

The ECC-associated communities identified through 
unsupervised clustering were robust to varying hyper-
parameters. In the CST analysis, we varied the number 
of k CSTs (k = 4 vs 5 vs 6, Additional file 11, Additional 
file 1: Figure S10). In the network analysis, we varied the 
normalization transform function (Hellinger vs center-
log, Additional file  1: Figure S11). We also performed 
a sensitivity analysis to determine if these associations 
were robust to adjustment for cariogenic food consump-
tion and oral hygiene. Very few children were eating or 
drinking high-sugar foods or beverages at 12 months 
of age, except for fruit juice (Additional file  12). The 
association between the CSTs and future ECC diagno-
sis remained unchanged when controlling for fruit juice 
consumption and tooth brushing/wiping in a sensitiv-
ity analysis (Table 3), as did the association between the 
network modules and future ECC diagnosis (Table 4).
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Fig. 2  Taxa-wide supervised 5-repeat, 10-fold random forest classification models predict future early childhood caries status when using 12- (n 
= 158) and 24-month (n = 133) 16S rRNA gene amplicon sequenced saliva samples of children from Appalachia in an incidence density sampled 
case-control study (Center for Oral Health Research in Appalachia 2 cohort). A Area under the curve receiver operating curves from supervised 
random forests predicting future early childhood caries using the 273 most prevalent and abundant amplicon sequence variants at 12 months 
(black line) and 24 months (grey line). B Importance plots showing the top ten most important amplicon sequence variants from the 12- and 
24-month supervised random forest classifiers performed on 273 amplicon sequence variants, as determined by mean decrease in the Gini 
coefficient, with the importance of the S. mutans amplicon included for comparison. C Joy plots showing the relative abundance distribution of the 
top 10 most important amplicon sequence variants and S. mutans among cases (black) and controls (grey) at the 12- and 24-month visits
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Communities identified through unsupervised clustering 
are reproducible in an external cohort
To examine the reproducibility of these bacterial com-
munity networks, we performed the same analytic pipe-
line (see “Methods” section) on publicly available 16S 
rRNA gene sequencing data from longitudinal saliva 
samples of similarly aged children with a 10% prevalence 
of early childhood caries (Holgerson et  al.; PRJEB35824 
[12];). We were unable to obtain access to metadata for 
these samples.

A Haemophilus parainfluenzae and Neisseria per-
flava network module with central taxa Fusobacterium 

periodonticum was also identified in the Holgerson 
et  al. sample (Fig.  4C Additional file  1: Figures  S12–
13). The Neisseria ASV9 amplicon from our cohort 
was closely related to the Neisseria perflava amplicon 
from the Holgerson et al. cohort (Additional file 1: Fig-
ure S14A).

A similar Veillonella dispar/Streptococcus/Prevotella 
network module was also identified in the Holgerson 
et  al. sample (Fig.  4C). The Veillonella ASV5 amplicon 
from our cohort was closely related to the Veillonella 
dispar amplicon from the Holgerson et al. cohort (Addi-
tional file 1: Figure S14B).

Fig. 3  Community state typing clusters samples into 6 community state types (colors) corresponding to age (x-axis) and early childhood caries 
case status (facets) when performed on 855 longitudinal, 16S rRNA gene sequenced pre-incident and incident saliva samples from 189 children 
from Appalachia (191 records) in an incidence-sampled case-control study (Center for Oral Health Research in Appalachia 2 study). Alluvial plot 
showing the proportion of the sample in each community state type at each visit and the transitions between visits, faceted by early childhood 
caries case status. Bars are annotated at the top with the sample size N of cases and controls (excluding children who missed visit or did not have 
cleaned 16S rRNA gene amplicon saliva data for that visit). Only samples from the visit at which a case was diagnosed and preceding samples were 
sequenced, thus fewer samples were available at later ages
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Early‑life bacterial communities are associated 
with concurrent salivary pH, future S. mutans prevalence, 
and primary teeth count
We tested if bacterial communities from our unsuper-
vised clustering associated with etiologically relevant 
variables in our cohort. Although salivary pH did not dif-
fer between cases and controls at the 12- and 24-month 
visit (Additional file 1: Figure S15), abundance of the H. 
parainfluenzae-Neisseria ASV9 network module was 
correlated with increasing salivary pH (12-month rho = 
0.33, P value < 0.001; 24-month rho = 0.30; P value = 
< 0.001; Fig.  5A). Mean salivary pH was also higher in 
samples in CSTs characterized by H. parainfluenzae and 
Neisseria ASV9 (12-month mean: 6.78; 24-month mean 
6.71) than in those characterized by Streptococcus ASV8, 
Neisseria ASV12 and Veillonella ASV5 (12-month: 6.54, 
Wilcoxon P value = 0.05; 24-month 6.55, Wilcoxon P 
value = 0.01; Fig. 5B).

Children who acquired S. mutans by their next visit 
had lower abundances of the Haemophilus parainfluen-
zae-Neisseria ASV9 network and higher abundances of 
the Veillonella ASV5-Streptococcus ASV8 network than 
children who did not go on to have S. mutans (Fig. 6A). 
Children assigned to CSTs characterized by Streptococcus 
ASV8, Neisseria ASV12, and Veillonella ASV5 at the 12- 
and 24-month visits were more likely to have S. mutans 
detected at their next visit than children with communi-
ties characterized by Haemophilus parainfluenzae and 
Neisseria ASV9 (percent with S. mutans at 24-months: 
35% vs 9%, Fisher’s exact P value < 0.01; at 36 months: 
44% vs 21%, Fisher’s exact P value < 0.01, Fig. 6B).

The average number of primary teeth present was 
higher in children assigned to CSTs from later ages. The 
relative abundance of the Streptococcus ASV1-Neisseria 
ASV12 network, which included both S. mutans and 
Streptococcus sanguinis, correlated with the number of 
primary teeth present at the 12- and 24-month visits. 
This was not true for the protective H. parainfluenzae-
Neisseria ASV9 network (Additional file  1: Figure S16). 
For children from Pennsylvania, the approximate age at 
first tooth emergence was available but was not associ-
ated with CST nor network modules.

Whole‑genome shotgun metagenomics of 15 incident 
case samples and matched controls revealed significant 
differences in taxa and KEGG ortholog abundances 
between incident case‑ and control‑samples
We tested for differences in the community composition 
and functional potential of cases and controls using saliva 
and plaque samples from the visit of case ECC diagno-
sis for 15 cases and 15 matched controls. Among others, 
Scardovia wiggsiae, Prevotella histicola, Veillonella dis-
par, Streptococcus mutans and Streptococcus salivarius 
were more abundant in case than matched control saliva 
and plaque samples at the time of diagnosis (Fig. 7; Addi-
tional file  13). Prevotella salivae was more abundant in 
case than matched control saliva but not plaque samples 
(Benjamini-Hochberg PBH value < 0.05). The fungal genus 
Candida was only present in case plaque samples.

Cases and controls differed in the abundance of gene 
orthologs (Fig.  8). Associations with case status were 
stronger in plaque than saliva. Gene orthologs related to 

(See figure on next page.)
Fig. 4  Weighted co-occurrence network graphs identifies two clusters of co-occurring taxa which were associated with age and early childhood 
caries case status among 855 longitudinal, 16S rRNA gene sequenced saliva samples from 189 children from Appalachia (191 records) in an 
incidence-sampled case-control study (Center for Oral Health Research in Appalachia 2 (COHRA2) study) and were reproducible in an independent 
longitudinal cohort of similarly aged children with a 10% prevalence of early childhood caries. A Spaghetti plots showing the summed module 
relative abundance of two of the five identified network modules from weighted co-occurrence networks. Networks were named using the 
two most abundant amplicon sequence variants in the network and the most central amplicon sequence variant. Summed module relative 
abundance calculated by summing the relative abundance of all amplicon sequence variants assigned to the same cluster. Thin, transparent lines 
are individuals over time, thick lines represent smoothed means, dots and bars are mean and bootstrapped 95% confidence intervals at each visit, 
including both pre-incident and incident visits. B Network graphs of the two network modules shown in A. On the left, the protective network 
module was dominated by H. parainfluenzae (turquoise) and a Neisseria taxon (gold), with central taxon Fusobacterium periodonticum (green). 
On the right, the cariogenic network module was dominated by Streptococcus (red) and Veillonella (brown), with additional Actinomyces (pink) 
and Prevotella (purple) members. Amplicon sequence variants (nodes) that were more abundant in cases are shown as triangles, those more 
abundant in controls are shown as squares. Larger nodes represent more abundant amplicon sequence variants, and nodes are colored by genus. 
Amplicon sequence variants which were among the top 10 most important features in the supervised random forests are annotated with an 
asterisk, *. Thicker edges represent stronger correlations between amplicon sequence variants. C Repeating the co-occurrence graph analysis in an 
independent longitudinal cohort of similarly aged children (Holgerson et al.) identified a Haemophilus (turquoise) and Neisseria (gold) dominated 
network with central taxon Fusobacterium periodonticum, similar in composition and structure to the protective network module identified in 
COHRA2. A Veillonella dispar (brown), Prevotella (purple), and Streptococcus (red) network module was similar in composition to the cariogenic 
network module identified in COHRA2. Larger nodes represent more abundant amplicon sequence variants, and nodes are colored by genus. 
Amplicon sequence variants which were shared between the corresponding modules in COHRA2 and the Holgerson et al. cohort are annotated. 
For visualization purposes, edges with weights < 0.03 were not included
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Fig. 4  (See legend on previous page.)
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antibiotic production and resistance were more abundant 
in case plaque, including a major facilitator superfam-
ily multidrug resistance transporter (PBH value = 1.9 × 
10−28) and lantibiotic transport system permease protein 
(PBH value = 6.0 × 10−6) (Additional file  14). The oxida-
tive phosphorylation KEGG pathway was enriched in case 
plaque (PBH value = 1.2 × 10−8), while the ABC transporter 
pathway was depleted (PBH value = 3.6 × 10−3, Additional 
file 15). All the case-associated gene orthologs annotating 
to oxidative phosphorylation were found only in Candida 
(Additional file 16 and Additional file 1: Figure S17).

Discussion
Results of our analysis of 99 ECC cases and 90 incidence 
density-matched children supports the ecologic hypoth-
esis for ECC. We showed that bacteriome-wide informa-
tion classified future ECC status before reliable detection 
of salivary S. mutans. We expanded on previous work 

by identifying replicable groups of co-occurring bacte-
ria, which may represent true ecological interactions. 
We showed that these groups associate with concur-
rent salivary pH, future S. mutans acquisition and future 
ECC diagnosis, suggesting an ecological succession to 
cariogenesis. By incorporating shotgun metagenomic 
sequencing data, we identified functional mechanisms 
for ecological interactions between bacteria, including 
pathways related to antibiotic production and resistance. 
Together, these observations suggest early-life bacterial 
interactions during a susceptible life period can predis-
pose individuals to ECC.

Our findings on salivary bacteriome assembly and 
association with ECC fit within the previous literature. 
We observed a well-documented succession from Strep-
tococcus-dominated, low-diversity communities to more 
diverse communities by 24 months of age with stabili-
zation thereafter [11, 12, 24, 25]. As in cross-sectional 
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Fig. 5  Network modules from weighted co-occurrence network (WCN) graphs and community state types (CST) from community state typing are 
associated with salivary pH among incident and pre-incident saliva samples from an incidence density-matched nested case-control study selected 
form the Center for Oral Health Research in Appalachia 2 cohort study. A The protective H. parainfluenzae and Neisseria ASV9 network is positively 
correlated with salivary pH at 12 and 24 months (n = 95 at 12 months, with n = 71 missing or outlier salivary pH data, n = 162 at 24 months with 
n = 10 missing salivary pH data). B Salivary pH is also lower in saliva samples that were assigned to the Neisseria ASV12-Veillonella ASV5 CST when 
compared to saliva samples assigned to the Haemophilus parainfluenzae–Neisseria ASV9 CST (n = 94 at 12 months, with n = 71 missing or outlier 
salivary pH data and n = 1 with unassigned CST, n = 162 at 24 months, with n = 10 missing salivary pH data)



Page 15 of 24Blostein et al. Microbiome          (2022) 10:240 	

dental research, we found an association between S. 
mutans and ECC at the time of ECC diagnosis [8]. Like 
previous prospective studies of ECC, we found evidence 
for an association between early life salivary bacteriome 
composition and future ECC [14, 15]. We were able to 
distinguish ECC cases from controls more accurately and 
at an earlier age than reported by Dashper et al., while the 
AUC-ROC for our 12-month random forest (0.78) is close 
to that of Grier et al. (0.71) [14, 15]. While S. mutans, S. 
sobrinus, and Scardovia wiggsiae were elevated in cases 
at diagnosis, we found that the salivary bacteriome could 
prospectively predict ECC as early as 12 months, before 
reliable detection of these risk taxa. This supports a time-
dependent interpretation of the ecological hypothesis, 
in which dysbiosis in the oral microbial community pre-
cedes salivary S. mutans detection, a marker of late-stage 
cariogenesis. Our findings highlight the first 2 years of 
life as a susceptible period for assembly of a cariogenic 
oral microbial community.

Unlike most previous work, we identified specific and 
reproducible ECC-associated bacterial communities 

using unsupervised clustering techniques. These unsu-
pervised techniques better encapsulate the ecologi-
cal hypothesis than diversity metrics, which may be too 
coarse to summarize finer level differences in communi-
ties [22]. In our cohort, alpha diversity was weakly and 
inconsistently associated with future ECC status, echo-
ing previous mixed findings [17–21]. In contrast, groups 
of taxa from unsupervised clustering techniques were 
strongly and prospectively associated with ECC: a Hae-
mophilus parainfluenzae, Neisseria, and Fusobacterium 
periodonticum community was depleted in cases while 
a Prevotella, Streptococcus, and Veillonella community 
was more abundant. These communities were distin-
guished by genetically distinct sequence variants of Neis-
seria, Veillonella, and Fusobacterium. These bacterial 
communities were consistent across clustering methods, 
reproducible in an external cohort [12], and in line with 
previous work on co-occurrence patterns in oral bacterial 
communities [26–28].

As our analysis is observational, we can only sug-
gest possible biological explanations for these observed 
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Fig. 6  Network modules from weighted co-occurrence network (WCN) graphs and community state types (CST) from community state typing 
are associated with future detection of Streptococcus mutans among incident and pre-incident saliva samples from an incidence density-matched 
nested case-control study selected form the Center for Oral Health Research in Appalachia 2 cohort study. A Individuals who have Streptococcus 
mutans detected at 24 months have higher abundances of the protective H. parainfluenzae and Neisseria ASV9 network at 12 months (n = 157 with 
both 12- and 24-month clean 16S amplicon data, n = 116 with both 24- and 36-month clean 16S amplicon data). B Individuals with 12-month 
and 24-month CSTs characterized by Haemophilus parainfluenzae and Neisseria ASV9 were less likely to have S. mutans detected in their 24- and 
36-month saliva samples respectively (n = s155 with both 12- and 24-month clean 16S amplicon data and n = 2 with missing CST at 12 months, n 
= 116 with both 24- and 36-month clean 16S amplicon data)
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bacterial communities based on previous studies in the 
literature. These communities could result from habi-
tat filtering by diet, wherein organisms co-occur due to 
similar nutrient preferences [29]. However, they could 
also be the result of both cooperative and antagonist 
ecological interactions, including metabolic exchanges, 
coaggregation, and interference competition. Streptococ-
cus and Veillonella species are known to exchange lactic 
acid and exhibit transcriptional regulation under coag-
gregation [30, 31]. Fusobacteria are known to play crucial 
roles in coaggregation with strain-specific impacts on 
biofilm formation [32–34]. Streptococcus [35] and Neisse-
ria [36–38] are known to engage in interference competi-
tion to outcompete related species, including through the 
production of bacteriocins such as lantibiotics. Notably, 
our analysis of shotgun metagenomic sequences identi-
fied case-enrichment for gene orthologs for bacteriocin 
exporters [39] and lantibiotic production [40]. Cariogenic 
species such as Streptococcus mutans are known to use 
bacteriocins to outcompete other streptococci [35]. Thus, 

the groups of ECC-associated taxa identified from our 
unsupervised clustering may reflect ecological inter-
actions, including both intergenera cooperations and 
intragenera competitions. Future experimental work is 
necessary to investigate these possibilities.

We also tested how these bacterial communities 
were associated with etiologically relevant variables. 
The protective Haemophilus parainfluenzae, Neisse-
ria, and Fusobacterium periodonticum network was 
correlated with salivary pH and inversely associated 
with future S. mutans detection. In a recent in  vitro 
study, Neisseria was positively correlated with sali-
vary pH [41]. This community may therefore be pro-
tective by buffering against increases in acidity and 
subsequent Streptococcus mutans colonization. Such 
a capacity would likely be influenced by host diet and 
oral hygiene, known etiologic factors in dental decay. 
In sensitivity analyses, the prospective association 
between the protective community and ECC diagno-
sis remained even after adjusting for oral hygiene and 

Fig. 7  Shotgun-sequenced incident visit plaque and saliva sample exhibited significantly different abundances of taxa among 15 early childhood 
caries cases and 15 incidence density-matched controls selected from the Center for Oral Health Research in Appalachia 2 study Volcano plots 
showing the −log10 pvalue and log2 fold change between cases and controls for taxa in plaque and saliva samples from the visit of case diagnosis. 
Points are colored black if Benjamini-Hochberg P value > 0.05 and by genus if the adjusted P value < 0.05
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diet variables. However, diet is complicated to measure 
and further investigation is necessary. Future research 
should investigate relationships between the early-life 
microbial community, diet, and ECC.

The sample type for assessment of the oral microbi-
ome is an important consideration. We performed 16S 
rRNA gene sequencing on longitudinal saliva samples, 
and shotgun metagenomic sequencing on a subsample of 
cross-sectional plaque and saliva samples. Saliva washes 
over many oral surfaces with different microbial commu-
nities [7, 42–44]. Therefore, differences in bacterial com-
position of saliva may reflect differences in the bacterial 
abundance of oral surfaces. Consequently, the co-occur-
rence patterns we identified may reflect niche-sharing 
of oral surfaces rather than cooperation between taxa. 
Although the protective and cariogenic communities we 
identified were not associated with primary tooth count, 
we cannot conclusively rule out this explanation. Func-
tional and taxonomic differences were larger in shotgun 
metagenomic sequenced plaque samples than in saliva 
samples, and some caries-associated taxa, including Can-
dida albicans, were only identified in plaque samples. 
This may reflect true etiologic differences as plaque, not 
saliva, is the most proximate tissue in cariogenesis. How-
ever, the shotgun metagenomic sequenced saliva sam-
ples in our analysis had lower microbial read counts than 
the plaque samples post-processing, as saliva samples 
had higher amounts of human DNA, which is expected 
given that we did not chemically deplete host reads [45]. 
This could also decrease the power for detecting differ-
ences when using saliva samples, especially among low-
abundance taxa or functions. Additionally, plaque is 
more difficult to collect from edentulous children, has a 
low biomass, and is unlikely to be used as a prognostic 
marker in a clinical setting. Thus, the predictive power 
of the early-life salivary microbiome demonstrated in 
our analysis is of practical, clinical interest. While having 
both saliva and plaque samples in the shotgun metagen-
omic sequencing subsample is a strength, our analysis is 
limited by not including longitudinal plaque samples and 
by the small sample sizes of this analysis.

Our analysis has several other limitations. The V4 
region of the 16S rRNA gene is limited in ability to 
resolve fine-level taxonomic differences. This could 

affect the identification and measurement of Streptococ-
cus amplicons in our dataset. We validated the identity 
of Streptococcus amplicons using BLAST and shotgun 
metagenomic data, but nondifferential exposure misclas-
sification of S. mutans prevalence is possible. The 16S 
rRNA gene also does not measure virus, eukaryotes, or 
interspecies functional variation. Both 16S rRNA gene 
and shotgun metagenomic sequencing data is inherently 
compositional. We instituted transformations to address 
compositionality but did not have absolute abundance 
data. While we validated the unsupervised clustering 
methods in an external cohort, we did not have a valida-
tion dataset for the supervised random forest.

Our study design is observational, so causality cannot 
be conclusively proved. However, our exposure meas-
urements precede our outcome, fulfilling a key causal 
requirement. Our study population was primarily chil-
dren of European descent from northern and north 
central Appalachia. Although some of the unsupervised 
clusters from our cohort were replicable in the Swedish 
Holgerson et al. cohort, microbial communities can dif-
fer by geography, race, and ethnicity. Thus, the generaliz-
ability of our findings may be limited. Further studies in 
additional populations, incorporating shotgun metagen-
omic sequencing, quantification of absolute microbial 
loads, and site-specific measures of oral bacterial com-
munities are warranted.

Conclusions
We found that the early-life salivary microbiome asso-
ciated with risk of ECC before S. mutans could be 
detected, supporting a time-dependent interpretation of 
the ecological hypothesis. Our analysis is strengthened 
by a longitudinal design, balanced case-control ratios, 
incorporation of both amplicon and shotgun metagen-
omic sequencing, and replication analyses. Our obser-
vations on the suitability of diversity measures vs other 
clustering techniques to detect fine scale differences are 
applicable in other microbial contexts. Our findings on 
ecological succession and bacterial interactions in early 
life may also be generalizable to other systems of micro-
biome development. Overall, our analyses support a 
developmental interpretation of the ecological hypoth-
esis and raise the possibility that ecological interactions 

(See figure on next page.)
Fig. 8  Incident-visit plaque and saliva samples exhibited significantly different abundances of KEGG ortholog groups among 15 early childhood 
caries cases and 15 incidence density-matched controls selected from the Center for Oral Health Research in Appalachia 2 study. A Volcano plots 
showing the −log10 pvalue and log2 fold change between cases and controls of KEGG orthologs in plaque and saliva samples. Points are colored 
black if Benjamini-Hochberg P value > 0.05 and by the first top-level KEGG annotation from the KEGG hierarchy of the KEGG ortholog if the adjusted 
P value < 0.05. The top 6 most significant KEGG orthologs are annotated with the name of the KEGG ortholog and the taxa in which that KEGG 
ortholog was found in our sample. B Count of KEGG orthologs with Benjamini-Hochberg adjusted P value < 0.05 by 3rd level KEGG annotation 
(y-axis), faceted by top level KEGG annotation (colors same as in 3A)
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Fig. 8  (See legend on previous page.)
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and successions in early life, in addition to etiologic risk 
factors such as diet and oral hygiene, may predispose 
children to ECC.

Methods
Study cohort
We used data from the Center for Oral Health Research in 
Appalachia 2 study (COHRA2) [46]. COHRA2 recruited 
White, pregnant women between 2011 and 2015 from 
Pennsylvania and West Virginia. Healthy women who 
were in the 12th to 29th week of pregnancy, of European 
descent, over 18 years of old, fluent in English, and with 
a singleton pregnancy were eligible for inclusion. Women 
and their babies were followed longitudinally through 
the early years of the baby’s life. Women were excluded 
if they had tuberculosis, were immunocompromised, 
thought they might soon leave the general regions of 
West Virginia or southwestern Pennsylvania, or did not 
have a reliable telephone contact. Mother-child pairs also 
were excluded from the study if the child was delivered 
before the 35th week of pregnancy or if the mother or 
child developed a serious medical condition.

Participants completed in-person visits when the child 
was 2 months and 12 months old, then yearly thereafter. 
Mother-child pairs from the Pennsylvania site had addi-
tional in-person visits at birth and when the child’s first 
primary tooth erupted. At in-person visits mothers and 
children underwent a comprehensive dental assessment 
by a trained and calibrated dental professionals (train-
ing and calibration described in detail in Neiswanger 
et  al. [46]); participants were asked not to eat or drink 
for 2 hours prior to the examination. The examination 
included caries assessment via the PhenX Toolkit Den-
tal Caries Experience Prevalence Protocol (http://​www.​
phenx​toolk​it.​org/, protocol number 080300) which 
allows for the decayed, missing, and filled tooth count 
to be calculated either including or excluding white 
spots. The dental examination also included collection 
of microbial samples from saliva, plaque, and gingival 
swabs using OMNIgene Discover kits (OM-501 or 505 
DNA Genotek); only saliva and plaque samples were used 
in this analysis. Saliva was collected via swabs for chil-
dren too young to spit into a collection tube and via spit-
ting otherwise. Pooled plaque samples were taken with 
a Stimudent or curette from three intact tooth surfaces 
(in UNS/FDI notation: 8-buccal/51-buccal, 24-buccal/71-
buccal, 31-occlusal/84-occusal or nearby surfaces if these 
were not intact). Plaque was also taken from tooth sur-
faces with untreated dental lesions. Salivary pH was also 
measured at visits where the child was old enough to spit 
(most by 12 months, all by 24 months) using a pH strip.

A 30–45-min telephone interview was administered 
to the mothers at approximately 6-month intervals to 

capture sociodemographic and behavioral data. These 
interviews included questions about oral hygiene and 
approximate frequency of child consumption of specific 
foods and beverages.

Sampling and case definition
For this analysis we selected 99 children who had any den-
tal lesions, including white spots (d1mft), at or prior to the 
60-month visit in the 2019 data freeze of the COHRA2 
cohort as early childhood caries (ECC) cases. The visit in 
which a child was first identified as having a dental lesion 
or white spot was the incident-visit for that child. We then 
selected a similar number of children who were free of 
dental lesions and white spots at the same visit as the cases 
to serve as incidence-density sampled controls (n = 90). 
Incidence density sampling does not preclude the reselec-
tion of a control as a case at later time points; controls can 
also be selected as controls for multiple cases (Fig. 1) [47]. 
In this analysis, one control was later selected as a case and 
one control was selected as a control twice (n = 92 con-
trol records). Duplicate records of the case/control and 
control/control children were not used in the supervised 
random forest: the case/control was only included as a 
case and the control/control was only included as a control 
once. In both unsupervised clustering techniques, we did 
not include duplicate records from these individuals when 
performing initial clustering or in the supervised random 
forests but did include them when graphing and testing 
associations between identified clusters and variables of 
interest (i.e., in Table 1, Figs. 1, 2, and 3). The number of 
total unique individuals in the analysis was 189, with 191 
unique person-records (Additional file 5).

All available saliva samples from cases and controls, 
up to and including the incident-visit saliva sample, were 
pulled for 16S rRNA amplicon sequencing (Fig. 1). Note 
that selected individuals occasionally missed visits, did 
not have a saliva sample available, or had a saliva sample 
which failed 16S amplicon quality control (Additional 
file  5). Additionally, we randomly selected a subcohort 
of 15 cases presenting with enamel lesions at or after 
the 36-month visit and 15 corresponding controls. 
Plaque and saliva samples from the visit of case diagno-
sis for these 30 individuals were submitted for shotgun 
metagenomic sequencing.

Laboratory and bioinformatics pipeline for 16S rRNA 
amplicon metagenomic sequencing
Bacterial DNA was extracted from aliquots of saliva. 
Library preparation and sequencing of the 16S rRNA 
V4 amplicon was performed by the Michigan Micro-
bial Systems Molecular Biology Laboratory using pre-
viously validated protocols [48]. DNA extraction was 
performed using the Eppedorf EpMotion liquid handling 

http://www.phenxtoolkit.org/
http://www.phenxtoolkit.org/
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system following the Qiagen MagAttract PowerMicrobi-
ome kit protocol. The V4 variable region was amplified 
from extracted DNA using barcoded dual-index primers 
and sequenced on the Illumnia MiSeq platform using the 
MiSeq Reagent Kit V2 500 cycles. Each plate of samples 
was submitted with a positive mock community control, 
a DNA extraction kit control, and a negative water control 
(Additional file  2: Figures  S3–4). Reads were processed 
to amplicon sequence variants (ASVs) using DADA2 
(version 1.14.1) [49] and the Human Oral Microbiome 
Database (HOMD) version 15.2 [50]. To identify contami-
nants, we used the R package decontam (version 1.8.0) 
[51]. We filtered out samples with less than 1000 reads (n 
= 6 samples lost). Diversity metrics were calculated using 
the estimate_richness function from the R package phy-
loseq all ASVs. However, to limit the number of features 
used in supervised and unsupervised learning, we insti-
tuted a prevalence-abundance ASV filter. ASVs which 
were present in less than 5% of all samples and which rep-
resented less than 5% of all sequences in the samples in 
which they were present were excluded from the analytic 
subset for supervised random forest and unsupervised 
clustering techniques (m = 273 ASVs in analytic subset). 
ASVs were not collapsed at the genus or species level.

Random forest
We used the 12- and 24-month visits as inputs for the 
random forest as these visits preserved a large subset 
of pre-incident samples. Only pre-incident cases and 
matched controls were used in the random forest: indi-
viduals with incident-visit saliva samples were excluded 
(6 individuals with available samples who were identified 
as cases or controls at the 12-month visit and 37 individ-
uals identified at the 24-month visit were excluded, total 
sample size of n = 158 and n = 132). Hellinger trans-
formed ASV counts from the 273 ASVs in our analysis 
subset were used in the random forest. Using the train 
function in the R package caret [52], we ran 5 repeats 
of 10-fold cross validated random forest machine algo-
rithms with 500 trees. We allowed the mtry parameter 
(number of parameters randomly sampled as candidates 
at each tree split) to be tuned from a choice of 2, 136, or 
271 using the receiver operating characteristic curve; for 
both the 12-month and 24-month all taxa random for-
est an mtry parameter of 2 was selected. Area under the 
receiver operating curve and other evaluation statistics 
were calculated using the R package MLeval [53].

Dirichlet multinomial community state typing
We used the R package DirichletMultinomial to clus-
ter samples into community state types (CSTs) using 

Dirichlet multinomial mixture models [54]. We fit ten 
Dirichlet multinomial models, using as input the count 
matrix of the 855 samples by 273 ASVs in the analytic 
subset and varying the number of Dirichlet components 
(i.e., CSTs) from 1 to 10. We calculated the Laplace 
measure of fit for each model and plotted against k, 
identifying k = 6 as the best model. We varied k = {4, 
5} as a sensitivity analysis. Samples were assigned to the 
single k CST for which they had the highest posterior 
probability of membership; if a sample assigned to no 
CST at a posterior probability > 80%, the sample was 
not assigned to any CST.

Weighted co‑occurrence networks
We used the R package WGCNA to build a signed 
weighted network of ASVs using the Hellinger-trans-
formed count matrix of 855 samples and 273 ASVs [55]. 
As a sensitivity analysis, we used the center-log ratio 
transformed count matrix. The soft thresholding power 
of the signed network was selected to maximize the 
R^2 of the model fit while preserving the mean connec-
tivity of the network using the pickSoftThreshold func-
tion in WCGNA. We used a dynamic tree cut and the 
cutreeDynamic function in WCGNA to identify net-
work modules or clusters using a minimum module size 
of 5 and a deep split value of 4, with the aim of produc-
ing more fine-grained clusters. Intramodular connec-
tivity statistics were calculated for each ASV using the 
intramodularConnectivity function. Finally, per-sample 
module relative abundances were calculated by sum-
ming the relative abundances of all ASVs belonging to 
the same module.

Replication cohort
We performed the exact same bioinformatics and analytic 
pipeline on publicly available V3-–V4 16S rRNA gene 
data from the Holgerson cohort (PRJEB35824) [12], as we 
did to the COHRA2 samples. This cohort was also com-
posed of sequential salivary samples from similarly aged 
children, the prevalence of ECC was 10% by 60 months 
of age. The laboratory methods for these samples are 
described in Holgerson et al. [12]. All the bioinformatics 
parameters and steps were the same as described above, 
with the exception that decontam was not used to iden-
tify potential contaminants as the publicly available data 
did not include DNA quantification data. Since we could 
not obtain access to any metadata characteristics of these 
samples, including ECC status, the random forest mod-
els could not be run. For visualization purposes, the two 
matching networks shown in Fig. 4C were filtered to only 
edges with a weight > 0.03. The full, unfiltered network 
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images are shown in Additional file  1. To compare the 
relatedness of the amplicon sequence variants assigned to 
various network modules across the COHRA2 and Holg-
erson cohort, we performed multiple sequence align-
ment of the amplicons using the R packages msa, using 
the ClustalW algorithim [56]). We computed pairwise 
distances from the DNA sequences using the r function 
dist.dml from the r package phangorn [57], using the 
JC69 model. We created a neighbor joining tree using the 
phangorn function NJ, then fit a generalized time-revers-
ible with gamma rate maximum likelihood tree using the 
neighbor joining tree as a starting point. We obtained 
100 bootstrap values for the tree using bootstrap.pml and 
plotted the tree using ggtree [58] and collapsed branches 
present in < 50 of the bootstrapped trees.

Statistical analyses
We investigated differences between cases and controls 
in salivary pH using boxplots and Wilcoxon’s test. At 12 
months, n = 97 children had both clean 16S amplicon 
data and salivary pH measurements and at 24 months, n 
= 168 children did. As we could not exclude the possibil-
ity of technical errors associated with measuring salivary 
pH using a test strip, we excluded from consideration 
samples with a salivary pH < 5.5 (n = 2) or > 8 (n = 6), 
leaving n = 95 and n = 162. We investigated associations 
between salivary pH and summed module abundance 
using Pearson’s correlation coefficient and scatter plots. 
We investigated associations between salivary pH and 
CST using Fisher’s exact test and bar graphs (additional 
n = 1 child excluded at 12 months due to unassigned 
CST). Among n = 157 with both 12- and 24-month 16S 
amplicon data and n = 116 with both 24- and 36-month 
amplicon data, we investigated differences in summed 
module abundance by next-visit Streptococcus mutans 
detection using boxplots and Wilcoxon’s rank sum test 
and differences in proportions of children with CSTs by 
next-visit Streptococcus mutans detection using bar plots 
and Fisher’s exact test (additional n = 2 children with 
unassigned CST excluded). We used logistic regression 
to test for associations between summary metrics from 
unsupervised clustering and ECC separately at the 12- 
and 24-month visits while controlling for potential con-
founders identified from literature review and directed 
acyclic graphic. For each time point only pre-incident 
cases and controls were included in the regression, i.e., 
cases diagnosed at 12 months of age and age-matched 
controls were not included in the 12-month regression 
models. This ensures that the regression models test 
for prospective associations between current salivary 
bacteriome and future ECC diagnosis. To test for asso-
ciations between CST and future ECC diagnosis, ECC 
status was used as the outcome and CST assignment 

was included as a categorical predictor. To test for asso-
ciations between network modules and future ECC diag-
nosis, ECC status was used as the outcome and relative 
abundance of the network module was included as a con-
tinuous predictor ranging from 0 to 100. This allows the 
exponentiated coefficient to be interpreted as the odds 
ratio for a 1 percentage point increase in network module 
abundance. In adjusted models we included the follow-
ing covariates: binary indicator for child being currently 
breastfed at the visit, binary indicator for maternal report 
of child antibiotic use within 3 months of visit, count 
of emerged primary teeth, binary indicator for birth 
delivery mode, binary indicator for maternal education 
greater than high school, and categorical variable for visit 
of case diagnosis/control matching. As a sensitivity anal-
ysis we also controlled for tooth brushing/wiping (none, 
yes without toothpaste and yes with toothpaste) and past 
week juice consumption frequency (never or once, a few 
days, every day, several times per day).

Laboratory and bioinformatics pipeline for shotgun 
metagenomic sequencing
DNA was extracted from plaque and saliva samples using 
the Zymobiomics miniprep kit according to the manu-
facturer’s instructions. Isolated DNA was quantified by 
Qubit. DNA libraries were prepared using the Illumina 
Nextera XT library preparation kit according to the 
manufacturer’s protocol. Library quantity and quality 
was assessed with Qubit (ThermoFisher) and Tapesta-
tion (Agilent Technologies, CA, USA). Libraries were 
then sequenced on Illumina HiSeq platform 2 × 150 bp. 
Quality filtering and adapter trimming were performed 
using Trimmomatic and the Nextera PE adapters. Host 
DNA was removed using bowtie2 and the GRCh38 index. 
Trimmed, cleaned and decontaminated reads were pro-
cessed through both the Humann3 short-read profiling 
pipeline [59] and the SqueezeMeta assembly-based pipe-
line (version 1.4.0) [60]. Plaque and saliva samples were 
run separately through the assembly pipeline. Briefly, 
assembly was done using Megahit, ORFs were predicted 
using Prodigal, and similarity searches against GenBank, 
eggnog and KEGG were conducted using Diamond. Read 
mapping against contigs was performed using Bowtie2. 
Binning was done using MaxBin2 and Metabat2 and bins 
were combined using DAS Tool. To test for differential 
abundance of KEGG orthologs and taxa abundance esti-
mated from contigs, we used DESeq2, first filtering out 
KEGG or taxa with fewer than 500 reads from the test-
ing subset. We tested for enrichment in KEGG pathways 
using gene set enrichment analysis and the R package 
fgsea separately on plaque and saliva samples. We used 
the package SQMTools to extract functional and taxo-
nomic subsets of interest, such as the KEGG orthologs 
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which annotated to oxidative phosphorylation. To test 
correlations between 16S rRNA gene amplicon sequence 
variants and abundances of taxa from whole genome 
sequencing, we used a partial spearman correlation while 
controlling for incident visit and case status.
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