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Chronic obstructive pulmonary disease (COPD), a small airway disease, is regarded as a metabolic disorder. To further uncover
the metabolic profile of COPD patients, it is necessary to identify metabolism-related differential genes in small airway epithelium
(SAE) of COPD. Metabolism-related differential genes in SAE between COPD patients and nonsmokers were screened from
GSE128708 and GSE20257 datasets. KEGG, GO, and PPI analyses were performed to evaluate the pathway enrichment, term
enrichment, and protein interaction of candidate metabolism-related differential genes, respectively. RT-PCR was used to verify
the mRNA expression of the top ten differential genes. Western blotting was used to evaluate the protein expression of
TXNRD1. TXNRD1 inhibitor auranofin (AUR) was used to assess the impact of TXNRD1 on oxidative stress and
inflammation induced by cigarette smoke extraction (CSE). Twenty-four metabolism-related differential genes were selected.
ALDH3A1, AKR1C3, CYP1A1, AKC1C1, CPY1B1, and TXNRD1 in the top ten genes were significantly upregulated after CSE
simulation for 24 h in human bronchial epithelial (16HBE) cells. Among them, CYP1A1 and TXNRD1 also have a significant
upregulation in primary SAE after simulation of CSE for 24 h. The overexpression of protein TXNRD1 has also been detected
in 16HBE cells, primary SAE stimulated with CSE, and mouse lung exposed to cigarette smoke (CS). Additionally, inhibition
of TXNRD1 with 0.1 μM AUR alleviated the expression of IL-6 and reactive oxygen species (ROS) induced by CSE by
activating the Nrf2/HO-1 pathway in 16HBE cells. This study identified twenty-four metabolism-related differential genes
associated with COPD. TXNRD1 might participate in the oxidative stress and inflammation induced by CS by regulating the
activation of the Nrf2/HO-1 pathway.

1. Introduction

Chronic obstructive pulmonary disease (COPD) is a small
airway inflammatory disease with irreversible airflow restric-
tion [1]. With high mortality and morbidity, it has caused a
heavy economic and social burden worldwide [1]. Currently,
the pathogenesis of COPD is complicated and not fully
elucidated. Smoking is a major risk factor for COPD,
and oxidative stress and inflammation induced by cigarette

smoke (CS) remain a prominent contributor to COPD
pathogenesis [2].

Cell metabolism, which primarily contains amino
metabolism, glucose metabolism, and lipid metabolism,
plays an important role in cell physiological function [3].
Disturbances in metabolic patterns can be regulated by
abnormally expressed metabolism-related genes in diseases
[4]. Metabolic disturbance contributed to numerous diseases
including COPD, which is associated with smoking status
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[5–8]. Abnormalities of metabolism-related genes have been
reported to contribute to the development of numerous dis-
eases by regulating oxidation stress, inflammation, and apo-
ptosis [9–11]. In our previous study, we found a disorder of
lung cells in male patients with COPD [12]. Considering the
airway epithelium as the first line of defense after stimula-
tion of smoking [13], we hypothesized abnormal expression
of metabolism-related genes in small airway epithelium
(SAE) of COPD patients. However, the aberrant expression
of metabolism-related genes in SAE and their underlying
mechanism in COPD are poorly understood.

In this study, we aimed to calculate the metabolism-
related genes participated in COPD by reanalyzing two
expression profiles of SAE. Thereafter, 24 metabolism-
related differential genes were discovered. Among them,
the mRNA overexpression of two genes, CYP1A1 and
TXNRD1, was confirmed in 16HBE cells and primary SAE
after cigarette smoke extract (CSE) stimulation. Further-
more, we also explored the protein expression of TXNRD1
in the lungs of mice exposed to CS and of COPD patients.
To better understand the role of TXNRD1, an investigation
using the TXNRD1 inhibitor auranofin (AUR) has been
conducted.

2. Methods

2.1. Data Collection. Two mRNA expression profiles of pri-
mary small airway epithelium (SAE), GSE128708 and
GSE20257, were collected from the Gene Expression Omni-
bus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/).
Differentially expressed genes (DEGs) in SAE between
COPD patients and nonsmokers were analyzed by GEO2R.

Amino metabolism-related and glucose metabolism-
related genes were obtained from GSEA (https://www.gsea-
msigdb.org/gsea/index.jsp). Respectively, 372 and 324 amino
metabolism-related and glucose metabolism-related genes
were attained. Lipid metabolism-related genes were collected
from the Kyoto Encyclopedia of Genes and Genomes
(KEGG) website (http://www.kegg.jp/blastkoala/) and the
Molecular Signatures Database (MSigDB) website (https://
www.gseamsigdb.org/gsea/msigdb/index.jsp) [14]. 1045
lipid metabolism-related genes were finally included in anal-
ysis (Supplementary table 1.1-1.3).

2.2. Reagents and Antibodies. Cigarette smoke extraction
(CSE) was prepared as previously described [15]. Antibodies
against β-actin (anti-β-actin, 66009-1-Ig), TXNRD1 (anti-
TXNRD1, 11117-1-AP), andNrf2 (anti-Nrf2, 16396-1-ap) were
purchased from Proteintech. HO-1 (anti-HO-1, GB11845) was
purchased from Servicebio. Auranofin (Ridaura, SKF-39162),
the inhibitor of thioredoxin reductase (TXNRD1), was pur-
chased from Selleck.cn.

2.3. Cell Culture and Stimulation. The human airway epithe-
lial 16HBE cell line was purchased and cultured as previ-
ously described [16]. The cells were incubated at 37°C with
5% CO2. For experimentation, 16HBE cells were grown in
12-well plates until 70–80% confluence and then exposed
to CSE with different concentrations for 24 hours.

The primary small airway epithelium (SAE, 10th-12th
generation bronchi) was collected by fiberoptic bronchos-
copy from one healthy nonsmoker (male, 50 years old).
Ten freshly brushed cells were washed with cell culture
medium (DMEM, Lonza, Walkersville, MD) with 10% fetal
bovine serum (FBS, Gibco) and penicillin-streptomycin
(1 : 100). The collected cells were then centrifuged at
1000 rpm for 5 minutes and suspended with bronchial epi-
thelial basal medium (BEBM) (Lonza, Walkersville, MD).
Suspended cells (passage zero) were then inoculated into cell
culture dishes, and fluid was changed every two days. Cell
passage was performed when the degree of cell fusion
reached 90 to 100%. Cells in passage two were grown in
12-well plates until 70–80% confluence and then exposed
to CSE with different concentrations for 24 hours.

This study was authorized by the ethics committee of the
Tongji Hospital, Huazhong University of Science and Tech-
nology in Wuhan, China. Each participant signed the writ-
ten consent form prior to participation.

2.4. Cell Viability Assay. The viability of 16HBE cells treated
with different concentrations of auranofin (AUR) was
gauged using a CCK8 assay kit (CCK8; Promoter Biotech-
nology, Wuhan, China) according to the manufacturer’s
instructions. OD at 450 nm was determined with a micro-
plate reader (Multiskan MK3; Thermo Fisher Scientific,
Waltham, MA, USA).

2.5. Animal Model. 10-12-week C57BL/6J mice were
exposed to cigarette smoke in a chamber 3 hours daily for
6 months with Marlboro red cigarettes [17]. After six
months of cigarette smoke exposure, anesthetized mice with
1% pentobarbital sodium 10ml/kg body weight were sacri-
ficed to collect lung tissue. All experimental procedures were
approved by Huazhong University Animal Experiment Ethics
Committee and were conducted in accordance with the ani-
mal experimentation guidelines of Huazhong University.

2.6. Immunofluorescence Analysis. Human lung and mouse
left lung tissues were collected and placed in fresh 4%
neutral-buffered paraformaldehyde for 24 hours at room
temperature, then embedded in paraffin, and subjected to
the histological analysis as previously reported [16]. Immu-
nofluorescence staining was performed on human lung and
mouse lung sections with anti-TXNRD1 (1 : 200).

2.7. ELISA. Cell culture supernatants were collected and cen-
trifuged at 980 rpm for 15 minutes at 4°C and then stored at
-80°C until use as the previous report [16]. ELISA kits for
human IL8 (DY208) and human IL6 (DY206) were pur-
chased from R&D systems. ELISA assay was carried out
according to the instructions.

2.8. Reactive Oxygen Species (ROS) Detection. After treat-
ment with CSE or/and AUR, ROS detection was conducted
using the ROS assay kit (Servicebio, G1706-100T). Briefly,
CSE-exposed 16HBE cells were washed twice with PBS and
then incubated with DCFH-DA (diluted with RPMI1640, a
dilution of 1 : 1000). After 30 minutes of opaque incubation
in 37°C, cells were washed twice with PBS. Next, cells were
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Figure 1: Metabolism-related genes associated with COPD in small airway epithelium. Venn diagrams showed the amino metabolism-
related genes (a), glucose metabolism-related genes (b), and lipid metabolism-related genes (c). The heatmap of 24 metabolism-related
differential genes (d).
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Figure 2: Continued.
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directly observed under a fluorescence microscope or digested
with trypsin and then analyzed by flow cytometry.

2.9. Western Blotting. Western blotting was performed as
previously described. Total protein from mouse right lung

tissue, small airway epithelium (SAE), or 16HBE cells was
extracted by RIPA lysis buffer containing a protease inhibi-
tor cocktail and phosphatase inhibitors (Roche, Mannheim,
Germany). The proteins were separated by 10% SDS-
PAGE and then transferred to polyvinylidene fluoride
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Figure 2: The KEGG pathways (a, b) and Gene Ontology (GO) enrichment terms (c, d) of the 24 metabolism-related differential genes
associated with COPD in small airway epithelium.
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(PVDF) membranes (Millipore, Germany). The membranes
were blocked for 1-2 hours in 5% milk melted in Tris-
buffered saline containing 0.05% Tween 20 (TBST) and then
incubated with the primary antibody (anti-β-actin, 1 : 4000;
anti-TXNRD1, 1 : 2000; anti-Nrf2,1 : 2000; and anti-HO-1,
1 : 2000).

2.10. Quantitative RT-PCR Analysis. 16HBE cells and pri-
mary SAE RNA were extracted by the TRIzol reagent
method (Invitrogen). Total RNA was used for first-strand
cDNA synthesis with M-MLV reverse transcriptase (Pro-
mega, Madison, WI). qRT-PCR was performed utilizing
SYBR Green Master Mix (Takara, Otsu, Shiga, Japan) on
the iCycler iQ system (Bio-Rad). PCR conditions included
initial denaturation at 95°C for 5 minutes, 95°C for 45 sec-
onds, and 60°C for 1 minute for 45 cycles. Gene expression
levels were normalized to β-actin. The primers for genes
are shown in Supplementary table 2.

2.11. Statistical Analysis. GO and KEGG pathway enrichment
analyses were performed at http://www.bioinformatics.com

.cn/; PPI analysis of differentially metabolism-related genes
was analyzed using the STRING database (https://string-db
.org) and Cytoscape software (version 3.8.1).

Data from n independent experiment were presented as
means ± SEM. Normality analysis was performed via the
Shapiro-Wilk test. Differences were evaluated using
unpaired Student’s t test between two groups before any
testing. One-way ANOVA was performed followed by the
Bonferroni post hoc test for comparisons between >2
groups. The nonnormal distributed data were analyzed using
nonparametric testing (Mann-Whitney U test for two
groups and Kruskal-Wallis H test for >2 groups). P values
less than 0.05 were considered statistically significant. Statis-
tical analysis was performed using GraphPad Prism 8.0.1
(GraphPad Software Inc., San Diego, CA).

3. Results

3.1. Metabolism-Related Differential Genes in the Small
Airway Epithelium of COPD Patients versus Nonsmokers.
The mRNA expression profile of small airway epithelium
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Figure 3: Protein-protein interaction (PPI) analysis of 24 metabolism-related differential genes (a) and the interaction number of each
differentially expressed metabolism-related gene (b).
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Figure 4: Continued.
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(SAE), GSE128708 [18, 19], was initially used to identify
metabolism-related differential genes between COPD patients
and nonsmokers. Thereafter, 35 metabolism-related differen-
tial genes were calculated in GSE128708. A total of 5, 7, and
23 genes belonged to amino, glucose, and lipid metabolism-
related genes, respectively (Figures 1(a)–1(c)). To further val-
idate the repeatability of our findings, profile GSE20257 [20]
was also included in analysis. 171 differential genes associ-
ated with COPD were discovered in GSE20257. Among
them, 4 of 5 amino metabolism-related genes including
NQO1, TXNRD1, DUOX2, and HGD, 7 of 7 glucose
metabolism-related genes including ME1, ALDH3A1,
ADH7, NT5E, ABCB6, TFF3, and CD44, and 17 of 23 lipid
metabolism-related genes including CPY1B1, GPX2,
AKR1B10, CYP1A1, ALDH3A1, ME1, AKR1C3, ADH7,
AKC1C1, AHRR, CBR1, TXNRD1, CYP4F3, AKR1B1,
S100A10, CYP4F11, and CYP3A5 in GSE128708 were also
identified in GSE20257 (Figures 1(a)–1(c)). Among them,
TXNRD1 was involved in both lipid metabolism and amino
metabolism, and genes ALDH3A1, ADH7, and ME1 partici-
pated in both lipid metabolism and glucose metabolism.
Finally, a total of 24 metabolism-related differential genes
in small airway epithelium of COPD patients versus non-
smokers were presented in a heatmap (Figure 1(d)).

3.2. KEGG, GO Pathway Enrichment, and PPI Network
Analyses of the Differentially Expressed Metabolism-Related
Genes. KEGG and GO enrichment analyses were conducted
to investigate the potential biological functions of 24
metabolism-related differential genes. KEGG pathway analy-
sis showed that the top three pathways of the 24 metabolism-
related differential genes were primarily involved in the
metabolism of xenobiotics by cytochrome P450, chemical
carcinogenesis-reactive oxygen species, and steroid hormone
biosynthesis (Figures 2(a) and 2(b) and Supplementary
table 3). GO enrichment analysis revealed that the most
significant GO-enriched terms were related to metabolism
(Figures 2(c) and 2(d) and Supplementary table 4).

PPI analysis was implemented to determine the interac-
tions among differentially expressed metabolism-related
genes. There was a significant interaction between 24
metabolism-related genes (Figure 3(a)), and we also showed
the interaction number of each gene (Figure 3(b)).

3.3. Validation of Metabolism-Related Differential Genes in
Human Bronchial Epithelial Cells and Primary SAE. To fur-
ther filter out the most potential metabolism-related genes,
the expression of mRNA of the top 10 of 24 genes was deter-
mined by RT-PCR in human bronchial epithelial (16HBE)
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Figure 4: The validation of mRNA expression of top 10 metabolism-related differential genes in 16HBE cells. RT-PCR to calculate the
expression of ALDH3A1 (a), AKR1C3 (b), CYP1A1 (c), NQO1 (d), AKR1B10 (e), AKC1C1 (f), GPX2 (g), CBR1 (h), CPY1B1 (i), and
TXNRD1 (j).
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cells and SAE. Six of ten genes including ALDH3A1,
AKR1C3, CYP1A1, AKC1C1, CPY1B1, and TXNRD1 had
a significant upregulation after simulation of cigarette smoke
extraction (CSE) in 16HBE cells (Figures 4(a)–4(j)). Among
them, CYP1A1 and TXNRD1 also showed a significant
increase in primary SAE stimulated with CSE
(Figures 5(a)–5(j)).

3.4. Protein Expression of TXNRD1 in 16HBE Cells, Primary
SAE Stimulated with CSE, and Mouse Lungs Exposed to
Cigarette Smoke. CYP1A1 and TXNRD1 are two promising
metabolism-related genes in our study. CYP1A1 was discov-
ered to play a role in COPD by regulating oxidative stress.
However, the function of TXNRD1 in COPD is rarely
known. Therefore, we next explore the protein expression
of TXNRD1. A significant overexpression of TXNRD1 has
been calculated both in 16HBE cells, in primary SAE stimu-
lated with CSE, and in mouse lung exposed to cigarette
smoke (CS) (Figures 6(a)–6(e)).

3.5. Inhibition of TXNRD1 Reduced Inflammation and
Oxidative Stress Induced by Cigarette Smoke Extract by
Activating the Nrf2/HO-1 Pathway. Thioredoxin reductase
1 (TXNRD1) has been reported as a regulator of Nrf2 [21].
Nrf2 is a promising therapeutic target in COPD, which can
regulate oxidative stress and inflammation by activating
antioxidant response element-regulated antioxidant and
cytoprotective genes [22, 23]. Moreover, inhibition of
TXNRD1 with its inhibitor auranofin (AUR) can alleviate
inflammatory reaction [24]. Heme oxygenase-1 (HO-1) is a
downstream gene of Nrf2 [25], which can also be induced
by TXNRD1 inhibition [26]. Hence, we hypothesized that
TXNRD1 may participate in the development of COPD by
regulating inflammation and oxidative stress and activating
the Nrf2/HO-1 pathway.

We first determined the protein expression of TXNRD1,
Nrf2, and HO-1 after stimulating different times with 8%
CSE in HBE cells. CSE simulation increased the level of
TXNRD1, Nrf2, and HO-1. There were significant upregula-
tions of Nrf2 and HO-1 in 12h after 8% CSE exposure,
which gradually subsided. However, there was an increase

of TXNRD1 at 24 h, which became more significant at 48 h
(Figures 7(a)–7(d)). Additionally, the activity of TXNRD1
and the generation of reactive oxygen species (ROS) have
also been examined. 8% CSE exposure enhanced the activity
of TXNRD1 at 48 h (Figure 7(e)). CSE exposure significantly
increased intracellular ROS at both 12 h, 24 h, and 48h
(Figure 7(f)).

Subsequently, the impact of inhibitor AUR on cell viabil-
ity was evaluated. 0.1μM AUR which had no significant
influence in 16 HBE cell viabilities was chosen to apply to
the next study (Figure 7(h)). In our study, we found that
CSE can induce increased IL-6 and ROS expression. Further,
0.1μMAUR can reduce the increased IL-6 and ROS induced
by CSE (Figures 7(g)–7(l)). Simultaneously, 0.1μMAUR can
also considerably inhibit the activity of TXNRD1 and
improved the activation of the Nrf2/HO-1 pathway without
affecting TXNRD1 expression (Figures 7(m)–7(q)).

4. Discussion

In this study, we performed an analysis on the metabolism-
related genes associated with small airway epithelium (SAE)
of COPD. A total of 24 differential genes including 4 amino
metabolism-related genes, 7 glucose metabolism-related
genes, and 17 lipid metabolism-related genes were identified.
mRNA expression of the top 10 genes was verified in 16HBE
cells and primary SAE. In 16 HBE cells, the expression of the
following genes was confirmed: ALDH3A1, AKR1C3,
CYP1A1, AKC1C1, CPY1B1, and TXNRD1. The overex-
pression of CPY1A1 and TXNRD1 was also validated in
SAE. Thereafter, it was confirmed that TXNRD1 protein
overexpression occurred in the lungs of patients with COPD,
mice exposed to cigarette smoke (CS), 16 HBE cells, and
SAE treated with cigarette smoke extraction (CSE). Further-
more, inhibition of TXNRD1 with auranofin (AUR) miti-
gated the expression of IL-6 and ROS induced by CSE by
activating the Nrf2/HO-1 pathway.

Metabolic dysfunctions of major metabolic pathways
result in respiratory diseases by regulating mitochondrial
dysfunction and oxidative stress, cellular senescence, inflam-
mation, and aberrant T cell immune response [3]. Metabolic
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Figure 5: The validation of mRNA expression of top 10 metabolism-related differential genes in small airway epithelium. RT-PCR to
calculate the expression of ALDH3A1 (a), AKR1C3 (b), CYP1A1 (c), NQO1 (d), AKR1B10 (e), AKC1C1 (f), GPX2 (g), CBR1 (h),
CPY1B1 (i), and TXNRD1 (j).
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abnormalities are also a striking feature of COPD and con-
tribute to the development of COPD [27]. Expectedly, the
identification of metabolism-related genes to highlight the
abnormal metabolic profile could benefit exploring new
therapy targets for COPD [28].

Smoking is a major risk for COPD, which can change
cell metabolism [7]. Airway epithelium is the first defense
after exposure of CS [29]. Our study screened out 24 differ-
ential metabolism-related genes in SAE of COPD patients
versus nonsmokers. Notably, these genes were mainly gath-
ered in the pathway associated in oxidation stress. Oxidation
stress plays a crucial role in COPD. In our study, the upreg-
ulated CYP1A1 and TXNRD1 have been verified both in 16
HBE cells and in SAE exposed to CSE. CYP1A1 metabolizes
multiple exogenous and endogenous substrates, which is
mainly controlled by the aryl hydrocarbon receptor (AHR)
and has been found to be involved in lung disease including
COPD by regulating inflammation and oxidative stress

[30–32]. However, the function of thioredoxin reductase-1
(TXNRD1) in COPD is rarely known.

In this study, we found a significant protein overexpres-
sion of TXNRD1 in 16HBE cells, human primary SAE stim-
ulated with CSE, and mouse lungs exposed to CS. TXNRD1
is an NADPH-dependent selenocysteine-containing oxido-
reductase that catalyzes the reduction of oxidized
thioredoxin-1 [26]. Regulating cellular phenotypes, cellular
growth, and responses to stimuli [33], TXNRD1 is related
to various cancer diseases and is also a popular target for
cancer [34]. In addition, TXNRD1 inhibition has been
reported to ameliorate LPS-induced inflammation [24].
TXNRD1 inhibitor AUR has the function of anti-
inflammation and antioxidation [35]. Our study also found
that TXNRD1 inhibition can alleviate the secretion of IL-6
and ROS induced by CSE in SAE, which can be a promising
therapy target of COPD. AUR is an FDA-approved drug to
treat rheumatoid arthritis (RA). Mechanically, AUR
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protected against oxidation damage by direct and indirect
control of enzyme systems involved in the production or
transformation of ROS [36, 37]. Anyhow, it is worth noting
that TXNRD1 is a basal antioxidant enzyme and plays roles
in antioxidant defense. Inhibition of TXNRD1 with AUR
induced the release of ROS in cancer cells. We surmised that
the contradictory impact of AUR on intracellular ROS might
be associated with the cell types and disease states. More-
over, in our study, AUR can remarkably restrain the
TXNRD1 activity and activated Nrf2/HO-1 signal. Whether
the protective role of activating Nrf2/HO-1 offsets and
exceeds the adverse role of TXNRD1 inhibition in ROS gen-
eration remains unclear.

TXNRD1 has been reported as a regulator of Nrf2 [21].
In COPD, Nrf2 is a promising therapeutic target because it
can regulate oxidative stress and inflammation through acti-
vating response element-regulated antioxidant and cytopro-
tective genes [22, 23]. HO-1 is a downstream gene of Nrf2
[25]. The activation of Nrf2/HO-1 signaling regulates
mitochondrial dysfunction, oxidation stress, and cellular
senescence [38, 39]. Repression of Nrf2/HO-1 signaling
aggravates emphysema and inflammation induced by elas-
tase or CS [40, 41]. Although there is a conflicting expression
of Nrf2 and HO-1 after CSE stimulation, this is dependent
on the illness state or the duration of stimulation [42–44].
The protective effect of Nrf2/HO-1 signaling activation is
adamantine [22, 39–41, 45]. We found that TXNRD1 inhibi-
tion can activate Nrf2/HO-1 signaling, and we conjecture
that TXNRD1 regulates oxidative stress and inflammation
through activating Nrf2/HO-1 signaling. The TXNRD1
inhibitor can be a promising therapy target of COPD.

There are some limitations in this study. First, more pri-
mary SAE from non-COPD and COPD patients needed to
be collected and analyzed. Moreover, our study only partially
revealed the effect of TXNRD1 inhibition with auranofin
(AUR) on ROS generation and inflammation induced by
CS. Experiments with subtraction and overexpression of
TXNRD1 are also required to further verify TXNRD1

function in vivo and in vitro. Anyhow, the underlying
mechanism of TXNRD1 and TXNRD1 inhibition on inflam-
mation and oxidation stress is also needed to further explore,
which is what we are investigating.

5. Conclusion

Our study determined metabolism-related genes associated
with COPD. These genes primarily contribute to oxidation
stress. We also validate the upregulation of TXNRD1 and
its impact on oxidation stress and inflammation. Our study
hints that inhibiting TXNRD1 activated Nrf2/HO-1 signal-
ing and alleviated oxidation stress and inflammation, which
can be a promising therapy target of COPD.
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