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Abstract

In mammals, trait variation is often reported to be greater among males than females. However, 

to date, mainly only morphological traits have been studied. Energy expenditure represents the 

metabolic costs of multiple physical, physiological, and behavioral traits. Energy expenditure 

could exhibit particularly high greater male variation through a cumulative effect if those traits 

mostly exhibit greater male variation, or a lack of greater male variation if many of them do not. 

Sex differences in energy expen- diture variation have been little explored. We analyzed a large 

database on energy expenditure in adult humans (1494 males and 3108 females) to investigate 

whether humans have evolved sex differences in the degree of interindividual variation in energy 

expenditure. We found that, even when statistically comparing males and females of the same age, 

height, and body composition, there is much more variation in total, activity, and basal energy 

expenditure among males. However, with aging, variation in total energy expenditure decreases, 

and because this happens more rapidly in males, the magnitude of greater male variation, though 

still large, is attenuated in older age groups. Considerably greater male variation in both total and 

activity energy expenditure could be explained by greater male variation in levels of daily activity. 

The considerably greater male variation in basal energy expenditure is remarkable and may be 

explained, at least in part, by greater male variation in the size of energy-demanding organs. If 

energy expenditure is a trait that is of indirect interest to females when choosing a sexual partner, 

this would suggest that energy expenditure is under sexual selection. However, we present a novel 

energetics model demonstrating that it is also possible that females have been under stabilizing 

selection pressure for an intermediate basal energy expenditure to maximize energy available for 

reproduction.

1. Introduction

Greater variability in males over females has been a topic of interest for at least a century 

and a half (Darwin, 1871). Empirical studies on intersex differences in trait variability have 

typically shown greater male variability (GMV), especially for morphological and cognitive 
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traits in mammals. For example, male red deer are more variable in size (Clutton-Brock 

et al., 1982), male guenons have more variable skull sizes (Cardini and Elton, 2017), and 

male chimpanzees have greater variation in brain structure (DeCasien et al., 2020). Humans 

show clear GMV in a range of morphological, physical, and cognitive traits. Morphological 

traits include birth weight, adult weight and height, body mass index, and brain structure 

(Lehre et al., 2009; Ritchie et al., 2017; Wierenga et al., 2017, 2020; Forde et al., 2020). 

Physical performance traits include such as sprinting speed (Lehre et al., 2009) and various 

measures of muscle strength (Wilmore, 1974; cf. no difference in variability in grip strength; 

Mathiowetz et al., 1985). Cognitive traits include creativity (Karwowski et al., 2016; He 

and Wong, 2021), general knowledge (Feingold, 1992), and a gamut of intellectual faculties 

(Hedges and Nowell, 1995; Strand et al., 2006; Machin and Pekkarinen, 2008; Lohman and 

Lakin, 2009; Baye and Monseur, 2016). Greater male variability even exists in economically 

rele- vant decision making such as trading off costs and benefits, and actions in the face of 

risk ((Thoni and Volk, 2021).

One hypothesis for GMV is heterogamy - the occurrence of homogametic sex chromosomes 

in one sex and heterogametic sex chromosomes in the other. In the homogametic sex of such 

species, the traits affected by the sex chromosomes are influenced by the averaging of two 

parental copies, whereas in the heterogametic sex the effects are not averaged. Consequently, 

the heterogametic sex is expected to exhibit greater variability in those traits than is the 

homogametic sex. This explanation has been well evidenced by a meta-analysis of body size 

measurements for a diverse range of species by Reinhold and Engqvist (2013), who found 

that in the two taxa represented in the data set where males are heterogametic (mammals and 

some insects), males are typically more variable in body size, whereas in the two taxa with 

heterogametic females (birds and butterflies), the females typically exhibit greater variance 

(but see Wyman and Rowe, 2014; Branch et al., 2020).

However, new work by Zajitschek et al. (2020) on lab-raised wild mice casts doubt on the 

ubiquity of GMV in mammals. To date, by far the most common type of trait investigated 

has been morphological, in particular body size (Reinhold and Engqvist, 2013), but of 

course morphology represents only one facet of an organism. While Zajitschek et al. (2020) 

found more variance in males for morpho- logical traits, they observed more variance in 

females than males for eye traits and immunological traits. Moreover, no systematic sex 

differences in trait variance were found for physiological, behavioral, and hematological 

traits. The effects of the laboratory environment may influence trait variability - perhaps 

a more homogenous environment for the study population attenuated sex difference in 

variance for many traits. Nonetheless, the findings of Zajitschek et al. (2020) suggest that 

whether differences in trait variability between the sexes represent GMV can depend on the 

trait type in question.

Why might morphological traits exhibit GMV while many other traits do not? One alternate 

hypothesis for GMV, though not mutually exclusive to heterogamy, which may answer this 

question, centers on sexual selection. Across the animal kingdom, the rate at which fertility 

increases with the number of matings secured is greater for males than females (Janicke 

et al., 2016), as a result of anisogamy (Bateman, 1948). This underpins the fact that both 

reproductive fitness and mating success are more variable in males than females (Rowe and 
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Houle, 1996), with some males having a much higher number of offspring than others and 

many having none (reproductive skew; Trivers, 1972; Clutton-Brock and Vincent, 1991). 

This includes humans - men have experienced greater reproductive variability than women 

throughout most of our species’ evolutionary history including the present (Labuda et al., 

2010; Betzig, 2012; Wilson et al., 2017). Thus, traits that increase the male’s chances of 

obtaining successful matings will be particularly strongly selected for, that is, males are 

under stronger sexual selection than females (Pomiankowski and Møller, 1995; Cuervo and 

Møller, 2001), perhaps an exception being species that are fully monogamous (Branch et 

al., 2020). Sexually selected traits are costly to produce, thus they depend on the overall 

‘condition’ of the bearer (Cuervo and Møller, 2001; Bonduriansky, 2007). In turn, they 

will tend to be variable because overall ‘condition’ is likely to be based on numerous 

loci and thus harbor high genetic variance (Rowe and Houle, 1996; Tomkins et al., 2004). 

In cases where males are under stronger sexual selection than females, given that highly 

sexually selected traits tend to be larger in males than females - e.g., body size in mammals 

(Møller and Pomiankowski, 1993) - and thus more contingent on ‘condition,’ sexual traits 

are expected to vary more in males than females.

Animals are limited in the energy they can expend and yet doing so is necessary for 

every process of their bodies from tissue syn- thesis/maintenance and immune function 

to the beating of the heart and limb movement. Given, therefore, that an animal’s energy 

expenditure results from the combination of many physiological, morphological, and 

behavioral adaptations, if enough of those adaptations exhibit GMV (at least some may 

be sexually selected for, increasing the chance of GMV particularly in mam- mals; Rowe 

and Houle, 1996; Tomkins et al. 2004; Reinhold and Engqvist, 2013), then in turn we would 

expect to see GMV in energy expenditure. Indeed, the GMV could be sizeable due to a 

cumulative effect. Alternatively, energy expenditure may lack GMV because enough of the 

traits underpinning it do not themselves exhibit GMV.

Testing for differences in trait variability between the sexes is often logistically challenging 

because sample size must be large, and this may explain why most studies to date have 

assessed morpho- metric variation, which is relatively easy to quantify. Commonly, GMV 

is about 10% (i.e., males typically exhibit about 10% more variance than females; Reinhold 

and Engqvist, 2013), and modeling demonstrates that the total number of animals sampled 

needs to breach 1000 for that magnitude of GMV in the population to be reliably observed; 

below this threshold, the chances of detecting GMV can be low (Cardini and Elton, 2017; 

Branch et al., 2020). Data sets of such size are rare, particularly for measurements of meta- 

bolism in mammals (Sadowska et al., 2005; Wone et al., 2009). We are aware of just one 

publicly available data set of energy expendi- ture with a sample size of suitable magnitude 

for investigating GMV. The International Atomic Energy Agency (IAEA) doubly-labeled 

water (DKW) database is a worldwide collection of total energy expenditure (TEE) 

measurements for humans (Speakman et al., 2019) accompanied by measurements of basal 

energy expenditure (BEE; the minimum amount of energy required for the functioning 

e.g., breathing, and the maintenance e.g., tissue turnover, of vital systems) and body 

morphometric and composition variables. We take advantage of this data to investigate 

whether humans have evolved sex differences in the degree of interindividual variation in 

energy expenditure. We compared the variability in several aspects of energy expenditure 
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between the sexes, with and without statistically accounting for morphological traits that 

correlate with energy expenditure and thus might potentially drive the variability in energy 

expenditure observed. Thus, we were able both to 1) test for GMV in several absolute 

measures of energy expenditure, and 2) explore whether a putative presence of GMV is 

explained because of variation in morphological traits that correlate with energy expenditure 

or is present despite accounting for morphological correlates.

2. Materials and methods

2.1 Study subjects

The IAEA DLW database v. 3.1.2 (Speakman et al., 2019) is the largest collection of TEE 

measurements ever made on humans using the gold-standard stable isotope method of DLW 

analysis (Lifson et al., 1955; Speakman, 1997). For the present study, the database was 

restricted to adult subjects >18 years of age. We excluded subjects undergoing interventions 

involving energy intake, frequent intense physical activity including professional sports 

training, and those who were pregnant, lactating, or with a diagnosis for disease. Each 

person was present only once; there were no repeated measures. The data set for analysis 

comprised TEE measurements for 3108 females and 1494 males. A full set of unique 

participant identifiers are provided in Supplementary Online Material (SOM) Table S1. 

Mean age was 52.6 years for females and 47.5 years for males. The percentage of females 

aged <30 years was 19.7%, >30 and <60 years was 33.7%, and >60 years was 46.6%. The 

equivalents for males were 22.1, 48.5, and 29.3%, respectively. Total energy expenditure 

is known to be fairly constant with age as an adult until about 60 years of age and then 

declines (Pontzer et al., 2021, their Fig. 2A). Given that the ages of the females in the 

data set are spread across a wider range than are the males, we would expect a measure of 

GMV to be attenuated. How- ever, we seek to control for age effects on mean TEE within 

the analyses. Although the data represent 30 countries, 65% of the data are for people in 

the United States, and the great majority are for people in Western countries (defined as 

countries in Europe and the ‘Anglosphere’; see SOM Table S2 for the lists of countries 

designated as Western and non-Western). The participants represented in the database were 

recruited as volunteers into intervention studies. The data pertain only to control groups or 

pre-interventions. Not all TEE observations have a paired BEE measure, and therefore the 

sample size for the BEE and activity energy expenditure (AEE; calculated as 0.9*TEE - 

BEE) analyses was lower (n ¼ 1063 females and 693 males).

The data reported in this study cannot be deposited in a public repository because 

they are held by the management group of the IAEA DLW database. The 

instructions to request access are available at https://doubly-labelled-water-database.iaea.org/

dataAnalysisInstructions. Any additional information required to reanalyze the data reported 

in this article can be requested from the corresponding author upon request. For the syntax 

needed to reproduce results and figures presented in this article, see SOM S1 for the R 

script.
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2.2 Data

For all study participants, fat-free mass was derived from isotope dilution and fat mass was 

calculated as the difference between body mass and fat-free mass. For a subset of the TEE 

measurements (1063 females and 693 males), a paired measure of BEE (i.e., the minimum 

energy required to keep the body functioning; McNab, 1997; Frappell and Butler, 2004) 

was taken using indirect calorimetry. To qualify as ‘basal,’ BEE measurements must be 

performed on resting, postabsorptive subjects within their thermoneutral zone, such that 

BEE eliminates any source of variation related to behavior, digestion, and thermoregulation. 

We therefore used this subset of the data to test for GMV not only in BEE but also in 

AEE. Activity energy expenditure was calculated as 0.9*TEE e BEE, assuming that diet- 

induced energy expenditure accounts for 10% of the total energy budget (Westerterp, 2004). 

Total energy expenditure, BEE, and AEE are all reported as MJ•d-1. We also included in 

our analyses the following traits as variables that differ both on average and in magnitude of 

variance between the sexes, and can correlate with energy expenditure: height (cm), fat-free 

mass (kg), fat mass (kg), and age (y) (Heymsfield et al., 2007; Pontzer et al., 2021).

2.3 Statistical analyses

All analyses were conducted in R v. 3.5.3 (R Core Team, 2021). We quantified variance 

in male and female energy expenditure using Bayesian general linear models based on 

Monte-Carlo Markov chain (MCMC) models using the ‘MCMCglmm’ package (Hadfield, 

2010). Each model included one trait as the response variable (TEE, BEE, or AEE) and 

sex as an independent variable, with no intercept fitted so that the model returned separate 

mean estimates for males and females (Schielzeth, 2010). Using the ‘idh’ function, we also 

allowed the residual variance to be different in males and females. We also ran models 

with height, fat-free mass, fat mass, or age as the dependent variable (with only sex as the 

independent variable) to estimate mean and variance differences in males and females for 

these variables. All models included country as a random effect to account for the unequal 

sampling distribution across countries.

The first models were run without covariates. We then further investigated the source of 

variation in TEE, BEE, and AEE by rerun- ning the models and extracting sex-specific 

means and variances after including three different sets of morphometric covariates. The 

first set of covariates (‘set 1’) included height and fat-free mass as morphometric covariates, 

whereas the second set of covariates (‘set 2’) also included fat mass and age; the number 

of covariates present did not affect sample size. When included as covariates, the three 

morphometric variables and age were centered so that model estimates were estimated at 

the center of the distribution of the covariates (Schielzeth, 2010). To make sure that the sex 

differences in variance were not due to confounding nonlinear age and body composition 

effects, for example, energy expenditure decreasing with age but only beyond 60 years 

(Pontzer et al., 2021), the third set of covariates (‘set 3’) included quadratic effects for 

age, fat mass, and fat-free mass. We also included sex as an interaction term with the 

linear and quadratic terms for age, fat mass, and fat-free mass. Given that the effect of 

body composition on TEE, BEE, and AEE might be nonlinear with respect to age, we also 

included interactions be- tween the two body composition variables (fat mass and fat-free 

mass) and the linear and quadratic terms for age.
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We also wanted to test whether variance in TEE changed according to age (heterogeneity 

of variance) in males and females separately; a statistical effect that is not accounted for 

by including linear or quadratic terms for age, or interactions between age and other terms, 

in the models. To do this, we recoded age as a four-level categorical variable with roughly 

equal sample sizes in each age category. We then reran the model for TEE with the third set 

of covariates while estimating separate residual variances for each of the four age categories 

in males and females. Finally, we also wanted to test whether variance in TEE was different 

in Western countries compared to the rest of the countries sampled. To do this, we recoded 

country as a two-level categorical variable (Western country or non-Western country) and 

reran the model for TEE with the third set of covariates while estimating separate residual 

variances in males and females for Western countries and non-Western countries. The ethnic 

makeup of Western and non-Western countries based on the available data are presented in 

SOM Table S3. In brief, the majority of participants in the non-Western group are African, 

whereas a quarter are Asian; in the Western group, the great majority are Caucasian and 

nearly a fifth are African American.

Models were run using MCMCglmm default priors. Posterior distributions were estimated 

from 260,000 MCMC iterations sampled at 200 iteration intervals following an initial 

burn-in period of 60,000 iterations. Autocorrelations were less than 0.1 for all estimates, 

which yielded effective sample sizes close to 1000 for all estimates (range ¼ 833e1361). 

We visually inspected plots of the traces and posterior distributions as well as calculated the 

autocorrelation among samples to make sure that all models had properly converged.

From each model, we calculated the posterior mode and 95% highest posterior density 

credible intervals (CIs) for the means and variances in males and females. We also wanted to 

standardize the variance in each sex with respect to the observed mean differences. To do so, 

we calculated the relative variance by dividing the sex- specific variance by the sex-specific 

mean estimates in each of the 1000 posterior MCMC samples, and then calculating the 

posterior mode and 95% CIs. Treating these as 95% confidence intervals, in cases where the 

CIs for the relative variances of the two sexes do not overlap, the evidence of a difference in 

variance between the sexes is strong (Belia et al., 2005). We also investigated differences in 

variation in each trait between the sexes by calculating the ratio of the male:female variance. 

Note that the sample size is larger in females than males. To assess whether this imbalance 

affected the results, we reran the third set of models after randomly deleting observations in 

females so that the sample size is the same as in males.

Finally, to gain a visual representation of the trait variance in males vs. females, we reran 

each model above using standard multiple linear regression using the lm() function in 

R, with the caveat that these models did not account for the country of data collection. 

Residuals generated from each model were then used to graphically represent the effects of 

accounting for morphometric variables on the variance in energy expenditure for males and 

females. Thus, for example, in the case of TEE, we plotted a histogram of TEE for each sex 

separately, then one of TEE accounting for height and fat-free body mass (set 1), and finally 

one of TEE ac- counting for height, fat-free mass, fat mass, and age (set 2).
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3. Results

Overall, TEE was 2.20 times more variable in males than females (Table 1; Figs. 1A and 

2A). Males also have higher mean TEE than females, yet relative variance (standardizing 

for mean differences) was still 1.67 times higher in males than females (Table 1). Height 

and fat-free mass - two strong determinants of TEE - were also more variable in males than 

females (Table 1). Accordingly, including height and fat-free mass within the model (set 

1) decreased the overall residual variance in TEE. Nonetheless, TEE (adjusted for height 

and fat-free mass) was 2.38 times more variable in males than females (Table 1; Figs. 1A 

and 2B). By contrast, variance in fat mass and age was lower in males than females in our 

sample (Table 1). Adding fat mass and age as covariates (set 2) had negligible effect on 

residual variance in TEE (Table 1; Figs. 1A and 2C). The 95% CIs around the estimates of 

variance for males and females do not overlap, providing strong support that male variance 

is greater than female variance in TEE (Fig. 1A).

Variance in BEE and AEE within each sex was lower than in TEE, especially for BEE 

(Table 1; Fig. 1B, C). Nonetheless, GMV in these traits was still sizeable. Overall, BEE and 

AEE were, respectively, 1.30 and 1.95 times more variable in males than females (Table 

1). Moreover, similarly to TEE, the fold-difference in variance slightly increased when 

including covariates (Table 1; Figs. 1B, C and 2D–I). In each of these cases, the 95% CIs 

around the variance estimates for males and females do not overlap, clarifying the strong 

evidence that male variance is greater than female variance in BEE and AEE.

The model for TEE with age-specific residual variances revealed that, although there is a 

somewhat more pronounced decrease in TEE variance in males than females (Fig. 3A, B), 

there were no clear age differences in the male:female variance ratios (Fig. 3C).

There was a markedly lower TEE variance in males from non- Western countries compared 

to Western countries but no difference in females, resulting in a reduced but still 

considerable GMV in non-Western compared to Western countries (Fig. 4).

4. Discussion

Our study represents a first exploration of GMV in energy expenditure, a trait that captures 

the net effect of many morpho- logical, physiological, and behavioral factors. Our results 

indicate considerable GMV in human energy expenditure in terms of TEE, BEE, and AEE 

(Table 1; Figs. 1 and 2), although the data cannot distinguish between the two prominent 

explanations for GMV, heterogamy and sexual selection, since both explanations predict 

greater trait variance in males than females. We also found GMV in key measures of 

body condition associated with energy expenditure: height and in particular fat-free mass 

(Heymsfield et al., 2007; Pontzer et al., 2021; Table 1). Height and fat-free mass correlate 

strongly with energy expenditure in humans (Cameron et al., 2016; Hopkins et al., 2016; 

Thomas et al., 2019), raising the possibility that GMV in energy expenditure is simply a 

result of the GMV in those morphometric traits. However, while statistically accounting for 

height and fat-free mass considerably reduced the within-sex variance in all three measures 

of energy expenditure in both males and females (with no clear, systematic, additional 
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reduction in variance when accounting for fat mass and age), the variance ratio between 

males and females did not systematically decrease. In fact, statistically accounting for these 

morphometric variables and age resulted in a slight increase in the male:female variance 

ratio in all three measures of energy expenditure. In other words, remarkably, even when 

attempting to compare, with statistics, males and females of the same height, fat-free mass, 

fat mass, and age, males exhibit far more variation in TEE, BEE, and AEE than do females.

The fact that the considerable GMV in energy expenditure is not explained by variation in 

age, body morphometrics, and condition - key correlates of energy expenditure (Heymsfield 

et al., 2007; Pontzer et al., 2021) - indicates that GMV in energy expenditure is affected 

by other factors. It has long been known that behavioral traits are important drivers of 

energy expenditure. Indeed, when Lavoisier (1743e1794) first started measuring metabolic 

rate more than 225 years ago, it became immediately clear that organisms spend a lot more 

energy when active than when resting (Lighton, 2008). Activity levels are more variable in 

males than females consistently across diverse cultures (Althoff et al., 2017), along with 

hours slept per night (Ban and Lee, 2001), hours spent sitting (Parsons et al., 2009), and 

aerobic capacity (Olds et al., 2006), which probably explains why males have more vari- 

able AEE than do females. In turn, this is probably reflected in TEE given that AEE 

constitutes 33% of TEE in the current sample of adult humans (Careau et al., 2021).

In contrast to AEE, BEE by definition all but eliminates the direct effect of behavior on 

metabolic measurements. The fact that we observed considerable GMV in BEE, and even 

after factoring out body size and composition, is particularly surprising (though a similar 

finding can be calculated for resting energy expenditure in 104 adult males and 155 adult 

females having adjusted for fat-free mass; Müller et al., 2011, their Table 1). It suggests that 

males are more variable than females in the maintenance costs of some of the physiological 

components that underpin BEE and which are not reflected in measures of fat-free mass. 

Although hormonal differ- ences could be a factor (Wu and O’Sullivan 2011; Wang and 

Xu, 2019), the proximate explanation must be the energy expenditures of the various 

physiological components of the body. More than 80% of the interindividual variance in 

BEE in humans is explained by the major body systems (Müller et al., 2018), and the 

remaining factors probably include the immune system (Buttgereit et al., 2000; Wolowczuk 

et al., 2008) and the digestive systems, including the influence of the gut microbiota on 

anaerobic resting metabolism (Riedl et al., 2017; Müller et al., 2018). Although there is no 

evidence that the mass-independent energy expenditures of various individual organs exhibit 

GMV (Müller et al., 2013), key elements of the cardiorespiratory system such as heart mass 

and lung vital capacity vary in size more in males than females (Lauer et al., 1992; Müller 

et al., 2011; Wierenga et al., 2017), as do two other energy- demanding systems (Müller et 

al., 2013), the brain (Wierenga et al., 2017) and the kidneys (Gong et al., 2012; cf. Müller et 

al., 2011), though probably not the liver (Chouker et al., 2004; Müller et al., 2011; Patzak et 

al., 2014). The spleen also exhibits GMV (Spielmann et al., 2005; Hosey et al., 2006; Müller 

et al., 2011), as perhaps does ‘residual mass’ which includes bone, skin, stomach, intestines, 

and glands (Müller et al., 2013). There is also evidence that mitochondrial energetics in 

response to low metabolic de- mands vary more in males, as does the abundance of different 

mitochondrial proteins in skeletal muscle, although sample sizes are fairly small and such 

studies are in vitro; thus extrapolation of the findings to resting muscles must be tentative 
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(Miotto et al., 2018; Monaco et al., 2020). Blood parameters more often show GMV than 

the reverse (Lehre et al., 2009), though two reported measures in that study which one 

might a priori posit show GMV but exhibit the reverse are thyroid-stimulating hormone and 

tetraiodothyronine. Core temperature, albeit subtly, also exhibits GMV (Chamberlain et al., 

1995).

Even though activity is eliminated from the BEE measurements, GMV in activity might still 

have an indirect role to play in generating GMV in BEE due to training effects. For example, 

regular exercise is known to increase heart size, mitochondrial count, and blood volume 

(McArdle et al., 2015), decrease levels of certain hormones and cytokines (Node et al., 

2010; Silverman and Deuster, 2014; Pontzer, 2018), and improve mitochondrial oxidative 

capacity (Cardinale et al., 2018). One possibility, then, is that males have evolved to exhibit 

considerably more interindividual variation in AEE than have females, and that this drives 

greater variability in both BEE and TEE. High energy expenditure is related to various 

traits that are arguably attractive to females. High BEE for a given size and body condition 

could positively correlate with aerobic fitness (Poehlman et al., 1989), cognitive capacity 

(Goncerzewicz et al., 2022), or organ function (Müller et al., 2018). High AEE is associated 

with high levels of physical activity, and also strength and muscle mass, characteristics 

known to be attractive to females or at least asso- ciated with gaining access to females 

(Schulte-Hostedde et al., 2008; Neave et al., 2011; Lidborg et al., 2022), in part because 

these characteristics signal physical fitness (Sharp et al., 1992), athletic ability, and thus 

competitiveness (Hugill et al., 2010), and also access to high levels of energy resources 

(Bonduriansky, 2007). If so, then energy expenditure does have a sexual signal component, 

which would associate with greater variation in males. In turn, by viewing everyday energy 

expenditure in adults ultimately as reproductive investment (directly and indirectly; Key 

and Ross, 1999), some males are investing considerably more energy in (anticipated) 

reproduction than are others, whereas in contrast, the variation between females in terms 

of energy investment in their potential reproduction is much smaller.

However, an alternative explanation for GMV in energy expenditure arises through 

consideration not of why male variation is greater but why female variation is lower. That 

is, why might females have undergone stabilizing selection - both low and high energy 

expenditures being selected against over time? Maximal sustained energy expenditure is 

intrinsically constrained at a fixed multiple of BEE, both in animals (Drent and Daan, 1980; 

Peterson et al., 1990) and humans (Hammond and Diamond, 1997; Thurber et al., 2019). 

Thus, people with a higher BEE will tend to be those with a higher maximal sustained 

energy expenditure. For females, this could be advantageous during lactation because it 

would allow them to expend more energy on reproduction (Fig. 5A). However, if there is 

an external constraint on sustained energy expenditure due to limited food supply, then the 

energy available for female reproduction would follow a peaked function with BEE (Fig. 

5B). In turn, females with either high or low BEE would be selected against because this 

would be associated with submaximal energy being expended on reproduction. Because 

BEE is the dominant component of nonreproductive energy expenditure, reduced variation 

in BEE results in reduced variation in TEE when females are not reproducing.
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Although our study indicates that GMV is a robust phenomenon in human energy 

expenditure, we cannot assume that the magnitude of GMV is consistent across all human 

populations and cultures. Indeed, there is a tentative indication in the present data that 

people from non-Western countries exhibit a still substantial but reduced GMV, due to a 

reduction in male variability (Fig. 4). It could be that there are features of Western cultures/

societies that serve to exacerbate or attenuate GMV although what these could be are not 

immediately obvious (perhaps, for example, more time and money enable the sexes to 

pursue hobbies and lifestyles, e.g., Stoet and Geary, 2018, that contrast in terms of energy 

expenditure). Cultural variations in the magnitude of GMV might indicate that heterogamy 

is at best only part of the underlying mechanism but do not offer evidence for or against 

sexual selection as a predominant mechanism underlying GMV because sexual selection can 

have strong cultural components (Nakahashi, 2017).

5. Conclusions

The large data set at our disposal enabled us not only to robustly test for GMV in humans 

in an as yet untested suite of traits - various aspects of energy expenditure - but also 

to investigate whether GMV in energy expenditure is explained by GMV in correlated 

morphological traits. In our sample, they are not, and while GMV in behavior likely directly 

explains much of the GMV in activity and thus TEE, we are left with the intriguing 

possibility that males exhibit much more variation than do females in the energy demands 

of their major body systems, the most likely proximate drivers being greater variation in 

the size of those organs perhaps coupled with greater variation in mitochondrial efficiency. 

There are several potential explanations for this GMV in humans. Given that men experience 

greater reproductive variability than women, and that TEE variance decreases with age 

more in men than women, one possibility is that these traits are under sexual selection, and 

indeed energy expenditure is related to other traits known to be assessed by women during 

mate choice such as physical capacity - characteristics that can be expected to correlate 

with reproductive success. We also suggest another, novel explanation for GMV in energy 

expenditure based on putative restricted energy availability experienced by females during 

the height of reproduction.
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Figure 1. 
Male (closed circles) and female (closed triangles) variance for A) total energy expenditure 

(TEE), B) basal energy expenditure (BEE), and C) activity energy expenditure (AEE). 

While within sex variance differs considerably between TEE, BEE, and AEE, in each case, 

male variance is greater than female variance. Values shown are the posterior modes with 

95% highest posterior density credible intervals (CI) for the sex-specific residual variance 

estimates extracted from models that did not include covariates (‘none’), and models that 

included three sets of covariates such as height and fat-free mass (set 1), height, fat-free 
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mass, fat mass, and age (set 2), and height, fat-free mass, fat mass, age, and sex-specific 

nonlinear age and body composition effects (set 3). The open symbols show the variance 

estimates in females obtained from an analysis restricted to a data set in which sample size 

was randomly reduced to equal that of males.
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Figure 2. 
Histograms of total energy expenditure (TEE; AeC), basal energy expenditure (BEE; DeF), 

and activity energy expenditure (AEE; GeI) for adult males (dark grey) and females (light 

grey). A) Absolute TEE; B) TEE adjusted for height and fat-free mass (set 1); C) TEE 

adjusted for height, fat-free mass, fat mass, and age (set 2). D) Absolute BEE; E) BEE 

adjusted for height and fat-free mass (set 1); F) BEE adjusted for height, fat-free mass, fat 

mass, and age (set 2). G) Absolute AEE; H) AEE adjusted for height and fat-free mass (set 
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1); I) AEE adjusted for height, fat-free mass, fat mass, and age (set 2). In each panel, male 

variance is greater than female variance.
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Figure 3. 
Age-specific A) variance and B) coefficient of variance in total energy expenditure in males 

(circles) and females (triangles) and C) male:female variance ratio. The amount of greater 

male variability (GMV) remains fairly constant across age categories. Values shown are the 

posterior modes with 95% highest posterior density credible intervals (95% CIs) extracted 

from a single model that included multiple covariates and sex-specific nonlinear aging and 

body condition effects. Numbers shown below the symbols are the sample sizes for each 

category.
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Figure 4. 
Male (circles) and female (triangles) variance for total energy expenditure disaggregated into 

Western countries and non-Western countries. Values shown are the posterior modes with 

95% highest posterior density credible intervals (CIs) for the sex-specific residual variance 

estimates extracted from models that included height, fat-free mass, fat mass, age, and 

sex-specific nonlinear age and body composition ef- fects, and country as a random factor. 

Numbers shown by the symbols are the sample sizes for each category. Variance in total 

energy expenditure among males is much higher in Western than non-Western countries, 

whereas the variance among females is similar in Western and non-Western countries; thus, 

the magnitude of greater male variability is decreased in non-Western countries.
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Figure 5. 
Conceptual model of energy availability during pregnancy in relation to basal energy 

expenditure (BEE). A) Sustained maximal energy expenditure is a multiple of BEE. 

Consequently, the energy potentially available for reproduction (calculated as sustained 

maximal energy expenditure minus BEE) is higher in females with a higher BEE. B) If food 

availability is limited, then energy intake can create a limit to sustained maximal energy 

expenditure (dashed line) and in turn, energy available for reproduction is not only low for 

females with a low BEE but also for females with a high BEE; it is highest when BEE is an 
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intermediate value. The arrows denote selection against the extremes of low BEE and high 

BEE.
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Table 1

Variances, relative variance (standardizing for mean differences), and the male:female variance ratio of height, 

fat-free mass, fat mass, age, total energy expenditure (TEE), basal energy expenditure (BEE), and activity 

energy expenditure (AEE).

Trait Covariates Variance (95% CI) CV (95% CI) Variance ratio 
(95% CI)

Males Females Males Females

Height (cm) None 48.92 (45.96e52.96) 43.34 (41.45e45.65) 0.28 (0.26e0.31) 0.30 (0.26e0.28) 1.12 (1.04e1.24)

Fat-free mass 
(kg)

None 69.79 (64.42e74.12) 43.98 (41.31e45.57) 1.23 (1.15e1.34) 1.06 (0.97e1.12) 1.59 (1.48e1.75)

Fat mass (kg) None 107.29 
(100.75e115.45)

142.59 
(133.79e148.52)

6.54 (5.70e8.41) 6.78 (5.90e8.07) 0.75 (0.69e0.83)

Age (y) None 245.36 (224.87e261.2) 327.1 (312.34e345.32) 6.74 (5.44e7.88) 8.49 (6.99e9.78) 0.73 (0.68e0.82)

TEE (MJ d−1) None 6.54 (6.03e7.01) 2.97 (2.83e3.12) 0.50 (0.45e0.55) 0.30 (0.27e0.32) 2.18 (1.98e2.37)

TEE (MJ d−1) Set 1 3.45 (3.22e3.73) 1.46 (1.40e1.54) 0.31 (0.28e0.34) 0.13 (0.12e0.14) 2.35 (2.16e2.59)

TEE (MJ d−1) Set 2 3.37 (3.12e3.61) 1.38 (1.31e1.45) 0.31 (0.28e0.33) 0.12 (0.12e0.14) 2.43 (2.22e2.67)

TEE (MJ d−1) Set 3 3.31 (3.06e3.54) 1.33 (1.28e1.41) 0.29 (0.27e0.32) 0.12 (0.11e0.13) 2.38 (2.24e2.68)

BEE (MJ d−1) None 1.07 (0.95e1.19) 0.82 (0.75e0.89) 0.15 (0.13e0.17) 0.14 (0.12e0.15) 1.26 (1.10e1.50)

BEE (MJ d−1) Set 1 0.49 (0.44e0.55) 0.33 (0.30e0.36) 0.08 (0.07e0.09) 0.05 (0.05e0.06) 1.56 (1.31e1.75)

BEE (MJ d−1) Set 2 0.41 (0.37e0.45) 0.28 (0.26e0.31) 0.06 (0.06e0.07) 0.04 (0.04e0.05) 1.45 (1.28e1.68)

BEE (MJ d−1) Set 3 0.39 (0.37e0.45) 0.26 (0.24e0.29) 0.06 (0.05e0.07) 0.04 (0.04e0.05) 1.50 (1.31e1.72)

AEE (MJ d−1) None 2.83 (2.44e3.04) 1.45 (1.35e1.60) 0.71 (0.57e0.85) 0.46 (0.37e0.60) 1.86 (1.64e2.16)

AEE (MJ d−1) Set 1 2.38 (2.16e2.66) 1.16 (1.07e1.27) 0.71 (0.58e0.85) 0.33 (0.28e0.40) 1.98 (1.76e2.31)

AEE (MJ d−1) Set 2 2.28 (2.01e2.50) 1.08 (0.99e1.17) 0.70 (0.59e0.90) 0.32 (0.28e0.41) 2.04 (1.79e2.37)

AEE (MJ d−1) Set 3 2.22 (2.03e2.51) 1.08 (0.98e1.16) 0.70 (0.55e0.88) 0.34 (0.27e0.40) 2.10 (1.83e2.37)

For all traits, variances were estimated in the raw data (no covariates). For TEE, BEE, and AEE, variances were also estimated in the residuals after 
accounting for three sets of covariates including height and fat-free mass (set 1); height, fat-free mass, fat mass, and age (set 2); and height, fat-free 
mass, fat mass, age, and sex-specific nonlinear age and body composition effects (set 3). Variance ratios >1 and <1, respectively, imply greater male 
and greater female variance. Also shown are the 95% credible intervals (CIs).
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