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Abstract

Uncovering the non-trivial brain structure–function relationship is fundamentally important for 

revealing organizational principles of human brain. However, it is challenging to infer a reliable 

relationship between individual brain structure and function, e.g., the relations between individual 

brain structural connectivity (SC) and functional connectivity (FC). Brain structure–function 

displays a distributed and heterogeneous pattern, that is, many functional relationships arise 

from non-overlapping sets of anatomical connections. This complex relation can be interwoven 

with widely existed individual structural and functional variations. Motivated by the advances 

of generative adversarial network (GAN) and graph convolutional network (GCN) in the deep 

learning field, in this work, we proposed a multi-GCN based GAN (MGCN-GAN) to infer 

individual SC based on corresponding FC by automatically learning the complex associations 

between individual brain structural and functional networks. The generator of MGCN-GAN 

is composed of multiple multi-layer GCNs which are designed to model complex indirect 

connections in brain network. The discriminator of MGCN-GAN is a single multi-layer GCN 

which aims to distinguish the predicted SC from real SC. To overcome the inherent unstable 

behavior of GAN, we designed a new structure-preserving (SP) loss function to guide the 

generator to learn the intrinsic SC patterns more effectively. Using Human Connectome Project 

(HCP) dataset and Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset as test beds, our 

MGCN-GAN model can generate reliable individual SC from FC. This result implies that there 

may exist a common regulation between specific brain structural and functional architectures 

across different individuals.
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1. Introduction

A fundamental question in neuroscience is how to understand structure-function relationship 

of human brain. It is widely believed that brain structural architecture provides the substrate 

where rich functionality arises from, and therefore, the dynamics of brain function are 

closely related to the relatively fixed structure organization. Numerous studies confirmed 

that brain structure can determine, at least partially, brain functional patterns. For example, 

the concept of “connectional fingerprint” (Passingham et al., 2002) suggests that each 

brain’s cytoarchitectonic area has a unique set of extrinsic inputs and outputs, which largely 

determine the function that each brain area performs. This close relationship between 

structural connection pattern and brain function has been confirmed and replicated in many 

literatures. For example, our previous work (Zhu et al. 2011, 2012, 2013) proved that the 

same functional regions tend to possess consistent structural connectivity patterns across 

different individuals and populations. Koch et al. (2002) directly compared brain structural 

connectivity (SC) and functional connectivity (FC) and found that regions which directly 

linked by structural connectivity show high functional connectivity. Skudlarski et al. (2008) 

reported a significant overall agreement between SC and FC by calculating the partial 

correlation between the two global matrices. Some other studies implemented computational 

models to study the brain structure-function relationship at macroscale (Honey et al., 2009; 

Gong et al., 2009), mesoscale (Wang et al., 2013), and microscale (Pernice et al., 2011). 

A consistent result achieved by these studies is that strong functional interactions tend to 

be accompanied with strong structural connections. On the other hand, some studies also 

found that parts of the FC may be not supported by the underlying SC. Greicius et al. 

(2009) studied the relations between SC and four default mode network (DMN) related brain 

regions and found that strong FC can still exist without direct SC. This may be due to 

several factors. Firstly, the complex indirect interactions may widely exist among different 

brain regions. The functional connections observed between regions with little or no direct 

structural connections may be mediated by indirect structural connections. Secondly, brain’s 

structure-function behaves under a distributed and heterogeneous pattern: at network level, 

many functional relationships arise from non-overlapping sets of anatomical connections 

(Misic et al., 2016), which means functional networks do not necessarily correspond to 

the underlying structural substrate with a simple node-to-node mapping. Therefore, how 

to represent and analyze the relationship between brain structural and functional network, 

especially at individual level, is still challenging.

The existing approaches that have been used to explore brain structure-function relationship 

can be broadly divided into two categories: the first approach is to conduct association 

analysis using correlation coefficient, which mainly focuses on simple and linear 

relationship between SC and FC (Koch et al., 2002; Skudlarski et al., 2008). The second 

is to apply graph theory to both brain structural and functional network for quantitative 

analysis, such as small world property (Achard et al., 2006; IturriaMedina et al., 2008; 

Sporns and Zwi, 2004), modular structure property (Zamora-Lpez et al., 2016; Diez et al., 

2015), and rich-club organization Van Den Heuvel and Sporns, 2011; Van Den Heuvel et 

al., 2012). All these approaches have fundamentally advanced our understanding of the 

relationship between brain structure and function at population level, but they are limited in 
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charactering individual variability in subject-specific brain network. In addition to the above 

two widely used strategies, some other computational models have also been developed to 

bridge the gap between structural network topology and the related function by examining 

their relations at multiple scale and resolution (Honey et al., 2009), modeling dynamics 

(Pernice et al., 2011) and constructing local mm-scale networks using animal model (Wang 

et al., 2013). However, because of brain’s distributed and heterogeneous structure-function 

pattern, traditional methods are limited to represent the complex relationship between 

individual SC and FC.

Recent advances in deep learning have revolutionized the fields of machine learning (Hinton 

and Salakhutdinov, 2006; LeCun et al., 2015) and brought breakthroughs for computational 

neuroimaging field including reconstruction (Sun et al., 2019), segmentation (Wang et al., 

2015), detection (Sirinukunwattana et al., 2016), and computer-aided diagnosis (Roth et al., 

2015). Among numerous deep learning models, graph convolutional network (GCN) (Kipf 

and Welling, 2016; Wu et al., 2020; Zhang et al., 2020c) generalizes the convolutional 

operations from grid data to graph data and witnesses great success in brain network domain 

recently (Ktena et al., 2018; Kazi et al., 2019; Parisot et al., 2018; Zhang et al., 2019b, 

2020b, 2021). More importantly, the generative adversarial network (GAN) (Goodfellow et 

al., 2014; Hong et al., 2019) provides an efficient way to revisit the complex relationship 

between brain structure and function: as a generative model, GAN can powerfully handle 

the brain’s distributed and heterogeneous structure-function pattern. Moreover, compared to 

other generative models, GAN effectively converts the regression problem to a classification 

problem through the adversarial training scheme. In this way, an explicit regression loss 

function is unnecessary, and the criterion used to evaluate the performance of the predictions 

is implicitly learned from the data. This can be especially suitable for areas with insufficient 

prior knowledge, such as brain network.

In this work, we proposed a multi-GCN based generative adversarial network (MGCN-

GAN) (Fig. 1) to learn individual SC from the corresponding individual FC. We adopted 

GAN to handle brain’s distributed and heterogeneous pattern. To overcome the inherent 

unstable behavior of GAN (Goodfellow et al., 2014; Hong et al., 2019) caused by the 

adversarial training scheme, we proposed a novel structure-preserving (SP) loss function to 

guide the generator to learn the intrinsic SC patterns more effectively. In order to capture 

the complex relationship buried in both direct and indirect brain connections, we constructed 

the generator and discriminator using GCN. However, traditional GCN has two limitations: 

First, comparing to widely used convolutional neural network (CNN) that has multiple filters 

to capture multiple feature spaces, conventional GCN only has one filter (weight matrix) in 

each GCN layer and therefore can only learn a single feature map. Second, the performance 

of GCN may gradually decrease with increasing number of layers (Zhao and Akoglu, 2019) 

and which limits the power of learning by deepening the network as CNN does. To address 

these limitations, we designed a multi-GCN based generator that used multiple GCNs 

instead of one deep GCN to simultaneously capture underlying complex interactions in brain 

network and avoid the performance decay by stacking more layers in a single GCN. We 

tested our methods on two datasets: Human Connectome Project (HCP) dataset (Van Essen 

et al., 2012) and Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset (Petersen et 

al., 2010). Our results show that the proposed MGCN-GAN can generate reliable individual 
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SC based on corresponding individual FC. More importantly, our results imply that there 

may exist a common regulation between specific brain structural and functional architectures 

across individuals.

Our proposed MGCN-GAN advances the state of the art in two ways: firstly, our model is 

designed to capture individual-specific structure-function relationship. Previous publication 

(Batista-Garcia-Ramo and Fernandez-Verdecia, 2018) found that similar structural damage 

of patients with the same pathology show different dysfunctions, which indicates the 

variability of individual structure–function relationship. Unveiling individual structure–

function relationship is fundamentally important to the comprehensive understanding of 

individual variation in brain structure and function and is the premise and key step 

for personalized medicine. Secondly, we introduced multi-GCN architecture into GAN 

framework and designed a structure preserving (SP) loss function to help the model to 

generate high-quality SC. The MGCN-GAN is a flexible architecture with adjustable GCN 

components to fit different tasks with varying complexity.

2. Related work

Graph convolutional network (GCN) (Kipf and Welling, 2016; Wu et al., 2020) was 

developed to manipulate graph topological properties in a deep manner. Recently, it has 

been used to define and represent brain network for deep modeling of brain structural and/or 

functional connectivity under a given task, i.e., classification (Zhang et al., 2019a, 2020a, 

2021; Huang et al., 2020). In this section, we reviewed the most recent GCN-related studies 

on brain network from two views: (1) the definition of the input graph – group-level GCN 

model vs individual-level GCN model (Section 2.1), and (2) the architecture of the GCN 

framework – single-GCN architecture vs multi-GCN architecture (Section 2.2).

2.1. Group-level GCN model vs individual-level GCN model

Based on different definitions of input graph, existing GCN-based studies on brain network 

can be grouped into two categories – group-level GCN model and individual-level GCN 

model. In group-level GCN model, the input graph represents the whole populations. For 

example, Parisot et al. (2018) used imaging features of individuals as nodes and encoded 

pairwise similarities between non-imaging features as edge weights. By this way, the whole 

populations were represented as a sparse graph, upon which a GCN was built in a semi-

supervised learning task to predict conversion to Alzheimer’s disease. Kazi et al. (2019) 

constructed a similar graph structure, where each node was a feature vector generated from 

imaging data to represent an individual and the non-imaging data was used to measure the 

similarities between the connecting nodes. To break the limitation of applying the same 

filter size to all layers, Kazi et al. proposed an InceptionGCN model, in which the filter 

size of different GCN layers can be different, and thus make the model more efficient in 

capturing useful features. To better measure the similarity between two connecting nodes, 

Song et al. (2021) designed a similarity-aware adaptive calibrated GCN (SAC-GCN). In this 

work, a calibration mechanism was proposed to fuse fMRI and DTI information into edges 

and a pre-trained GCN was used to calculate the similarity between each pair of subjects. 

However, group-level GCN model can be limited in the flexibility when handling the large 
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sample size and in capability when representing rich individual information. Individual-level 

GCN model takes individual graph as input. Each node in the individual graph represents an 

anatomical brain region, and the edge denotes the relationships between the two connecting 

brain regions, such as the morphological, functional or structural connectivity. Ktena et al. 

(2018) used functional connectivity to create individual graph and leveraged siamese graph 

convolutional network (s-GCN) to learn a graph similarity metric which was incorporated 

into a classification task at later steps. Zhang et al. (2019a, 2020a) combined individual-

level GCN model with recurrent neural network (RNN) models to deal with both brain 

structural and functional connectivity when identifying the mild cognitive impairment 

patients. Zhang et al. (2021) also proposed a topology learnable GCN model: the topology 

of the GCN was initialized by individual structural connectivity and iteratively updated by 

functional information to maximize its classification power for MCI patients. In general, 

most GCN studies focused on extracting useful features from brain connectivity data to do 

classification or to conduct associative analysis. Inferring the relationship between structural 

and functional networks at individual level has not yet been studied.

2.2. Single-GCN architecture vs multi-GCN architecture

Several GCN studies summarized in Section 2.1 adopt single-GCN architecture. To further 

take advantages of complementary information provided by different scales and modalities, 

some studies tried to build multiple GCNs for different brain graphs. Zhang et al. (2018) 

proposed a multi-view GCN to handle different brain connectivity graphs (BCGs) derived 

from DTI imaging data using different tractography algorithms. A pair-wise matching 

strategy was adopted to fuse the output of each GCN to conduct classification of Parkinson’s 

disease patients. Huang et al. (2020) designed an attention-diffusion-bilinear neural network 

to integrate structural connectivity and functional connectivity for predicting frontal lobe 

epilepsy, temporal lobe epilepsy, and healthy subjects. This framework consists of two 

GCNs for two scales – direct connections and indirect connections. Zhang et al. (2019b) 

trained different GCNs for multiple graphs with respect to multi-modal brain networks. The 

features generated by each GCN were concatenated to conduct classification of patients 

with Parkinson’s disease. In general, by building independent GCNs for each type of brain 

connectivity, multi-GCN architecture is able to capture more comprehensive information 

from multi-modal data and therefore, improve the model performance.

3. Materials and methods

3.1. Participants and data description

HCP dataset.—In this work, we selected all the 1064 subjects which have structure MRI 

(T1-weighted), resting state fMRI (rs-fMRI) and diffusion MRI data from HCP S1200 

release. For the T1-weighted MRI data, the Field of View (FOV) is 224 mm×224 mm, voxel 

size is 0.7 mm isotropic, TR = 2.4 s, TE = 2.14 ms and flip angle = 8° For the rs-fMRI data, 

the FOV is 208 mm×180 mm, 72 slices, voxel size is 2.0 mm isotropic, TR=0.72 s, TE=33.1 

ms, flip angle = 52° and there are 1200 vol for each subject. For the diffusion MRI data, the 

gradient direction is 288, the FOV is 210 mm×180 mm, 111 slices, voxel size is 1.25 mm 

isotropic, TR=5.52 s, TE=89.5 ms and flip angle = 78°.
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ADNI dataset.—We used 132 normal control (CN) subjects (68 females, 64 males; 76.45 

± 7.68 years.) from ADNI dataset. Each subject has structure MRI (T1-weighted), rs-fMRI 

and diffusion MRI data. The FOV of T1-weighted MRI is 240 mm×256 mm×208 mm and 

the voxel size is 1.0 mm isotropic, TR = 2.3 s. The diffusion MRI data has 54 gradient 

directions, the FOV is 232 mm×232 mm×160 mm and the voxel size is 2.0 mm isotropic, 

TR = 7.2 s and TE = 56 ms. The rs-fMRI data has 197 vol, the FOV is 220 mm×220 

mm×163 mm, voxel size is 3.3 mm isotropic, TR = 3 s, TE = 30 ms and flip angle = 90°.

3.2. Data preprocessing

We applied the same standard preprocessing procedures as in Zhu et al. (2014a) and Wang 

et al. (2019) to both HCP and ADNI datasets. In brief, we applied skull removal for all three 

modalities and registered T1 and fMRI to DTI space by FLIRT in FM-RIB Software Library 

(FSL) (Jenkinson et al., 2012). For rs-fMRI images, we applied spatial smoothing, slice 

time correction, temporal pre-whitening, global drift removal and band pass filtering (0.01–

0.1 Hz) via FEAT command in FSL. For DTI images, we applied eddy current correction 

using FSL and fiber tracking via MedINRIA (Toussaint et al., 2007)). For T1 images, 

we conducted segmentation using FreeSurfer package (Fischl, 2012) and then adopted the 

Destrieux Atlas (Destrieux et al., 2010) and Desikan-Killiany Atlas (Desikan et al., 2006) 

for ROI labeling.

3.3. Generation of functional connectivity and structural connectivity

For each subject, the whole brain is divided into 148/68 (148 for Destrieux Atlas and 68 

for Desikan-Killiany Atlas) ROIs and represented as a network with 148/68 nodes. Averaged 

fMRI signal was calculated for each brain region and normalized by the standard Z-score 

normalization (Jain et al., 2005) formulated as:

fi = fi − fμ
fσ

, (1)

where fi is the averaged fMRI signal of brain region i, fμ and fσ are the mean and the 

standard deviation of all 148/68 averaged fMRI signals. There exist several measurements 

to represent pair-wise relationship between two fMRI derived BOLD signals, such as 

correlation (Zhu et al., 2014b), partial correlation (Marrelec et al., 2006) and covariance 

(Challis et al., 2015). Since how to effectively represent the functional relationships among 

brain regions is still an open research area, in this work, we adopted four different 

measures that have been used in the field (Table 1) to construct functional connectivity 

(FC, denoted as F = [Fi, j] ∈ RN×N) including: (1) Pearson correlation coefficient (PCC), 

(2) Sparse inverse covariance estimation with the graphical lasso (Sparse ICOV), (3) 

binarized FC and (4) threshold FC. Pearson correlation coefficient (PCC) between the 

BOLD time series of two regions of interest derived from resting state fMRI data is the most 

used functional measurement to estimate functional connectivity (Batista-Garciá-Ramo and 

Fernañez-Verdecia, 2018). Partial correlation provides a convenient graphical representation 

for functional interactions. In this work, we used sparse inverse covariance estimation 

with the graphical lasso (Sparse ICOV) (Friedman et al., 2008) to capture the partial 

correlations. In Friedman et al. (2008), the sparse inverse covariance matrix is estimated 
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by maximizing the L1 penalized log-likelihood of the observed data with assumption of 

Gaussian distribution. In this paper, for each subject, we apply the graphical lasso method 

for learning individual sparse functional connectivity F. Let gt,i be the fMRI signal of brain 

region i at time t for one subject. Denote by G = [gt,i] ∈ RT×N the fMRI signals over 

N regions spanning time T. Assume that the tth sample gt = [gt,1 , … , gt,N]T ∈ RN is 

drawn i.i.d. from some Gaussian distribution with the precision matrix F for encoding the 

conditional independencies between any two ROIs. The empirical sample covariance is:

C = 1
T − 1 ∑

t = 1

T
gt − gμ gt − gμ

T
(2)

where gμ = 1
T ∑t = 1

T gt is the mean of T samples. The optimization problem of the graphical 

Lasso is

maxF log det (F ) − trace(CF ) − ρ ∣ F ∣ 1 (3)

Where ρ is the regularization parameter of the L1 regularization to control the sparsity 

of F. Binary FC and Threshold FC are another two widely used strategies to control the 

susceptibility to noise (van den Heuvel et al., 2017). We applied our proposed method on 

these multiple types of FC measures, and the prediction results of structure connectivity are 

summarized in Section 4.4 (Fig. 8).

The structural connectivity (SC) was created in terms of fiber counts, denoted as S ∈ RN×N. 

Si,j ∈ R is the number of fibers connecting brain regions i and j. Then, we conducted 

normalization of S using (4) and (5).

Si, j = log2(Si, j + 1), (4)

S = S − Sμ
Sσ

(5)

Sμ and Sσ are the mean and the standard deviation of S. Because the fiber count can be 

a value from zero to a few thousands, which often follows a skewed distribution. Log 

transformation can equalize the standard deviations and make the distribution of the sample 

mean more consistent with a normal distribution (Curran-Everett, 2018). Therefore, we first 

used log transformation to shrink the range of the fiber counts by (4) and then used (5) for 

normalization.

3.4. Method overview

We proposed a Multi-GCN based GAN (MGCN-GAN) model to generate individual SC 

from the corresponding FC. Similar to vanilla GAN (Goodfellow et al., 2014; Hong et 

al., 2019), MGCN-GAN is built on two components, i.e., generator and discriminator. To 

capture the highly complex relationship between SC and FC at the connectome level, we 
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used multi-layer GCN architecture (Section 3.5) to design the generator and discriminator, 

namely Multi-GCN based generator and single-GCN based discriminator, respectively 

(Section 3.6). Given an individual SC and the associated FC, the generator is trained to 

create real-like individual SC by competing with the discriminator based on an adversarial 

training scheme. The specific training steps are shown as follows: (i) FC is used as initial 

topology of brain network as well as features associated with the nodes; (ii) based on 

current topology, different GCN components of generator map the FC to different feature 

spaces to explore the latent relationship between SC and FC, and each GCN component 

outputs one feature matrix; (iii) all the output feature matrices are combined by learnable 

coefficients to generate the predicted SC in current iteration; (iv) discriminator acts as a 

classifier to differentiate the input SC as real SC (real samples) from the predicted SC (fake 

samples) generated by the generator; (v) the topology of the generator is updated by the 

predicted SC in the next iteration. Given the training data consisting of FC samples and their 

corresponding real SC samples, the whole model is trained based on the proposed SP loss 

function (Section 3.7).

3.5. Graph convolutional network (GCN)

In many applications, data are generated from non-Euclidean domains and represented 

as graphs with complex interdependency and relationships between graph nodes. The 

complexity of graph data has imposed significant challenges on the existing deep learning 

algorithms, such as CNN model. Graph convolutional network (GCN) (Kipf and Welling, 

2016; Wu et al., 2020; Zhang et al., 2020c) extends traditional CNN by applying 

convolutional operations on graph-based instead of Euclidean-based neighbors and is 

essential to various applications. In this work, to represent the latent interactions between 

brain SC and FC, we adopt a multi-layer GCN architecture to build the proposed MGCN-

GAN model. For the ease of better understanding GCN architecture, we first introduce the 

notations of a graph and the graph convolution operation used in this work.

Graph.—Let G = (V, E) to be an undirected graph, where V = {v1, v2, ⋯ , vn} is a set of 

vertices and E = {ei,j∣i, j = 1, 2, ⋯ , n} is a set of edges. If there exists an edge connecting 

two vertexes vi and vj, then ei,j > 0, otherwise, ei,j = 0. Each vertex vi can have its own 

attributes (features) which can be represented by a vector xi ∈ R1×d, d is the dimension of 

the attributes (features). X = [x1; x2 ; ⋯ ; xn] ∈ Rn×d is the feature matrix of graph G. The 

topology of G can be represented by a weighted adjacency matrix A = [ai,j] ∈ Rn×n, for all i, 
j, ai,j = ei,j. Thus, G also can be represented by G = (A, X).

Graph Convolution Operation.—As shown in Shuman et al. (2013), the traditional 

convolution operators can be generalized to the graph setting by defining filters in the graph 

spectral domain. For a graph G = (A, X) with the adjacency matrix A = [ai,j] ∈ Rn×n 

and node-wise feature matrix = [x1; x2; ⋯ ; xn] ∈ Rn×d, its normalized graph Laplacian 

is defined as = = IN − D− 1
2 A D− 1

2 , where IN is the identity matrix and D = ∑ai,j is the 

diagonal degree matrix. In general, the graph spectral convolution can be carried out by a 

convolutional network with convolutional layers of the polynomial form. For example, a 

two-layer GCN was formulated as Z = f(A, X) = f(A ReLU(A XW (0))W (1)) in Kipf and 
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Welling (2016), where A = D− 1
2 A D− 1

2  is the Laplacian transformation of A. In our 

previous work Zhang et al., 2019a), we compared A = A with other three different Laplacian 

transformations of A: 1) A = D − A, 2) A = D− 1
2 A D− 1

2 , and 3) A = D−1A and found that 

A = A and A = D− 1
2 A D− 1

2  give similar performance. Therefore, in this work we directly 

used the functional connectivity to initialize the adjacency matrix (A = F ) without using 

Laplacian transformation, the reasons are as follows: (1) compared to A = D− 1
2 F D− 1

2 , 

A = F  needs less computational cost; 2) to infer the reliable relationship between structural 

and functional connectivity, using the original FC matrix may be more appropriate than 

applying extra transformation on FC.

Based on above discussion, the convolutional process of multi-layer graph convolutional 

network can be formulated as (6) and (7):

G(A, X, W ) = σ AHl − 1W l , (6)

Hl = {σ AHl − 1W l , l > 0
X, l = 0

, (7)

where σ is the nonlinear activation function, Hl is the output of the lth convolution layer, Wl 

∈ RFi×F0 is the weight matrix, Fi is the input feature size and F0 is the output feature size. 

As shown in Fig. 2, Wl acts like a filter which selects related features from neighbors 

and defines how to combine these features. By stacking multiple graph convolutional 

layers, information from high-order neighbors (indirectly connected via other nodes) can 

be propagated along graph topology defined by the adjacency matrix A. In this work, we 

represented brain as a graph, and took the individual FC as the feature matrix i.e., X = 

F and the initialized topology A0 = F. By conducting graph-based convolution via the 

proposed MGCN-GAN model, we iteratively updated the graph topology and learned the 

individual SC (Section 3.6).

3.6. Multi-GCN based GAN (MGCN-GAN)

Multi-GCN based Generator.—Inspired by the great success of CNN that uses multiple 

filters to identify different features, the proposed generator consists of multiple multi-layer 

GCNs. Different GCN components are designed for different feature spaces and each of 

them will learn a latent mapping from individual FC to its corresponding SC. Through 

paralleling multiple GCNs, the generator has the capacity to model complex relationship 

between FC and SC, which will be demonstrated by our experimental results in Section 4. 

Specifically, a generator that is composed by k multi-layer GCNs can be formulated by (8), 

(9) and (10),

Gi = G(T , F , W i) (8)
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g {Gi}, θ = θ ⊕ (G1‖G2‖G3‖⋯‖Gk) = ∑
k

θkGk, (9)

T = {
g {Gi}, θ , iteration > 0

F , iteration = 0
, (10)

where Gi, i = 1, 2, 3, ⋯ , k represents the ith GCN and ∥ denotes parallel operation. Each 

GCN takes the individual FC (F) as input and outputs the predicted individual SC. Then, 

we used the learnable coefficients θ = (θ1, θ2, …, θk) to fuse (⊕) these k predictions and 

obtained the final prediction Sp = g({Gi}, θ ). During the training process, topology T is 

initialized by F and iteratively updated by T = g({Gi}, θ ). After training, each multi-layer 

GCN learns an independent mapping that represents a potential relationship between the 

input FC and SC. In order to enhance the capability of generator, we paralleled multiple 

GCNs to capture the complex relationships between individual SC and FC.

Single-GCN based Discriminator.—In order to distinguish the two sets of graph data – 

real SCs and the predicted ones generated by the generator, the discriminator is composed 

by a multi-layer GCN, Gd = G(SC, I, Wd), and followed by two fully-connected layers. 

The input SC can be the real SC matrix – S, derived from diffusion MRI and predicted 

SC matrix – Sp, created by generator. They are treated as real and fake samples during the 

training process. Different from generator, we used identity matrix as input feature matrix 

for discriminator. This is because discriminator aims to learn the rules that can be used to 

decide whether the input connectivity matrix is a valid SC matrix, any external knowledge 

should be excluded.

3.7. Structure-preserving (SP) loss function

In the adversarial training scheme, the generator is optimized according to the feedback 

of discriminator. However, in this SC prediction task, the generator is trained to generate 

real-like individual SCs while the discriminator is trained to identify the real SCs from the 

predicted ones. The classification task of discriminator is much easier than the regression 

task of generator. Thus, the discriminator may easily differentiate real SCs from predicted 

SCs after a few training iterations and the generative adversarial loss would be close to 0, 

resulting in zero back-propagated gradients in generator. In such case, the generator cannot 

be optimized and will keep generating invalid SCs. To break this dilemma, maintaining the 

balance between generator and discriminator regarding the optimization capability during 

the entire training process is important. We designed a new structure-preserving (SP) loss 

function to train our discriminator and generator. The SP loss function is combined by three 

parts: mean squared error (MSE) loss, Pearson’s correlation coefficient (PCC) loss and GAN 

loss. It is formulated by (11), (12) and (13).

ℒsp = ℒGAN + α ℒMSE + β ℒPCC, α > 0, β > 0 (11)

ℒGAN = − log (D(S)) + log 1 − D Sp − log D Sp (12)
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ℒPCC = ℒPCC − b + ℒPCC − r

=
∑i = 1

n ∑j = 1
n si, j − s̄ s i, j

p − sp

∑i = 1
n ∑j = 1

n si, j − s̄ 2 ∑i = 1
n ∑j = 1

n s i, j
p − sp 2 + ∑

i = 1

n ∑j = 1
n si, j − s̄ s i, j

p − sp

∑j = 1
n si, j − s̄ 2 ∑j = 1

n s i, j
p − sp 2

si, j ∈ S, s i, j
p

∈ Sp

(13)

where the regularization parameters α and β are initialized by 1 and will gradually reduce 

to 0 later in the training process to let the model learn completely from the data. The 

three components of SP loss aim to guide the learning process from different perspectives. 

MSE loss (LMSE) forces the predicted SC to be the same scale as real SC at element-wise 

level. It is designed to control the magnitude of the predicted SC. PCC loss (LPCC) 

maximizes the similarity of overall pattern between predicted SC and real SC. It attempts 

to constrain the structure of the predicted SC. PCC loss is formulated by (13), which 

consists of two components: 1) brain-level PCC loss (LPCC−b) and 2) region-level PCC 

loss (LPCC−r). Brain-level PCC loss calculates the PCC between predicted SC matrix and 

real SC matrix, which measures the overall correlation between the predicted and real SCs. 

Region-level PCC loss calculates the correlation for each brain region (each row/column of 

the connectivity matrix), which measures the correlation of each brain region pairs of the 

predicted and real SCs. GAN loss (LGAN ) effectively converts the regression problem to 

a classification problem and endows our model the power to implicitly learn the criterion, 

which is used to evaluate the quality of the predictions, from the data. It is formulated by 

(12), where D(S) and D(Sp) are the classification results predicted by discriminator. The 

adversarial GAN loss guides the generator to create real-like SC to fool the discriminator 

by assigning a “true” label to the predicted SC as well as guides the discriminator to 

differentiate the two kinds of inputs correctly.

4. Results

We applied our proposed MGCN-GAN to infer individual SC from the associated FC. 

For each sample (subject) in training dataset, the real SC is used as the real sample for 

discriminator ((11) and (12)) and as the ground truth for the generator at the beginning of 

the training process ((11) and (13)). The individual FC is used to initialize the adjacency 

matrix as well as to be the feature matrix ((8), (9) and (10)). During the adversarial training 

process, the topology of the graph is iteratively updated. The results of this work will 

be organized as follows: 4.1) introducing the experimental settings; 4.2) measuring the 

predicted SCs from three perspectives using two independent datasets; 4.3) evaluating the 

prediction performance with different atlases; 4.4) comparing the prediction performance of 

different types of FC measures; 4.5) evaluating different model settings including different 

GCN architectures, the learnable combination coefficients – θ, different loss functions; and 

4.6) comparison with other widely used methods.

4.1. Experimental setting

Data Setting.—We conducted our experiments using two datasets: HCP and ADNI. For 

HCP dataset, we used 600 subjects for training and 464 subjects for testing. For ADNI 

dataset, we used 80 CN subjects for training and 52 CN subjects for testing. The details of 
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the two datasets and the data preprocessing pipeline are introduced in Sections 3.1 and 3.2. 

For each subject, following the process in Section 3.3, we created the individual SC and FC.

Model Setting.—In this work, three two-layer GCNs are paralleled in generator. The 

model size of GCN components in generator is: G1 = (74, 148), G2 = (148, 148) and G3 

= (296, 148), Gi = (F1, F2, ⋯ , Fl) represents an l-layer GCN and output feature dimension 

of the lth layer is Fl. The three GCNs are combined by the learnable coefficient θ which 

is initialized by θi = (0, 0, 0). We also tested different model architectures and different 

initializations of θ in Section 4.5. The discriminator is composed of one three-layer GCN 

followed by two fully connected layers. The model size of the GCN component is: Gd = 

(148, 296, 148), and the output feature dimensions of the two fully connected layers are 

1024 and 2, respectively. For both generator and discriminator, activation function Relu and 

layernorm are used at each layer. The entire model was trained in an end-to-end manner. 

During the training process, the Adam optimizer was used to train the whole model with 

standard learning rate 0.001, weight decay 0.01, and momentum rates (0.9, 0.999).

4.2. Predicted structural connectivity

In this section, we used three strategies to evaluate the quality of the predicted SCs. Firstly, 

we plotted the predicted SC and real SC pairs to illustrate the overall similarity patterns via 

visual inspection. Secondly, we quantitatively measured the similarity between the predicted 

SCs with real ones using six measures (MSE, cosine similarity, PCC, mean degree, mean 

strength and mean clustering coefficient) that can comprehensively depict the similarity 

between our predicted SC and the real SC from three perspectives: magnitude, overall 

pattern and graph property. Thirdly, we examined the prediction performance of predicted 

SC by focusing on the overlaps of top connectivity between predicted SCs and the real SCs. 

The individual SCs and FCs used in this section were generated via Destrieux atlas.

4.2.1. Visualization of predicted SCs and real SCs—To visually evaluate the 

similarity between the predicted SCs and the real SCs, we randomly selected 20 subjects 

from HCP and ADNI datasets and showed the prediction results in Fig. 3. We used two 

ways to visualize the results: first, we directly displayed the predicted SC and the real SC 

of each subject in Fig. 3(a1, a2). To demonstrate the details of the prediction, we extracted 

two patches at the same location of the predicted SCs and real SCs and showed them in 

the middle. From the enlarged patches, we can see that our proposed model can predict 

not only the overall patterns, but also the subtle differences across individuals. Secondly, 

to better visualize the prediction result at individual level, we remove the consistent pattern 

across individuals by subtracting the population-averaged SC based on the matrices in Fig. 

3(a1, a2) and showed the residual matrices in Fig. 3(b1, b2). We can see that our method 

effectively characterized and preserved the corresponding individual SC patterns during 

the prediction. Of note, all these predictions are based on individual FC, which suggests 

the existence of a common regulation between individual brain structural and functional 

architectures.

4.2.2. Quantitatively measuring the similarity between predicted SCs and 
real SCs—We quantitatively measured the similarity between the predicted SCs and real 
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SCs from three perspectives: magnitude, overall pattern and graph property. Specifically, 

we adopted six measures in total, including MSE for magnitude, cosine similarity and 

PCC for overall pattern, and mean degree, mean strength and mean clustering coefficient 

for graph property. In graph theory, the mean degree is the average of the degrees (the 

number of edges connected to a node) of all the nodes, which is a widely used measure for 

network density (Rubinov and Sporns, 2010). The strength of a node in a graph is defined 

as the increase in the number of connected components in the graph upon removal of the 

node, which measures the vulnerability of the graph (Gusfield, 1991). The mean clustering 

coefficient for the graph reflects, on average, the prevalence of clustered connectivity 

around individual nodes (Rubinov and Sporns, 2010). All the three graph measures are 

used to describe the overall characteristics of a network, such as segregation and integration 

(Rubinov and Sporns, 2010). In this work, we calculated two differences for each measure 

at individual level: one is the difference between our predicted SC and real SC, and the 

other is the difference between the population-averaged SC and the real SC. If our predicted 

SC is more similar to real SC than the averaged one, this represents our model is effective 

in characterizing individual-specific relationship between brain structural and functional 

connectivity. We showed the two differences by line chart and displayed the distributions 

by violin plot. We also performed significance analysis with p-value calculated via one tail 

two sample T-test. The results are shown in Fig. 4 for both HCP (Fig. 4(a)) and ADNI 

datasets (Fig. 4(b)). We can see that the predicted SCs have significantly lower MSE, higher 

cosine similarity and PCC and smaller deviation of all the three global metrics compared to 

the averaged SC. We used red arrows to highlight some peaks in the line chart and these 

peaks represent some subjects that have large deviation from other subjects in terms of the 

related measures. Since all the samples are normal brains, the highlighted subjects are likely 

the outliers when constructing real SC. We have discussed these samples and the resulting 

correlation patterns between the two curves in the section of discussion.

4.2.3. Connectivity level similarity between predicted SCs and real SCs—To 

further examine the prediction performance at connectivity level, we showed the top 5, top 

10 and top 15 strongest connectivity in both real SCs and predicted SCs for the same 20 

subjects in Fig. 5. We can see that due to the widely existing individual variations, the top 

connectivity of different subjects are different. However, for both datasets, the predicted SCs 

can capture most top 5 connectivity (missed 3 connections in two ADNI subjects). For top 

10 connectivity, the predicted SCs in both datasets can also capture most of them. For top 

15 connectivity, both datasets can capture at least 12 of them. Among these miss-predictions, 

there are two types of mistakes: the first type is the missing top connectivity. However, most 

of the missed connectivity can be found in the following top connectivity in the predicted 

SCs. For instance, we highlighted one example in Fig. 5 by green circle. The second type 

of mistakes is the redundant top connectivity. It means the predicted SCs contain some 

connectivity that are not among the real SCs. Similar to the missing cases, the redundant 

connectivity can also be found in the following top connectivity in real SCs. We also 

highlighted some examples in Fig. 5 by red circles. In addition, we found that all the 

missing or redundant SCs in our prediction results can be found in the top 25 connectivity 

in predicted SCs and the real SCs. In general, our model can robustly recover the strongest 

individual connectivity from the individual FC.
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4.3. Evaluation of the predicted SC using different atlases

The generation of brain connectivity relies on the adopted brain atlas. To test the 

performance of the proposed model on different brain atlases, we used another widely 

used brain atlas – Desikan-Killiany atlas, to generate individual SCs and FCs and conducted 

experiments. The predicted SC and the real SC based on Desikan-Killiany atlas of the same 

20 subjects used in Fig. 3 were shown in Fig. 6. We can see that the results using different 

brain atlases are consistent: our method can reliably characterize both the overall pattern 

and the subtle differences of individual SCs for both atlases with different number of brain 

regions.

To quantitatively measure the similarity between predicted SCs with real SCs based on 

Desikan-Killiany atlas, we calculated the MSE, cosine similarity, PCC, mean degree, mean 

strength and mean clustering coefficient for each subject in the testing dataset and showed 

the results in Fig. 7. Similar to the result using the other brain atlas in Fig. 4, the predicted 

SCs have significantly lower MSE, higher cosine similarity and PCC and smaller deviation 

of all the three global metrics compared to the averaged SC.

4.4. Evaluation of the predicted SC using different types of FC measures

In this work, we adopted the most widely used Pearson correlation coefficient (PCC) to 

generate FC. Yet, how to effectively represent FC is still an open research area and there 

exist different ways to define FC in the field. To examine the potential influence of different 

types of FC measures to our SC prediction, we applied our proposed model to four types 

of FC measurements (defined in Section 3.3): (1) Pearson correlation coefficient (PCC), (2) 

Sparse inverse covariance estimation with the graphical lasso (Sparse ICOV), (3) binarized 

FC and (4) threshold FC. For binarized FC and threshold FC, we set different thresholds – 

0.2 and 0.5. Thus, there are 6 different FCs that need to be compared in this section. For 

each subject, we used Destrieux atlas along with the 6 different measures to generate SC 

and FCs. We randomly selected one subject to display its 6 FCs in the first block of Fig. 

8 and showed the predicted SCs of the same 10 subjects used in Fig. 3(a2) in the second 

block. For each subject in the testing dataset, we calculated MSE of all the 6 predicted SCs 

and showed the results by line chart in the third block of Fig. 8. We found that different 

FC measures have slight influence on the prediction performance: as the sparsity of FC 

increases, the prediction accuracy will decrease. One possible explanation, as suggested by 

previous studies (Santarnecchi et al., 2014; Goulas et al., 2015), is that the performance 

degradation may be due to the overlook of potentially useful information when enforcing 

sparsity or thresholding.

4.5. Model evaluation

An effective model should have the capability to capture individual characteristics and avoid 

to being “trapped” in common SC patterns. To measure the effectiveness of a model, we 

proposed three measures:

1. MSE (Real, Prediction of same subject), which is the MSE between the real 

SC and predicted SC of the same subject. This measure directly evaluates the 

similarity between the real SC and the corresponding prediction. A smaller value 
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indicates higher similarity. Thus, to generate reliable SC, this measure should 

keep decreasing before converged.

2. MSE (Real, Prediction of different subjects), which is the MSE between the 

prediction and the real SC of different subjects. A reliable prediction should 

avoid being “trapped” in common SC patterns at population level. Therefore, this 

measure is expected to keep increasing during the training process.

3. MSE (Real, Prediction of different subjects) – MSE (Real, Prediction of same 
subject), which is the difference of the above two measures and an increasing 

value is expected.

In this section, using the three measures we evaluated different model settings including 

different GCN architectures, the learnable combination coefficients – θ, and different loss 

functions.

4.5.1. Evaluation of different GCN architectures—The generator was built on 

multiple GCNs, in order to verify the necessity of multi-GCN architecture, we conducted 

experiments to compare the performance of different generator architectures and showed 

the results in Fig. 9. We can see that, for predicted SCs generated from multi-GCN 

generator in both datasets (a1 and b1), the MSE (Real, Prediction of same subject) keeps 

decreasing and the MSE (Real, Prediction of different subjects) keeps increasing. For 

predicted SCs generated from single-GCN generator in both datasets (a2-a4, b2-b4), the 

difference between trajectories of MSE (Real, Prediction of same subject) and MSE (Real, 
Prediction of different subjects) is much smaller and the MSE (Real, Prediction of different 
subjects) – MSE (Real, Prediction of same subject) only has slight increase. This result 

indicates that the predicted SCs generated from multi-GCN generator can efficiently learn 

the individual differences in SCs, while single-GCN generator only captures a common 

pattern at population level.

4.5.2. Evaluation of the learnable combination coefficients—In our model, the 

multiple GCNs in generator are combined by learnable coefficients – θ. In order to test 

the influence of the coefficients to the proposed MGCN-GAN model, we initialized the 

coefficients with different values and compared the prediction performance. The results are 

shown in Fig. 10. In general, the initialization of the learnable coefficients has very slight 

influence on the prediction results. Moreover, the coefficient with different initialization θi 

always converge to stable coefficient θc which is approximately equal for different GCNs in 

generator. It suggests all the GCNs have similar contributions to the results. Like the filters 

in CNN, multiple GCNs with different size of output features can be flexible and efficient 

for characterizing the complex FC-SC mapping.

4.5.3. Evaluation of SP loss function—To demonstrate the superiority of the 

proposed SP loss function, we compared our SP loss with GAN loss, combination of 

GAN loss and MSE loss, and combination of GAN loss and PCC loss and showed the 

results in Fig. 11. From the results we can see that the gap between trajectories of MSE 
(Real, Prediction of same subject) and MSE (Real, Prediction of different subjects) using SP 

loss function (a4 and b4) is increasing as the training progresses, which means individual 
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characteristics are gradually learned. While the trajectories of MSE (Real, Prediction of 
same subject) and MSE (Real, Prediction of different subjects) using other three loss 

functions (a1-a3, b1-b3) almost coincide during the training process and this implies that 

the other three loss functions may be limited in capturing potential subtle differences 

across individuals in the proposed model. The reason is that MSE only focuses on the 

element-wise similarity within the connectivity and overlooks the overall patterns. PCC has 

better performance in describing the overall connectivity patterns, but it may also overlook 

the connection magnitude across different connectivity and different individuals. However, 

both of MSE and PCC are important components in our designed SP loss to capture the 

subtle differences between real and predicted SCs

4.6. Comparison with other widely used methods

To further demonstrate the effectiveness of the proposed MGCN-GAN, we compared the 

proposed model with three state-of-the-art models – CNN, multi-GCN, and CNN based 

GAN. In addition, for the comparison purpose we also included the linear regression as 

a baseline. For fair comparison, we used the same dataset to train and evaluate the four 

methods (HCP dataset, 600 training/464 testing). Since Section 4.5 showed that both MSE 

and PCC have contributions in capturing the subtle differences between real and predicted 

SCs, here we combined these two measures (MSE + PCC) as loss function in linear 

regression, CNN, and Multi-GCN, and used the proposed SP loss in CNN based GAN 

and the proposed MGCN-GAN. We adopted six types of measures (Section 4.2) to evaluate 

the performance of different models and summarized the results in Table 2. As shown in 

Table 2, we found: (1) compared to deep models, linear regression has worse performance 

for all the evaluation measures; (2) among different deep neural network architectures, 

GCN based approaches outperform CNN based methods when modeling brain networks 

in this application and (3) our proposed MGCN-GAN has the best prediction performance 

comparing to Multi-GCN (without GAN) and CNN based GAN. In general, this result 

demonstrates the superiority of graph-topology-based over the Euclidean-based convolution 

in brain connectivity analysis and the potential of using multiple GCNs to characterize 

complex feature space in GAN.

5. Discussion

5.1. Outliers in normal brains

In this work, we used six measures to quantitatively evaluate the similarity between 

predicted SCs and real SCs, including MSE for magnitude, cosine similarity and PCC 

for overall pattern, and global metrics including mean degree, mean strength and mean 

clustering coefficient for graph property. The results are shown in Fig. 4. We can see that 

there is a correlated pattern between the two groups of MSE values. That is, for some 

samples that have large MSE between the population averaged SC and the real individual 

SC, the MSE between the predicted SC and real individual SC is also slightly larger. 

Because all the samples we used in this work are normal brains, if a subject has significantly 

large MSE between individual SC and averaged SC comparing to other subjects, it is likely 

that this sample is an outlier. In such case, the MSE between the predicted SC and the 

real individual SC will be large, too. Therefore, the plot of the two groups of MSE values 
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shows a correlated pattern. Even so, the difference between predicted SC and individual SC 

is much smaller than the difference between averaged SC and individual SC. This result 

implies our method is effective in characterizing the true relationship between SC and FC at 

individual level.

5.2. Extending the learned mapping to MCI patients

In this work, our model is designed to infer the relationship between SC and FC on normal 

brains. To examine the potential influence when applying our method to disease populations, 

we used another 118 mild cognitive impairment (MCI) subjects (63 females, 55 males; 

74.05 ± 8.29 years.) from ADNI dataset and conducted three experiments that used different 

clinical groups for model training: (A) 60 CN, (B) 60 MCI, and (C) the mix of 60 CN and 

60 MCI. For each experiment the same testing dataset including 72 CN and 58MCI was 

applied. To compare the connectivity-level patterns of different groups, we calculated group-

level MSE in Fig. 12. The mean value of each MSE matrix was reported in Fig. 12(D). From 

the results we can see that 1) if the training and testing process used the samples from the 

same clinical group, the prediction result tend to achieve better performance. For example, 

the experiment (A) used CN group for training, the MSE of CN group (0.073±0.0079) 

in testing is much smaller than MCI group (0.096±0.0068). Similarly, in the experiment 

(B) the MCI group obtained better testing performance than CN group. (2) when using a 

mixture of CN and MCI to train the model, the testing performance of both groups decrease 

compared to using single group for training. This result suggests that the FC-SC relationship 

of different groups might be different, and the proposed model is more effective in capturing 

the relationship of homogeneous samples.

5.3. Limitations and future work

In this work, we adopted PCC as the FC measurement to represent pair-wise relations 

between two brain regions. Therefore, the proposed MGCN-GAN model does not consider 

directional information in brain network mapping. However, our method can be flexibly 

extended to directed graphs by adopting an asymmetry adjacency matrix to define the 

convolution operations. In our future work, we plan to examine if introducing directional 

information can improve the SC prediction compared to using undirected brain connectivity. 

Another limitation of this work, which is also a general challenge suffered by deep neural 

networks, is the interpretability (Ghorbani et al., 2019) of the deep model. Indeed, several 

strategies have been proposed to interpret neural network predictions. For example, feature 

importance interpretation (Simonyan et al., 2013; Shrikumar et al., 2017; Sundararajan et al., 

2017) tries to assign importance scores to each feature, and sample importance interpretation 

(Koh and Liang, 2017) will assign importance scores to each training example. However, 

these methods cannot be directly applied to this work due to the following reasons: (1) 

this work aims to infer the brain structure-function relationship at individual level. Each 

input sample provides unique individual information, and all the samples are therefore 

equally important. (2) for feature importance interpretation, a commonly used approach is 

to generate saliency maps to highlight unique features which can depict the visually alluring 

locations in the input image. However, for non-Euclidean graph data, the important features 

can be isolated nodes or a sub-network that are not continuous in spatial domain, which 

makes it difficult to distinguish them from noise. In general, further efforts are highly needed 
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to explore appropriate strategies for interpretation of graph-based deep models, especially in 

brain network studies.

6. Conclusions

In this paper, we proposed a Multi-GCN based GAN (MGCN-GAN) model to generate 

individual SC from the corresponding individual FC. By adopting generative adversarial 

network (GAN), our proposed MGCN-GAN model can: (1) effectively handle brain’s 

distributed and heterogeneous pattern; (2) learn the complex relationship between brain 

structure and function by leveraging adversarial training scheme to avoid designing an 

explicit regression loss function. By embedding multiple GCNs into GAN framework, our 

MGCN-GAN model can be used to represent the complex direct and/or indirect interactions 

in brain network. To overcome the inherent unstable behavior of vanilla GAN, we proposed 

a novel structure-preserving (SP) loss function to simultaneously capture the overall SC 

patterns and subtle differences across individuals during the training process. We tested our 

model and SP loss on two independent datasets (HCP and ADNI), two different brain atlas 

(Destrieux Atlas and Desikan-Killiany Atlas, Section 4.3), and six different FC generation 

measures (Section 4.4). The results demonstrate that our proposed model can effectively 

predict individual SC from the corresponding individual FC, and thus imply that there may 

exist a common regulation between specific brain structural and functional architectures 

across individuals. All the codes of this paper have been released via GitHub (https://

github.com/qidianzl/Recovering-Brain-Structure-Network-Using-Functional-Connectivity).
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Fig. 1. 
An illustration of the proposed multi-GCN based generative adversarial network (MGCN-

GAN). Firstly, by using brain atlas (Destrieux Atlas (Destrieux et al., (2010)) and Desikan-

Killiany Atlas (Desikan et al., (2006)) along with diffusion MRI and rs-fMRI data, we 

extracted the averaged BOLD signal of each brain region. Then we constructed functional 

connectivity (FC) by different methods (correlation, partial correlation, threshold FC, and 

binarized FC) and structural connectivity (SC) by diffusion MRI derived fiber counts. SC 

was used as 1) ground truth to guide the generator at the beginning of the training process; 

2) real samples of discriminator. FC was used as: (1) features associated with the nodes; 

(2) initialization of the GCN topology. The features and topology were fed into generator 

to predict SC. The predicted SC were used to (1) iteratively update the GCN topology and 

(2) train discriminator as fake samples. The whole model is trained based on the proposed 

structure preserving (SP) loss function.
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Fig. 2. 
Illustration of the graph convolution process. A graph G can be represented by an adjacency 

matrix A and a feature matrix X. The GCN takes the two matrices as input to conduct 

graph convolution. We used the red node as an example to show the convolution process. 

The neighbors with the same order have the same color in graph G. The colors of features 

are the same as the corresponding nodes. For the lth layer, the red edges of the input 

adjacency matrix A indicate the neighbors that participate in the convolution process and 

the features of these activate neighbors are non-transparent.
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Fig. 3. 
(a1, a2): Comparison of the predicted SCs and real SCs of 20 randomly selected subjects 

in HCP (a1) and ADNI (a2) datasets. For both datasets, we showed 10 real SC matrices 

(the first row) and the corresponding 10 predicted SC matrices (the second row). Each 

column belongs to the same subject. Two patches of the matrices are extracted from the 

same location and their enlarged patches are showed in the middle. (b1, b2): Comparison 

of the predicted SCs and real individual SCs after subtracting the population-averaged SC. 

To better visualize the individual variability, the population-averaged SC was subtracted 

from each of the forty matrices in (a1) and (a2). The brain connectivity was generated via 

Destrieux atlas.
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Fig. 4. 
We quantitatively measured the similarity between predicted SCs and real SCs from three 

perspectives (magnitude, overall pattern and network property) by using six measures (MSE, 

cosine similarity, PCC, mean degree, mean strength and mean clustering coefficient). We 

calculated two differences for each measure at individual level: one is the difference between 

our predicted SC and real SC, and the other is the difference between the population-

averaged SC and the real SC. We showed the two sets of differences by line chart and 

displayed the distributions by violin plot. The significance analysis was also conducted with 

p-value calculated by one tail two sample T-test.
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Fig. 5. 
Comparison of the top connectivity in the predicted SC and real SC for the same 20 subjects 

showed in Fig. 3. For both datasets, we showed the top 5 (the first block), top 10 (the second 

block) and top 15 (the third block) strongest connectivity in real SC and predicted SC. The 

colorful bubbles and links represent different brain regions and structural connections. The 

colors used in this figure are the same with Destrieux atlas in FreeSurfer.
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Fig. 6. 
(a1, a2): Comparison of the predicted SCs and real SCs of the same 20 subjects as used 

in Fig. 3. The brain connectivity was generated via Desikan-Killiany atlas. Each column 

belongs to the same subject. For each subject, we showed the real SC matrix in the first row 

and the predicted SC matrix in the second row. Two patches of the matrices are extracted 

from the same location and their enlarged patches are showed in the middle. (b1, b2): 

Comparison of the predicted SCs and real individual SCs after subtracting the population-

averaged SC. To better visualize the individual variability, the population-averaged SC was 

subtracted from each of the forty matrices in (a1) and (a2).
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Fig. 7. 
We quantitatively measured the similarity between the predicted SCs with real SCs (based 

on Desikan-Killiany atlas) from three perspectives (magnitude, overall pattern and network 

property) by using six measures (MSE, cosine similarity, PCC, mean degree, mean strength 

and mean clustering coefficient). We calculated two differences for each measure at 

individual level: one is the difference between our predicted SC and real SC, and the other is 

the difference between the population-averaged SC and the real SC. We showed the two sets 

of differences by line chart and displayed the distributions by violin plot. The significance 

analysis was also conducted with p-value calculated by one tail two sample T-test.
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Fig. 8. 
We adopted multiple types of FC measures for SC prediction. These measures are: (1) 

Pearson correlation coefficient (PCC), (2) Sparse inverse covariance estimation with the 

graphical lasso (Sparse ICOV), (3) binarized FC, and (4) threshold FC to generate FC 

(Section 3.3). For binarized FC and threshold FC, we set two different thresholds – 0.2 and 

0.5. The first block shows the 6 FCs of one randomly selected subject. The second block 

shows the predicted SCs of the same 10 subjects used in Fig. 3(a2). For each subject in the 

testing dataset, we calculated MSE of all the 6 predicted SCs and showed the results by line 

chart in the third block.
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Fig. 9. 
Results of different generator architectures for HCP dataset (a) and ADNI dataset (b). 

GCN(G1∥G2∥…Gk) represents the architecture of generator. The generator is composed of k 
two-layer GCNs, and the output feature dimension of the first layer of ith GCN is Gi.
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Fig. 10. 
Results of different initializations of the learnable combination coefficients of HCP dataset 

(a) and ADNI dataset (b). θi is the initialization of the learnable coefficients and θc is the 

corresponding converged value.
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Fig. 11. 
Results of MGCN-GAN with different loss functions on HCP dataset (a) and ADNI dataset 

(b).
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Fig. 12. 
We trained the model using (A) 60 CN, (B) 60 MCI, and (C) the mix of 60 CN and 60 

MCI. For each model the same testing dataset (72 CN and 58MCI) was used. Each matrix 

in (A–C) represents the group-level MSE. The mean value of each MSE matrix was listed in 

(D).
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Table 1

Multiple types of FC measures.

Methods Formula

PCC Fi, j =
cov(fi, fj)

σfiσfj
Sparse ICOV maxF log det(F ) −

trace(CF ) − ρ ∣ F ∣1
C =

1
T − 1 ∑t = 1

T (gt − gμ)(gt − gμ)T

gμ = 1
T ∑t = 1

T gt

Binary FC
1. Fi, j =

cov(fi, fj)
σfiσfj

2. Fi, j =

{
1, if abs(Fi, j) > Tℎresℎold,

0, else
Threshold FC

1. Fi, j =
cov(fi, fj)

σfiσfj
2. Fi, j =

{
Fi, j, if abs(Fi, j) > Tℎresℎold,

0, else
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