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A B S T R A C T

Smart healthcare is an integral part of a smart city, which provides real time and intelligent remote monitoring
and tracking services to patients and elderly persons. In the era of an extraordinary public health crisis
due to the spread of the novel coronavirus (2019-nCoV), which caused the deaths of millions and affected
a multitude of people worldwide in different ways, the role of smart healthcare has become indispensable.
Any modern method that allows for speedy and efficient monitoring of COVID19-affected patients could be
highly beneficial to medical staff. Several smart-healthcare systems based on the Internet of Medical Things
(IoMT) have attracted worldwide interest in their growing technical assistance in health services, notably in
predicting, identifying and preventing, and their remote surveillance of most infectious diseases. In this paper,
a real time health monitoring system for COVID19 patients based on edge computing and fuzzy logic technique
is proposed. The proposed model makes use of the IoMT architecture to collect real time biological data (or
health information) from the patients to monitor and analyze the health conditions of the infected patients
and generates alert messages that are transmitted to the concerned parties such as relatives, medical staff and
doctors to provide appropriate treatment in a timely fashion. The health data are collected through sensors
attached to the patients and transmitted to the edge devices and cloud storage for further processing. The
collected data are analyzed through fuzzy logic in edge devices to efficiently identify the risk status (such
as low risk, moderate risk and high risk) of the COVID19 patients in real time. The proposed system is also
associated with a mobile app that enables the continuous monitoring of the health status of the patients.
Moreover, once alerted by the system about the high risk status of a patient, a doctor can fetch all the health
records of the patient for a specified period, which can be utilized for a detailed clinical diagnosis.
1. Introduction

Since the size and the population of cities are ever-growing all over
the world (Kirimtat, Krejcar, Kertesz, & Tasgetiren, 2020), providing
essential services such as healthcare, transportation, energy, education,
etc., to the urban population is becoming a significant challenge. A
technology-driven solution to this problem has been proposed in terms
of the smart city. The smart city, an IoT-based solution, promises
sustainability in delivering different services in urban areas and en-
suring collaborations among different components and layers of the
city. As per Attaran, Kheibari, and Bahrepour (2022) the smart city has
six dimensions – a smart environment, smart economy, smart living,
smart people, smart government, and smart transportation. Hamid
and Bawany (2022) proposed a framework which divides the smart
city into five layers to improve its management and overall security.
As reported by Hamid and Bawany (2022) the smart-city layers are
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— application, communication, infrastructure, data, and stakeholders.
Smart healthcare is an integrated part of the smart city. Cook, Duncan,
Sprint, and Fritz (2018) discussed how information and communication
technologies (ICTs) used in a smart city can significantly scale up
healthcare effectiveness and also reduce the cost of healthcare services.
Tuncer, Dogan, Özyurt, and Bensmail (2020) utilized a massive amount
of smart sensors (or bio-sensors) connected in several body sensor
networks (BSNs), smart devices, massive amounts of biological data and
media content, an efficient communication framework, and intelligent
decision support to build a framework which logically connects stake-
holders such as the patients, patient’s relatives, doctors, and medical
assistants who may be physically located in different locations.

The outbreak of COVID19 (He, Deng, & Li, 2020) in late December
2019 scaled up as a pandemic and threatened the entire world. Huang
et al. (2020) summarized the symptoms of 41 COVID19 cases on
vailable online 26 December 2022
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January 24, 2020, showing that flu-like symptoms, coughing, muscle
aches, pain, and weakness were perhaps the most frequent initiation
signs. The World Health Organization (WHO) declared COVID19 as a
pandemic on March 11, 2020, and requested immediate international
intervention (Rubin et al., 2020). Doctors and healthcare staff were
badly affected due to the infectious nature of the disease. The situation
urges a unique solution that can address the problem of fulfilling the
urgent need for medical supplies, medical assistance, and therapies
within a constrained environment. The emergence of this COVID19
crisis has magnificently escalated the demand for more efficient and
responsive smart healthcare systems.

Furthermore, every front-line professional, such as medical staff,
relies upon personal protective equipment (PPE) to safeguard them-
selves from the transmission. However, the lack of gloves, face masks,
gowns, and other medical necessities left front-line healthcare workers
woefully unprepared to handle an infected individual. The world’s sole
option for dealing with this virus is to halt its transmission. On the
other hand, science and technology may be able to assist in reducing the
spread of the disease by early detection (or prediction) and surveillance
of reported cases (Hlaing, Nopparatjamjomras, Nopparatjamjomras,
et al., 2018). New technologies, like the IoT, are gaining international
attention and have become more accessible for predicting and tracking
the progression of severe diseases (Christaki, 2015).

Healthcare service (Ray, 2014; Goyal, Garg, Rastogi, & Singhal,
2018) is a system that aids in improving health and preventing different
diseases with appropriate medical treatments. In the healthcare sector,
IoT has brought about several remote health-monitoring solutions.
Numerous bio-sensors may be used to collect health data in IoT-based
solutions. A specialized area of IoT in the medical domain is referred
to as IoMT (Internet of Medical Things) (Christaki, 2015). IoMT is
becoming more evident in healthcare-related solutions, and it is also a
perfect option for screening, forecasting, and monitoring new infectious
illnesses such as COVID19. The schemes presented in Gozes et al.
(2020), Bai et al. (2020), Vaishya, Javaid, Khan, and Haleem (2020) are
based on artificial intelligence (AI). Rajees. Kumar et al. (2022) used
IoT for the detection and monitoring of asymptotic COVID19 patients.
However, most of the proposed methods are either inefficient in dealing
with real time data and hence unable to provide real time response,
or they are not cost-effective systems. The main challenges that are
identified in the several frameworks and models proposed to address
the problem of monitoring COVID19 patients are as follows.

• COVID19 patients staying at home or at COVID care centers need
to be monitored remotely to prevent the spread of the infection
and safeguard the doctors and medical staff.

• In high risk situations for patients, it will generate alerts in real
time, notifying all concerned parties so that preventive actions
can be taken.

• The majority of existing frameworks are inefficient at generating
real time responses and require extensive training during the
learning process. At the same time, some frameworks require
costly hardware. Thus, the challenge is to develop a framework
that is cost-effective but at the same time efficient.

• The solution is required to provide a user-friendly mobile app to
monitor patients’ medical status.

• Since the medical data are highly sensitive, sufficient security
measures have to be considered, so the patients’ privacy cannot
be compromised.

.1. Our contributions

This paper mainly concentrates on designing and implementing
n IoMT-based framework along with a light-weighted fuzzy analysis
ystem that monitors and generates the risk status of COVID patients.
ore specifically, the main contributions are as follows:
2

1. Designing and implementing a cost-effective, remote, and real
time health monitor system for COVID19 patients based on the
IoMT framework along with edge computation.

2. Developing a fuzzy system to detect patients’ health status at the
edge layer in real time and in high risk situations generates a
text alerts to attract the attention of the designated personnel
like relatives, doctors, or medical staff.

3. Using the fuzzy logic controller to ensure a quick response with
little computational cost (no training is required). Moreover, the
use of low cost hardware along with low-cost sensors to collect
real time health (or medical) data of the patients makes the
overall framework cost-effective.

4. Implementing a mobile application that enables continuous as
well as on-demand monitoring of the patient’s health informa-
tion.

5. Designing and implementing an approval-based mechanism to
ensure secure access to the health information in the cloud.

This approach aims to minimize death rates by monitoring, correctly
understanding the level of risk associated with the patients and reduc-
ing the contamination rate throughout the associated persons in the
healthcare sector.

The paper is organized as follows – Section 2 provides a study on the
existing solutions, the proposed framework is presented in Section 3,
while in Section 4, the experiment and the experimental results are
reported, and Section 5 includes the discussion about the proposed
system and the utilization of the developed system. Section 6 concludes
the paper by presenting the scope of future works.

2. Related study

As per Ting, Carin, Dzau, and Wong (2020), the versatility of the
IoT allows remote monitoring of a significant number of patients from
their care homes. The patients’ health data include heart rate and blood
pressure, which may be transferred to the cloud for processing without
putting healthcare professionals at risk of contamination. In current
scenarios, the use of IoT to supply healthcare assistance has received
much attention. Said and Tolba (2021) proposed a IoT healthcare
architecture. The proposed health architecture has three layers. The
first layer collects the user’s health data, the second part is responsible
for managing the administration’s function, and the third one has the
most important task, i.e., to classify the collected data, depending on
the priority. As reported by Singh, Javaid, Haleem, and Suman (2020),
the advantages of applying IoT to combat the COVID19 outbreak in-
volve lower healthcare costs and better treatment outcomes for affected
patients. Based on this, Darwish, Hassanien, Elhoseny, Sangaiah, and
Muhammad (2019) presented a CloudIoT-Health paradigm that blends
cloud services using IoT in the healthcare sector.

The relevance of Radio-Frequency IDentification (RFID) technology
for managing affected people’s medical information and surveillance
devices without being contaminated is highlighted by Huang and Xie
(2014). Alshraideh, Otoom, Al-Araida, Bawaneh, and Bravo (2015) pre-
sented an IoT-based method for detecting cardiovascular disease. The
authors have applied several machine learning methods to implement
their scheme. Rao and Vazquez (2020) presented a machine learning-
based approach for the detection of COVID. The scheme is based
on information collected from respondents via a pre-defined series of
questions that can be viewed on a smartphone. Madurai Elavarasan
and Pugazhendhi (2020) studied the significant role of technologies in
controlling the COVID19 pandemic and discussed different technologies
that assist the healthcare systems, government, and public sectors to
fight against COVID19. Kumar, Raut, and Narkhede (2020) reported
different ways to properly utilize technological domains such as AI and
IoT in healthcare sectors. Singh et al. (2020) described the implemen-
tation of IoT as a crucial part of the system for tracking and reporting
real time data about infections.
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Vaishya et al. (2020) reported how AI could be used to detect
COVID19 patients. The authors compared different AI-based and non-
AI-based applications. The authors also proposed seven different ways
AI can fight against COVID19, including early detection, treatment
monitoring, contact tracing, mortality projection, development of drugs
and vaccines, minimizing the workloads of healthcare persons, and pre-
vention of this disease. In Gozes et al. (2020), Gozes et al. presented an
AI-based automated CT image analysis system for COVID19 identifica-
tion, measurement, tracking, and distinguishing COVID19 patients from
non-COVID19 patients. Further, Rajees. Kumar et al. (2022) proposed
a technique for finding and tracking asymptotic patients by collecting
data about them using IoT devices, as well as monitoring their health
status after separating them using IoT-based technologies. Google and
Apple1 developed an app for exposure notification using contact track-
ing methods, which can assist and enhance these efforts by allowing
public health officials to instantly warn anyone who may have been
in close contacted with someone who has caught COVID19. Bai et al.
(2020) proposed an IoT-based diagnosis and treatment assistant pro-
gram by utilizing a set of questionnaires and automatically generating
conclusions about confirmed or suspected COVID19 patients. A. Bassam
et al. (2021) designed and implemented a system for COVID19 patient
monitoring. Three system layers include wearable sensors, a cloud-
based API, and an Android web application for mobile devices. The
data from the IoT sensor layer are initially used to characterize the
signs and symptoms of the disease. The next layer saves data in a
cloud database to prevent, alert, and respond quickly to threats. This
layer is responsible for contacting and alerting the family members
of patients who are most likely affected. In addition, the technology
immediately notifies the relevant health practitioners of quarantine
breaks for possibly infected people using real time location information.

Dhiman, Vinot. Kumar, Kaur, and Sharma (2021) proposed that X-
rays could be used to identify the patients contaminated with COVID19
using a deep learning algorithm and a multi-objective optimization
strategy. The authors used the J48 DT approach to detect infected in-
dividuals by successfully classifying their characteristics. This research
built 11 CNN models to diagnose COVID19 from X-ray scans. Sodhi
et al. (2022) reviewed the technologies that assist governments in their
efforts to combat the pandemic. In Poongodi et al. (2022), Poongodi
et al. proposed a hybrid deep learning method to diagnose COVID19.
The layered approach is used here to measure the symptom level of
the patients and to analyze the patient image data to confirm whether
he/she is positive for COVID19. This work utilizes smart AI techniques
to rapidly predict and diagnose the COVID19 by the Oura smart ring
within 24 h. In the laboratory, a rapid coronavirus test is prepared with
the help of a deep learning model using the recurrent neural network
(RNN) and convolutional neural network (CNN) algorithms to diagnose
COVID19 rapidly and accurately. Sharma, Tomar, Chilamkurti, Kim,
et al. (2020) explored the idea of blockchain combined with smart
contracts and analyzed its use in IoMT. They also analyzed the IoMT’s
decentralization and the usage of smart contracts. Furthermore, the
authors also proposed a unique architecture of IoMT and outlined its
benefits, drawbacks, and future developments.

Aman et al. (2021) proposed the basic architecture of the IoMT. The
main functional tasks associated with this architectures are common
such as data collection, storage, transmission, and analysis, which
may assist in restricting the spread of infectious diseases. Further-
more, the architecture has been enhanced by integrating the cloud
platform to analyze the collected dataset and make decisions by end-
user devices such as smartphones or monitoring devices. Therefore, this
paper provides an IoMT-based solution that can help to prevent the
spread of COVID19 infection. The proposed framework comprises bio-
sensors, edge devices, and a fuzzy system that can remotely monitor
the COVID19 patients in real time. In an alarming situation, the system
generates alert messages to the person associated with the patient so
that preventive actions can be carried out.

1 https://www.google.com/covid19/exposurenotifications/
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3. Proposed framework

The proposed framework enables continuous monitoring of specific
health parameters of COVID19 patients using wearable sensors. It
analyzes the collected data to find the risk status associated with the
patient and, when the risk is high, it generates text alerts. The IoMT
system comprises four basic layers: (1) sensor layer, (2) edge layer,
(3) cloud layer, and (4) interface layer. Fig. 1 depicts the basic IoMT
architecture. In this proposed system, the sensors are connected with
a Raspberry Pi system to collect real time data from COVID19 patients
remotely. In the implementation, the Raspberry Pi systems are used as
edge devices. After collecting data with edge devices, the fuzzification
and decision-making occur at the edges so that an alert in real time
can be generated (in the form of a text alert) about the patients’ high
risk health conditions. Further, the collected data would be finally
accumulated in the cloud through edge devices for storage and could
be accessed by authorized users for health monitoring purposes. COVI-
MONI, a mobile app that serves as an interface layer, has been proposed
and developed for health monitoring purposes.

This proposed framework comprises five main components, as pre-
sented in Fig. 2.

1. The wearable body sensors collect health-related data from the
target COVID19 patients (at sensor layer).

2. The real time data are stored in edge devices (at edge layer).
3. Fuzzification: fuzzy logic is applied to analyze the collected data

(at edge layer).
4. Decision-support mechanism: the fuzzy logic system generates

risk status associated with the patients in terms of high risk,
moderate risk, and low risk (at edge layer).

5. Alert generation: if the associated risk is high, it generates text
alerts (at edge layer).

6. Data accumulation in the cloud: the edge devices forward the
collected data to some cloud server.

7. The cloud server provides secure access to the data and risk
status information (at cloud layer).

8. Data monitoring: a dedicated mobile app can be used for data
monitoring. An approval-based mechanism implements the data
access security (at the interface layer).

3.1. Sensors collecting data

Tharakan, Nomoto, Miyashita, and Ishikawa (2020) reported that
the COVID19 patients with high body temperatures have high mor-
tality risk. Therefore high body temperature is one of the significant
symptoms, and it is considered one of the key parameters. Furthermore,
Alzubaidi, Otoom, Otoum, Etoom, and Banihani (2021) identified the
prominent symptoms of COVID19 patients, which are pulse rate and
oxygen saturation in the blood. Thus, these are also considered dom-
inant parameters for monitoring COVID19 patients in this proposed
system. Some sensors are required to collect real time health data
from the COVID19 patient under monitoring. For this purpose, the
proposed framework uses an LM35 temperature sensor for sensing
body temperature (in degrees centigrade) and a MAX30102 heart rate
sensor for measuring the pulse rate and oxygen saturation level of the
COVID19 patients. A brief description of the sensors is presented as
follows:

• LM35 temperature sensor: The LM35 (Liu, Ren, Zhang, & Lv,
2011) is a low-cost temperature sensor that produces an analogue
reading of temperature. The output voltage is expressed as an
equivalent temperature value in degrees centigrade. Unlike the
thermistors, the external calibration for accuracy is not required
for the LM35. The LM35 can detect temperatures ranging between

◦ ◦
−55 to 150 centigrade.

https://www.google.com/covid19/exposurenotifications/
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Fig. 1. Basic Architecture of IoMT. Pustokhina et al. (2020).
Fig. 2. Layered architecture for the proposed framework where sensor-1 is the LM35 temperature sensor, sensor-2 is the MAX30102 heart rate sensor and sensor-3 is the MAX30102
oxygen saturation sensor.
In this proposed system, the LM35 (Datasheet, 2017) has been
used because it is an inexpensive and readily available temper-
ature sensor. The LM35 sensor requires no further calibration
or trimming for normal accuracy. As a stand-alone tool, it is
particularly precise.

• MAX30102 heart rate sensor: The MAX30102 sensor2 measures
blood oxygen levels as well as pulse rate. The quantity of oxygen
in the blood is calculated by measuring the wave amplitude after
the infrared light is transmitted and reflected by striking the
finger. The MAX30102 is an integrated component that works
with Arduino and STM32 microcontrollers. It combines a red and
infrared LED, a photoelectric sensor, an optical device, and a
low-noise electrical circuit to block ambient light. The proposed
framework uses the MAX30102 sensor since it has a higher sen-
sitivity to the changes in infrared receiver voltage. Its capacity to
store more data while using less power is a significant advantage.

3.2. Intelligent edges

In the proposed scheme, the fuzzy logic is applied to the collected
data to determine the patient’s risk level, and the entire process takes
place at the edges. If the fuzzy system indicates a high risk associated
with a patient, the edges use a text alert system to notify almost in real
time the patient’s relatives, doctors, or medical staff about the situation.

3.2.1. Real time collected data
The real time health data are collected through sensors from the

patient in one minute intervals and every consecutive five data are

2 https://datasheets.maximintegrated.com/en/ds/MAX30102.pdf
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collected as a window. The proposed fuzzy system will analyze the data
at edge devices, and an alert will be generated if the patient is at risk.
Further, the collected data combined with generated risk status would
be passed to the cloud from the edge device for storage.

3.2.2. Fuzzy logic system
During the fuzzification process, knowledge-based information

(Barro & Marín, 2002) is employed to turn input values into fuzzy ones,
which is accomplished via the application of fuzzy logic. Fuzzy logic
(FL) can significantly simplify the development and deployment of the
system. It does not require complex mathematical or statistical tech-
niques, but requires a realistic grasp of the functionalities of the entire
system. Higher precision with efficient computation (Patyra & Mlynek,
2012) can be achieved using FL techniques. Fuzzification (Zadeh, Klir,
& Yuan, 1996) can be used to translate any ambiguous input, like
‘‘joyful’’, ‘‘lovely’’, or ‘‘excellent’’, into the mathematical model. In
this proposed system, the role of fuzzification is very significant since
the alert system performs based on its output. The proposed system
works with real time collected data, so generated alerts must be sent to
the concerned doctors as soon as possible. Therefore, the fuzzification
process is carried out at the edges of the IoMT framework. In the
implementation, Raspberry Pi systems are used as edge devices. Fig. 13
depicts the overall idea of the FL system implemented in this study.

Substantial human knowledge of and experience with the physical
system are required for developing fuzzy rules. The promising area of
fuzzy sets resembles human reasoning and system knowledge. Fuzzy
logic is used to overcome the inefficiencies of both table-based and
formula-based control systems. A look-up table is used to determine
the consequence of one or more inputs in table-based controllers. The
disadvantage of using a table-based controller is that it could grow
quite lengthy, especially if there are a lot of entries or results. Thus,

https://datasheets.maximintegrated.com/en/ds/MAX30102.pdf
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Fig. 3. Membership Function of 𝑂𝐿.
a large memory capacity is required. The output of a formula-based
controller is expressed as a function of the input. The controller’s ability
to execute the formulae may be limited. As a result, both table-based
and formula-based approaches are ineffective because it is impossible
to develop a suitable mathematical model at the very first stage.

This proposed framework is based on fuzzy logic because it assesses
the confidence of an issue, and the algorithms are resilient, meaning
that they can quickly adapt to changing circumstances. Moreover, the
framework does not require any training to operate. It is possible to
implement similar systems with the help of ML. However, the target is
to develop a cost-effective system. ML algorithms are designed to take
out information from vast amounts of data and provide conventional
techniques for the classifying and grouping processes, among other
things. ML algorithms are capable of handling a wide range of data
types and may be employed in big contexts. Furthermore, extra training
time is necessary for the algorithms to improve accuracy and relevance
as time goes on. Due to the above reasons, ML has been avoided. When
it comes to fuzzy logic, it assesses the confidence of an issue, and
the algorithms are resilient, meaning that they can quickly adapt to
changing circumstances.

This proposed system considers three attributes: oxygen saturation
percentage, body temperature, and pulse rate, as inputs and generates
risk levels associated with the COVID19 patient as an output. To gener-
ate a more accurate risk level, the Mamdani fuzzy inference system has
been followed here. Inference implies obtaining a specific judgement
based on certain data related to a logical concept.

Oxygen saturation percentage: When a particle of haemoglobin
carries four oxygen particles, it is said to be (Myatt, 2017) saturated
with oxygen. The maximum saturation of a haemoglobin molecule is
100%. Therefore, a healthy person with normal lungs should have an
oxygen saturation of 95% to 100% (saturated oxygen level refers to the
range of 95%–100%). If the blood oxygen is between 90% and 95%,
the person is hypoxic and should be adequately treated immediately
(moderate oxygen, 90%–95%). A saturation level of less than 90% is
considered a medical emergency (low oxygen, < 90%).

The verbal phrases (Chakraborty, Banik, Mondal, & Alam, 2020)
of oxygen saturation attribute are low oxygen (𝑂𝐿), moderate oxygen
(𝑂𝑀 ), and saturate oxygen (𝑂𝑆 ). According to our verbal phrase setting
the best fitted uncertain number is a triangular fuzzy number as it
can handle three different membership values of a real problem. The
membership function of (𝑂𝐿) is represented by 𝜇𝑂𝐿

(𝑥) in Eq. (1), where
three cases are presented. If oxygen saturation < 90 then degree of
membership function is 1, which will be calculated from first case
of Eq. (1). If oxygen saturation is ≥ 90 and < 92.5 then degree of mem-
bership function will be calculated from the second case of Eq. (1). For
5

any other values of oxygen saturation, the degree of the membership
function is zero, which is calculated from the third case of Eq. (1). The
visualization of membership function is given in Fig. 3.

𝜇𝑂𝐿
(𝑥) =

⎧

⎪

⎨

⎪

⎩

1, if 𝑥 < 90.
92.5−𝑥
92.5−90 , if 90 ≥ 𝑥 < 92.5.
0, otherwise

(1)

The membership function of (𝑂𝑀 ) is represented by 𝜇𝑂𝑀
(𝑥) in

Eq. (2), where three cases are presented. If oxygen saturation > 90 and
≤ 92.5 then degree of membership function will be calculated from the
first case of Eq. (2). If oxygen saturation > 92.5 and < 95 then degree of
membership function will be calculated from the second case of Eq. (2).
For any other values of oxygen saturation, the degree of membership
function is zero, which is calculated from the third case of Eq. (2). The
visualization of membership function is given in Fig. 4

𝜇𝑂𝑀
(𝑥) =

⎧

⎪

⎨

⎪

⎩

𝑥−90
92.5−90 , if 90 < 𝑥 ≤ 92.5.
95−𝑥

95−92.5 , if 92.5 < 𝑥 < 95.
0, otherwise.

(2)

The membership function of (𝑂𝑆 ) is represented by 𝜇𝑂𝑆
(𝑥) in Eq. (3),

where three cases are presented. If oxygen saturation > 95 then the
degree of membership function will be 1, from the first case of Eq. (3).
If oxygen saturation is > 92.5 and ≤ 95 then the degree of membership
function will be calculated from the second case of Eq. (3). For any
other values of oxygen saturation, the degree of membership func-
tion is zero, which is calculated from the third case of Eq. (3). The
visualization of membership function is given in Fig. 5.

𝜇𝑂𝑆
(𝑥) =

⎧

⎪

⎨

⎪

⎩

1, if 𝑥 > 95.
𝑥−92.5
95−92.5 , if 92.5 < 𝑥 ≤ 95.
0, otherwise.

(3)

Body temperature: The relationship (Drewry, Hotchkiss, & Kulstad,
2020) between body temperature and COVID19 fatality is evident, and
exhibits a strong trend. Given the significant degree of fatality seen in
individuals with high temperatures, it is critical to look at all options
to find the best temperature control measures. In proposed system,
the range of body temperature is divided into three sub-ranges i.e;
risk temperature (20◦–34◦C and 42◦–45 ◦C), moderate temperature
(34◦–36 ◦C and 38◦–42 ◦C) and normal temperature (36◦–38 ◦C). All
temperatures are in degrees centigrade.

The verbal phrases of body temperature attribute are risk body
temperature (𝑇𝑅), moderate body temperature (𝑇𝑀 ), normal body tem-
perature (𝑇𝑁 ). According to our verbal phrase setting the best fitted
uncertain number is a triangular fuzzy number as it can handle three
different membership values and an uncertain number is an asymmetric
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Fig. 4. Membership Function of 𝑂𝑀 .
Fig. 5. Membership Function of 𝑂𝑆 .
trapezoidal fuzzy number as it can handle four different membership
values of a real problem. The membership function is represented
by 𝜇𝑇𝑅 (𝑥), which is shown in Eq. (4). There are four cases in this
membership equation. If body temperature ≤ 34 and ≥ 41, then the
degree of membership would be 1. If body temperature is between
34 and 35, the second case of Eq. (4) would calculate the degree of
membership. If the body temperature is between 39.5 and 41, then
the degree of membership value would be calculated from the third
case of Eq. (4). The degree of membership in other values of body
temperature will be calculated as zero from the 𝜇𝑇𝑅 (𝑥) membership
function. The visualization of the membership function is given in
Fig. 6.

𝜇𝑇𝑅 (𝑥) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, if 𝑥 ≤ 34 and 𝑥 ≥ 41
35−𝑥
35−34 , if 34 < 𝑥 < 35
𝑥−39.5
41−39.5 , if 39.5 < 𝑥 < 41
0, otherwise

(4)

The membership function for the moderate body temperature (𝑇𝑀 )
is represented by 𝜇𝑇𝑀 (𝑥), which is shown in Eq. (5). Here, the degree
of membership function will be calculated from five cases of Eq. (5).
If body temperature > 34 and ≤ 35, then the first case of Eq. (5)
would calculate the degree of membership. If body temperature > 35
and ≤ 36, then the second case of Eq. (5) would calculate the degree
of membership. If body temperature > 38 and ≤ 39.5, then the third
case of Eq. (5) would calculate the degree of membership. If body
temperature > 39.5 and ≤ 41, then the fourth case of Eq. (5) would
calculate the degree of membership. For any other values of body
6

temperature, then the fifth case of Eq. (5) would calculate 0 as the
degree of membership. The visualization of membership function is
given in Fig. 7.

𝜇𝑇𝑀 (𝑥) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

35−𝑥
35−34 , if 34 < 𝑥 ≤ 35
𝑥−35
36−35 , if 35 < 𝑥 ≤ 36
39.5−𝑥
39.5−38 , if 38 < 𝑥 ≤ 39.5
𝑥−39.5
41−39.5 , if 39.5 < 𝑥 ≤ 41
0, otherwise

(5)

The membership function for normal body temperature is represented
by 𝜇𝑇𝑁 (𝑥), which is shown in Eq. (6). If body temperature ≥ 36 and < 38
then degree of membership function will be calculated as 1 from the
first case of Eq. (6). If body temperature ≥ 35 and < 36 then degree of
membership function will be calculated from the second case of Eq. (6).
If body temperature ≥ 38 and < 39.5 then degree of membership
function will be calculated as 1 from the third case of Eq. (6). For
other values of body temperature the degree of membership function
will be calculated from the fourth case of Eq. (6). The visualization of
membership function is given in Fig. 8.

𝜇𝑇𝑁 (𝑥) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, if 36 ≤ 𝑥 < 38
𝑥−35
36−35 , if 35 ≤ 𝑥 < 36
39.5−𝑥
39.5−38 , if 38 ≤ 𝑥 < 39.5
0, otherwise

(6)

Pulse rate: Heart disease is the leading cause of mortality world-
wide. It (Diller et al., 2021) also increases the risk of mortality among
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Fig. 6. Membership Function of 𝑇𝑅.
Fig. 7. Membership Function of 𝑇𝑀 .
Fig. 8. Membership Function of 𝑇𝑁 .
those affected with COVID19. Therefore, pulse rate is also an important
factor for COVID19 patients. As per WHO guidelines, Feinmann (2021)
total pulse rate range is 30–240 bpm. In this proposed system, the range
of pulse rate is divided into three sub-ranges, risk pulse rate (30–50,
140–200 bpm) moderate pulse rate (50–70, 100–140 bpm) and normal
7

pulse rate (70–100 bpm). Here it has been considered the minimum and
maximum pulse rate to be between 30 bpm and 200 bpm respectively.

The verbal phrases for different pulse rate levels are risk pulse rate
(𝑅𝑅), moderate pulse rate (𝑅𝑀 ) and normal pulse rate (𝑅𝑁 ). According
to verbal phrase setting, the best fitted uncertain number is a triangular
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Fig. 9. Membership Function of 𝑅𝑅.
fuzzy number as it can handle three different membership values and
a trapezoidal fuzzy number for four different membership values of a
real problem.

The membership function is represented by 𝜇𝑅𝑅
(𝑥), which is shown

in Eq. (7). There are four cases in this membership equation. If the
pulse rate ≤ 50 and ≥ 140, then the degree of membership would
be 1. If the pulse rate > 50 and < 60 then 𝜇𝑅𝑅

(𝑥) will be calculated
from the second case of Eq. (7). If the pulse rate > 130 and < 140
then degree of membership value would be calculated from the third
case of Eq. (7). In all other cases, the degree of membership pulse rate
will be calculated as zero from the 𝜇𝑅𝑅

(𝑥) membership function. The
visualization of membership function is given in Fig. 9.

𝜇𝑅𝑅
(𝑥) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, if 𝑥 ≤ 50 and 𝑥 ≥ 140
60−𝑥
60−50 , if 50 < 𝑥 < 60
𝑥−130
140−130 , if 130 < 𝑥 < 140
0, otherwise

(7)

The membership function for 𝑅𝑀 is represented by 𝜇𝑅𝑀
(𝑥) shown

in Eq. (8). There are six cases in Eq. (8). If pulse rate > 50 and ≤ 60
then degree of membership function will be calculated from the first
case of Eq. (8). If pulse rate > 60 and < 70 then degree of membership
function will be calculated from the second case of Eq. (8). If pulse rate
> 100 and ≤ 110 then degree of membership function will be calculated
from the third case of Eq. (8). If pulse rate > 110 and ≤ 130 then degree
of membership function will be 1 from the fourth case of Eq. (8). If
pulse rate > 130 and < 140 then degree of membership function will be
calculated from the fifth case of Eq. (8). From the sixth case of Eq. (8),
the degree of membership function will 0 for all other values of pulse
rate. The visualization of membership function is given in Fig. 10.

𝜇𝑅𝑀
(𝑥) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑥−50
60−50 , if 50 < 𝑥 ≤ 60
70−𝑥
70−60 , if 60 < 𝑥 ≤ 70
𝑥−100
110−100 , if 100 < 𝑥 ≤ 110.
1, if 110 < 𝑥 ≤ 130.
𝑥−130
140−130 , if 130 < 𝑥 < 140
0, otherwise.

(8)

The membership function for 𝑅𝑁 as represented by 𝜇𝑅𝑁
(𝑥) is calcu-

lated by Eq. (9) and graphically presented in Fig. 11. This membership
function has four cases. If pulse rate > 60 and ≤ 70 then degree of
membership function will be calculated from the first case of Eq. (9).
If pulse rate > 70 and ≤ 100 then degree of membership function will
be 1 from the second case of Eq. (9). If pulse rate > 100 and ≤ 110 then
degree of membership function will be calculated from the third case
8

Table 1
Database of the fuzzy logic controller.

Symbols Types of uncertain parameter Descriptions

𝑂 – Oxygen saturation
𝑇 – Body temperature
𝑅 – Pulse rate
𝑂𝐿 Triangular fuzzy number Low oxygen
𝑂𝑀 Triangular fuzzy number Moderate oxygen
𝑂𝑆 Triangular fuzzy number Saturated oxygen
𝑇𝑁 Trapezoidal fuzzy number Normal body temperature
𝑇𝑀 Triangular fuzzy number Moderate body temperature
𝑇𝑅 Triangular fuzzy number Risk body temperature
𝑅𝑀 Triangular and Trapezoidal fuzzy number Moderate pulse rate
𝑅𝑅 Triangular fuzzy number Risk pulse rate
𝑅𝑁 Trapezoidal fuzzy number Normal pulse rate

of Eq. (9). From the fourth case of Eq. (9), the degree of membership
function will 0 for all other values of pulse rate.

𝜇𝑅𝑁
(𝑥) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑥−60
70−60 , if 60 < 𝑥 ≤ 70
1, if 70 < 𝑥 ≤ 100
𝑥−100
110−100 , if 100 < 𝑥 ≤ 110
0, otherwise

(9)

Fig. 12 represents the graphical visualization of the membership
function for risk. In the diagram, the 𝑋-axis denotes the risk value of the
patient, and the 𝑌 -axis denotes the degree of membership between 0
and 1. Risk can present in three different levels: High (0–10), Moderate
(10–20), and Low (20–30). The database of the fuzzy logic controller
are given in Table 1.

Then, after figuring out the degree of membership function for a
given set of crisp values, the fuzzy inference rules help to find out the
type(s) of membership function of risk and turn them active. Fuzzy
inference rules are a set of language statements that specify how the
fuzzy inference system (FIS) should make a judgement on whether
to categorize an input or control output. In this proposed system, at
any instance time values of three attributes will be taken from the
patients – 𝑂 for oxygen saturation, 𝑅 for pulse rate, and 𝑇 for body
temperature. Since each attribute has three different verbal phrases, a
total of 3 × 3 × 3 = 27 rules have been developed for this system. These
27 fuzzy rules are given in Table 2.

For each fuzzy rule, the strength of the rules that were fired and
their associated membership in the output were calculated. The final
crisp value of risk was computed using the Mamdani fuzzy inference
technique. All the fuzzy output functions were aggregated on the same
axis to get the final crisp value of risk, which is given in Fig. 14 for
three different sample inputs.
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Fig. 10. Membership Function of 𝑅𝑀 .
Fig. 11. Membership Function of 𝑅𝑁 .
Table 2
Rule set for the proposed fuzzy model.

No. Rules

RULE 1 : IF 𝑂 IS 𝑂𝐿 AND 𝑇 IS 𝑇𝑁 AND 𝑅 IS 𝑅𝑁 THEN risk IS high;
RULE 2 : IF 𝑂 IS 𝑂𝐿 AND 𝑇 IS 𝑇𝑀 AND 𝑅 IS 𝑅𝑁 THEN risk IS high;
RULE 3 : IF 𝑂 IS 𝑂𝐿 AND 𝑇 IS 𝑇𝑅 AND 𝑅 IS 𝑅𝑁 THEN risk IS high;
RULE 4 : IF 𝑂 IS 𝑂𝐿 AND 𝑇 IS 𝑇𝑁 AND 𝑅 IS 𝑅𝑀 THEN risk IS high;
RULE 5 : IF 𝑂 IS 𝑂𝐿 AND 𝑇 IS 𝑇𝑀 AND 𝑅 IS 𝑅𝑀 THEN risk IS high;
RULE 6 : IF 𝑂 IS 𝑂𝐿 AND 𝑇 IS 𝑇𝑅 AND 𝑅 IS 𝑅𝑀 THEN risk IS high;
RULE 7 : IF 𝑂 IS 𝑂𝐿 AND 𝑇 IS 𝑇𝑁 AND 𝑅 IS 𝑅𝑅 THEN risk IS high;
RULE 8 : IF 𝑂 IS 𝑂𝐿 AND 𝑇 IS 𝑇𝑀 AND 𝑅 IS 𝑅𝑅 THEN risk IS high;
RULE 9 : IF 𝑂 IS 𝑂𝐿 AND 𝑇 IS 𝑇𝑅 AND 𝑅 IS 𝑅𝑅 THEN risk IS high;
RULE 10 : IF 𝑂 IS 𝑂𝑀 AND 𝑇 IS 𝑇𝑁 AND 𝑅 IS 𝑅𝑁 THEN risk IS moderate;
RULE 11 : IF 𝑂 IS 𝑂𝑀 AND 𝑇 IS 𝑇𝑀 AND 𝑅 IS 𝑅𝑁 THEN risk IS moderate;
RULE 12 : IF 𝑂 IS 𝑂𝑀 AND 𝑇 IS 𝑇𝑅 AND 𝑅 IS 𝑅𝑁 THEN risk IS high;
RULE 13 : IF 𝑂 IS 𝑂𝑀 AND 𝑇 IS 𝑇𝑁 AND 𝑅 IS 𝑅𝑀 THEN risk IS moderate;
RULE 14 : IF 𝑂 IS 𝑂𝑀 AND 𝑇 IS 𝑇𝑀 AND 𝑅 IS 𝑅𝑀 THEN risk IS high;
RULE 15 : IF 𝑂 IS 𝑂𝑀 AND 𝑇 IS 𝑇𝑅 AND 𝑅 IS 𝑅𝑀 THEN risk IS high;
RULE 16 : IF 𝑂 IS 𝑂𝑀 AND 𝑇 IS 𝑇𝑁 AND 𝑅 IS 𝑅𝑅 THEN risk IS high;
RULE 17 : IF 𝑂 IS 𝑂𝑀 AND 𝑇 IS 𝑇𝑀 AND 𝑅 IS 𝑅𝑅 THEN risk IS high;
RULE 18 : IF 𝑂 IS 𝑂𝑀 AND 𝑇 IS 𝑇𝑅 AND 𝑅 IS 𝑅𝑅 THEN risk IS high;
RULE 19 : IF 𝑂 IS 𝑂𝑆 AND 𝑇 IS 𝑇𝑁 AND 𝑅 IS 𝑅𝑁 THEN risk IS low;
RULE 20 : IF 𝑂 IS 𝑂𝑆 AND 𝑇 IS 𝑇𝑀 AND 𝑅 IS 𝑅𝑁 THEN risk IS low;
RULE 21 : IF 𝑂 IS 𝑂𝑆 AND 𝑇 IS 𝑇𝑅 AND 𝑅 IS 𝑅𝑁 THEN risk IS moderate;
RULE 22 : IF 𝑂 IS 𝑂𝑆 AND 𝑇 IS 𝑇𝑁 AND 𝑅 IS 𝑅𝑀 THEN risk IS low;
RULE 23 : IF 𝑂 IS 𝑂𝑆 AND 𝑇 IS 𝑇𝑀 AND 𝑅 IS 𝑅𝑀 THEN risk IS moderate;
RULE 24 : IF 𝑂 IS 𝑂𝑆 AND 𝑇 IS 𝑇𝑅 AND 𝑅 IS 𝑅𝑀 THEN risk IS high;
RULE 25 : IF 𝑂 IS 𝑂𝑆 AND 𝑇 IS 𝑇𝑁 AND 𝑅 IS 𝑅𝑅 THEN risk IS moderate;
RULE 26 : IF 𝑂 IS 𝑂𝑆 AND 𝑇 IS 𝑇𝑀 AND 𝑅 IS 𝑅𝑅 THEN risk IS high;
RULE 27 : IF 𝑂 IS 𝑂𝑆 AND 𝑇 IS 𝑇𝑅 AND 𝑅 IS 𝑅𝑅 THEN risk IS high;
9
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Fig. 12. Membership Function of Risk.

In the proposed system to defuzzify the ‘risk level’ of a person, the
identified three outputs are ‘low’, ‘moderate’, and ‘high’, where the
default value is ‘0’ for no rule activation. The risk level is quantified
using a discrete membership function, and the defuzzified value 𝑥∗ is
stated as follows.

𝑥∗ =
𝑛
∑

𝑖=1
𝑥𝑖 ⋅ 𝜇

(

𝑥𝑖
)

∕
𝑛
∑

𝑖=1
𝜇
(

𝑥𝑖
)

, (10)

where 𝑛 is the number of elements and 𝜇(𝑥𝑖) is the membership func-
tion.

3.2.3. Illustrative example
Let us consider a patient whose parameters are 𝑂 = 93, 𝑇 = 42,

and 𝑅 = 84. The input value 𝑂 = 93 is a member of two fuzzy sets
called 𝑂𝑀 and 𝑂𝑆 , whereas 𝑇 = 42 is a member of 𝑇𝑅. The third
variable 𝑅 = 84 is a member of the 𝑅𝑁 . As per the rule table, Rule
no. 12 and Rule no. 21 are found to be applicable to this condition and
these rules are fired. The corresponding membership function for each
fuzzy rule has been aggregated as per the Mamdani fuzzy inference
method. This aggregated fuzzy output function on the same axis has
been displayed in Fig. 14(a). Then from the aggregated fuzzy output
function defuzzification is carried out using the center of gravity (COG)
method to get a risk value of 7.73. To double-check the defuzzification
methods, the Center of Sums method is also applied to get a risk value
of 7.80. It is observed that the risk values from both the defuzzification
methods are similar.

3.2.4. Alert system
If the fuzzy system indicates a high risk for a patient, the edge

devices send text alerts to the designated persons. The designated
persons can be the patient’s relatives, doctors, or medical staff already
registered in the system.

3.3. Data accumulation at cloud and secure data access mechanism

The data collected at edge devices are forwarded to a cloud data
server. Those data can be fetched using a specific mobile app for
monitoring purposes. The proposed mobile app considers two different
scenarios when the data stored in the cloud needs to be accessed:
(1) continuous monitoring by the patient’s relatives or the medical
staff, and (2) on-demand monitoring as well as retrieval of patient’s
historical data (which may be from the last few hours) by the doctor
for clinical diagnosis, once he/she is alerted by the system about the
high risk status of the patient. Since the collected medical data are
highly sensitive, a secure approval-based data access system is designed
to develop a threshold access structure for data usage.

The mobile app COVI-MONI (which has been designed for health
data monitoring in the proposed framework and will be discussed in
the next section) installed on the users’ mobile phones can be used
to monitor a patient’s health information and risk status. Since the
health information and risk status derived from the data analysis are
considered sensitive, delivering the message in a plain-text format is not
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safe. However, the traditional encryption processes are computationally
expensive and unsuitable for resource-constrained devices like mobile
phones. Thus, here we apply the secret sharing technique to deliver
the secret message among a group of participants. Someone within the
group accesses the message with approval from a number of partici-
pants which meets or exceeds a particular threshold of participants. For
the proposed applications, the doctors, clinicians, patients’ relatives,
etc., belong to the group of the participants. Each of them has to
carry out a specific procedure to register to the group (each group
is associated with a patient). The (𝑡, 𝑛) multi-secret sharing scheme by
Yang, Chang, and Hwang (2004) uses for sharing the secret message,
where a cloud app server (acting as the dealer or distributor) encodes
the secret message into 𝑛 pieces called shares so that with any 𝑡 or more
shares one can compute the secret message. However, the same is not
possible with 𝑡 − 1 or fewer shares. The method of secure access to
the message through the mobile app COVI-MONI is discussed in the
following section.

3.4. Monitoring system

COVI-MONI has been presented to provide secure access to sensi-
tive medical data for health data monitoring purposes. It shows the
five most recent values of the parameters collected by the sensors,
along with the risk status of the patients. More details of the output
are discussed in Section 4. The app can also retrieve all the records
pertaining to a patient for a certain time period, allowing doctors to
perform clinical diagnosis.

3.4.1. Approval-based access to health information
The steps for secure access to the medical data and the risk status

are presented as follows.
Step 1: Each record to be fetched by the mobile app is first con-

verted into a collection of integers, which are known as secrets. An
example is presented in Section 4.1.

Step 2: The mobile app server applies the multi-secret sharing
scheme proposed by Yang et al. (2004) to encode the secrets into 𝑛
public shares, and publishes them in the cloud in some authenticated
manner. It also privately transfers a secret shadow (similar to a se-
cret key) to each participant belonging to the group of participants
associated with a patient. The participants can reuse the same secret
shadows during multiple secret sharing processes, which also ensures
the participants do not need to ask for approval each time they use the
mobile app.

Step 3: The participant seeking the secret message through the
mobile app sends a message to request approval from all other 𝑛 − 1
participants.

Step 4: All other 𝑛 − 1 participants receive the approval request
through the mobile app. If any 𝑡 − 1 or more participants (out of the
𝑛 − 1) approve the request, the secrets can be reconstructed.

Step 5: The secrets, which are the integer numbers, are assembled
to recreate the secret record. However, if fewer than 𝑡 − 1 participants
send the ‘‘Approval", the secret record cannot be recovered.

4. Experiment and results

The following have been considered for the implementation of the
proposed model.

• LM35 temperature sensors to measure body temperature and
MAX30102 heart rate sensors to measure pulse rate and oxygen
saturation percentage.

• All the sensors are registered to the framework to ensure that no
intruder enters the system.

• Sensors are connected to an Arduino Uno board, which trans-
fers the collected data to the edge device implemented using
Raspberry Pi.
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Fig. 13. Fuzzy Evaluation System of Proposed Model.
• The collected data are stored with the Raspberry Pi in CSV format.
• The fuzzy system is implemented in the edge devices using Java

programming.
• Data gets accumulated on a cloud server in CSV format.
• The COVI-MONI app needs to be authenticated (the authentica-

tion mechanism assumed to be provided by the CSP) itself to
access the medical data stored in the cloud server.

• An approval-based security mechanism has been designed and
implemented to ensure data access security.

• All participants such as doctors, relatives, and medical staff as-
sociated with a patient need to register for the system, and they
form a group of participants for a patient.

Fig. 15 presents the screenshots of the mobile app in all three
different cases. In this proposed system, after defuzzification, if the
crisp value of the risk factor lies in the 0–10 range, the patient’s
risk level is identified as ‘high’ (Fig. 15(a)), if the crisp value of the
risk factor lies in the 10–20 range the patient’s risk is identified as
‘moderate’ (Fig. 15(b)), and if the crisp value of the risk factor lies
in the 20–30 range the patient’s risk is identified as ‘low’ (Fig. 15(c)).
The corresponding output membership function is shown in Fig. 14(a),
Figs. 14(b) and 14(c) respectively.

Figs. 14(a)–14(c) denote graphical visualization of the membership
function of three different risk values: 7.73 means high risk, 12.27
means moderate risk, and 25.00 means low risk, obtained from the risk
membership function.

Fig. 14(a) depicts an example case where the risk value was calcu-
lated to be 7.73 which is ‘High Risk’ when the input value was Oxygen
saturation (𝑂) = 93, Body temperature (𝑇 ) = 42, and Pulse rate (𝑅)
= 84. In Fig. 14(b) another case is presented where the risk value was
calculated to be 12.27 which is ‘Moderate Risk’ when the input value
was Oxygen saturation (𝑂) = 92, Body temperature (𝑇 ) = 36, and Pulse
rate (𝑅) = 71. One more example is shown in Fig. 14(c) where the risk
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value was found to be 25.00 which is ‘Low Risk’ when the input value
was Oxygen saturation (𝑂) = 97, Body temperature (𝑇 ) = 35, and Pulse
rate (𝑅) = 98.

In cases of high risk, the application sends a text alert to the
designated persons, a snapshot of which is shown in Fig. 16.

4.1. Results of secure data access implementation

We considered a typical example of (3, 5), i.e., 3-out-of −5 scenario,
where the participant group related to patients has size five partici-
pants, and anyone from the group who wants to access the patient’s
health information from the cloud requires approval from at least two
other participants. Table 3 presents the results of a secure data access
mechanism implemented to access health data from the cloud. The
parameters for Table 3 are as follows:

• Record represents a row from the CSV file (in the cloud) with the
following information:

– Case ID is mapped to the Patient Id which represents each
patient to be monitored.

– Date and Time when the sensor data are recorded.
– Temperature, Heart Rate and Oxygen store the corre-

sponding values collected from the sensors.

The records are kept as private information in the cloud. The
records are encoded (using the secret sharing algorithm (Yang
et al., 2004)) before they are published and can be accessed by
the members.

• The records are first converted into secrets, which are integers to
be encoded.

• Public Values are the encoded versions of the secrets using the
secret sharing algorithm (Yang et al., 2004). These are published
to be accessed by the members.
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Table 3
Results of security results - sample record, record is converted into secrets, secrets encoded into public values.

Case ID Date Time Temperature Heart rate Oxygen

Record 1013 2021-05-30 16:30 42 86 93

Secrets 1013 2021 5 30 16 30 42 86 93

Public values {335, 1052, 298, 182, 416, 914, 2804, 1586, 336, 851, 843}
Fig. 14. Output membership function for three sample cases.

Let the secret shadows privately held by the members be — 168,
170, 172, 180, 190. In the specific case of the 3-out-of −5 scenario,
the member who wants to access the health information of his/her
patient (corresponding to a given Case ID) sends an approval request
to the other four members from the same group using the COVI-
MONI app. Any two (the member and at least two other) members
sending approval enables the requesting member to access the health
information for his/her patient using COVI-MONI.

The approval system implemented based on the multi-secret sharing
scheme by Yang et al. (2004) ensures the following security aspects:

• Confidentiality: In a 𝑡-out-of-𝑛 scenario, the member seeking the
data access requires approval from at least 𝑡 − 1 other members
(total 𝑡 including himself/hrself), and this is implemented using
the (𝑡, 𝑛)-threshold structure along with specified (Yang et al.,
2004) secret sharing scheme. Since the sharing scheme by Yang
et al. (2004) is a perfect secret sharing scheme, it ensures that
without having approval from 𝑡−1 other members, it is impossible
to access the data from the cloud.

• Robustness: In the 𝑡-out-of-𝑛 scenario, the member seeking the
data access can do so if he/she gets approval from at least 𝑡 −
1 other members in the same group. Since the secret sharing
algorithm (Yang et al., 2004) used in this implementation is
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based on Lagrange interpolation polynomial which, ensures a
(𝑡 − 1)th degree polynomial 𝑓 (𝑥) can be uniquely reconstructed
with 𝑡 or more values of 𝑓 (𝑥), our approval mechanism guarantees
data access facility to the seeker with approval from 𝑡 − 1 other
members of the group (plus his/her own).

• Multi-use-ness: During the approval process, the approving mem-
ber transmits his/her pseudo shares to the member seeking the
approval. The pseudo shares (Yang et al., 2004) are computed
from secret shadows and a public value using a one-way two-
variable function. Therefore, an attack scenario to be considered
is that the member who gets approval may attempt to disclose the
actual secret shadows of the members who provided the approval
(the actual owner of the secret shadows) and reuse those secret
shadows or transmit them to others without the knowledge or
permission of the owners. However, this attack is infeasible due to
the one-way-ness of the function that generates the pseudo shares
from the secret shadows. Thus, the members can reuse the same
secret shadows during several sharing processes.

Many researchers presented several schemes and/or frameworks
for early detection of COVID19 symptoms, tracking the movement of
COVID19-infected people, remotely monitoring the COVID19 patients,
and so on. A comparative study has been presented in Table 4. It
compares the proposed framework with some recently proposed similar
frameworks such as Gozes et al. (2020), Bai et al. (2020), Vaishya
et al. (2020), Rajees. Kumar et al. (2022) with respect to the following
parameters : main objectives, technology used, and availability of
monitoring and/or diagnosis.

The schemes presented in Gozes et al. (2020), Bai et al. (2020),
Vaishya et al. (2020) used AI technologies. Rajees. Kumar et al. (2022)
used IoT to detect and monitoring the asymptotic COVID19 patients.
The main objective of the proposed scheme is to monitor the COVID19
patients in real time. For real time COVID19 patient monitoring, the
proposed system has integrated IoT and fuzzy logic with a mobile app.
As a result, the proposed system can efficiently and effectively monitor
COVID19 patients in real time.

5. Discussion

Since the most effective way to control infectious diseases like
COVID19 is to reduce the transmission of the virus as much as possible,
remote and real time monitoring of the patients is very important.
Remote and real time monitoring of the health data of the patients
can be effective to safeguard the doctors and medical staff who are
the critical workers in the fight against COVID19 and efficiently reduce
the crunch of resources like medical PPE kits. An IoT system comprises
sensors mounted on the patients’ bodies to enable continuous health
data monitoring.

The data from sensors are collected at the edge devices, and then
further analyzed using a fuzzy-based system at the edge layer, which
identifies risks associated with a particular patient in real time, and
alerts the doctors and other concerned parties. This paper proposes an
IoMT-based framework that can help all stakeholders, such as patients,
the relatives of the patients, doctors, and medical staff. This system
enables remote and real time monitoring of health parameters related
to COVID19 for the target patients, significantly reducing the spread
of infection among medical staff and patients’ relatives. Therefore,

the medical staff can serve more confidently; simultaneously, the pa-
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Fig. 15. Application outputs.
Table 4
Comparison between COVID19 monitoring or diagnosis related schemes.

Proposed scheme Main objective Technology used Monitor/ Diagnosis Remarks

Vaishya et al. (2020) Early detection of COVID Artificial Intelligence Yes It is a proposed work without
implementation

Gozes et al. (2020) To develop AI-based automated CT
image analysis tools for detection of
COVID patient

Artificial Intelligence No High Accuracy but it is for detection.
Patient monitoring is not possible

Rajees. Kumar et al.
(2022)

Detection and monitoring of the
asymptotic COVID19 patients using
IoT devices and sensors

Internet of Things Yes Mainly depends on SpO2. In case of
emergency, notification alerts are not
enable in this system

Google and Applea To help anyone who may have been
in close contact with a person who
has contracted COVID19

Android App No Notification for COVID19 alert

Bai et al. (2020) Diagnosis and treatment using nCapp Deep mining and
Intelligent processing

Yes Authenticity and reliability of the
uploaded data depends on the user.
Diagnosis performed using Q&A
method

Proposed model Monitor the COVID patients IoT, Fuzzy Logic and
Mobile App

Yes As per different parameter, it
provides accurate information. In
case of emergency notification
message also sent from this system.

ahttps://www.google.com/covid19/exposurenotifications/
tients can stay at home under continuous surveillance. Moreover, the
data collected will be analyzed by the proposed fuzzy system without
any human intervention, which continuously generates the conclusive
health status of the patients concerning COVID19 on a mobile app
(named COVI-MONI). The medical data analysis takes place at the edge.
It ensures the sending of a text alert in real time to the registered
persons in a high risk situation so that protective measures can be
carried out. The COVI-MONI app operates in two modes:
13
• A participant belonging to a group associated with a patient may
want to monitor the health parameters continuously. COVI-MONI
fetches and shows five records at a time.

• After receiving an alert from the proposed IoMT system, a doctor
may seek to get a patient’s information for a specific time period
in order to conduct a comprehensive clinical diagnostic. In this
case, COVI-MONI fetches all the records collected for the specified
duration on demand.

https://www.google.com/covid19/exposurenotifications/
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Fig. 16. Screenshot of a sample SMS alert.

Since the health data of the patients are considered very sensitive, pro-
tecting data confidentiality is a major concern. Thus, we have designed
and developed an approval-based secure data access mechanism using
the secret sharing technique, which ensures that the health data are
published in an encoded form. A participant (a member of a patient’s
group) can decode the information after getting approval from enough
other participants in the group.

6. Conclusion

The proposed IoMT framework comprises several sensors to collect
the health data of COVID19 patients, which are collected and undergo
processing in the edge devices. The processes that occur at edge devices
to identify the risk status of the target patient are fuzzification of
the data, application of fuzzy rule base, and finally, inferencing and
defuzzification. If the risk status of the patient is high, the doctors
and other concerned parties like medical staff and relatives would be
alerted immediately by sending a text alert. Finally, the patient’s health
data and health status, along with the timestamp, are forwarded and
stored on a cloud server. The members associated with the patients
often want continuous monitoring of the patient’s health data, which
can be done using the proposed mobile app, COVI-MONI. Furthermore,
after receiving a text alert for a patient, the doctors and medical staff
may want to look up the immediate history of the health parameters of
the patient and can also access the same from the cloud. Since health
data are extremely sensitive, an approval-based data access mechanism
has been presented and implemented.

The proposed framework, being a part of a smart healthcare system,
may be integrated with other infrastructure elements in a smart city like
transport, energy management, etc. Further, the privacy preservation
of the health data collected from the patients is a major concern since
any unauthorized person getting access to the information regarding
COVID19 infected users from the edge or cloud storage poses major
privacy issues. Thus, in the future, more security components can be
added to ensure the privacy of patients’ data. Therefore, the scope of
future works are identified as follows:

1. In the proposed IoMT framework, only three parameters are con-
sidered. Further, a similar but more robust IoMT framework can
be presented with more parameters to achieve better accuracy.

2. An approval-based security system has been applied for ac-
cessing and monitoring the medical data stored in the cloud.
However, the data in communication between the sensors and
edge devices and between the edges and the cloud are not
secure. Since medical data are very sensitive, the scheme can
be enhanced further to implement some security mechanisms to
ensure the privacy of the medical data.
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