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with 1140 differentially
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discovering mitoribosome
proteins were the most
dysregulated proteins, followed
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potentially involved in the PD
pathogenesis process for the
first time.
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RESEARCH
Mass Spectrometry–Based Proteomics Analysis
of Human Substantia Nigra From Parkinson's
Disease Patients Identifies Multiple Pathways
Potentially Involved in the Disease
Yura Jang1,2, Olga Pletnikova3 , Juan C. Troncoso2,3 , Alexander Y. Pantelyat2 ,
Ted M. Dawson1,2,4,5,6,7,*, Liana S. Rosenthal2,*, and Chan Hyun Na1,2,*
Parkinson's disease (PD) is the second most prevalent
neurodegenerative disorder characterized by the loss of
dopaminergic neurons in the substantia nigra (SN) of the
brain. Despite decades of studies, the precise pathogenic
mechanism of PD is still elusive. An unbiased proteomic
analysis of PD patient’s brain allows the identification of
critical proteins and molecular pathways that lead to
dopamine cell death and α-synuclein deposition and the
resulting devastating clinical symptoms. In this study, we
conducted an in-depth proteome analysis of human SN
tissues from 15 PD patients and 15 healthy control in-
dividuals combining Orbitrap mass spectrometry with the
isobaric tandem mass tag–based multiplexing technology.
We identified 10,040 proteins with 1140 differentially
expressed proteins in the SN of PD patients. Pathway
analysis showed that the ribosome pathway was the most
enriched one, followed by gamma-aminobutyric acidergic
synapse, retrograde endocannabinoid signaling, cell
adhesion molecules, morphine addiction, Prion disease,
and PD pathways. Strikingly, the majority of the proteins
enriched in the ribosome pathway were mitochondrial ri-
bosomal proteins (mitoribosomes). The subsequent
protein–protein interaction analysis and the weighted
gene coexpression network analysis confirmed that the
mitoribosome is the most enriched protein cluster.
Furthermore, the mitoribosome was also identified in our
analysis of a replication set of ten PD and nine healthy
control SN tissues. This study provides potential disease
pathways involved in PD and paves the way to study
further the pathogenic mechanism of PD.

Parkinson's disease (PD) is the second most common
neurodegenerative disorder characterized by the loss of
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dopaminergic neurons in substantia nigra (SN) of the midbrain
(1–6). The primary risk factors for PD are age, environmental
influences, and genetic predisposition (7). PD incidence in-
creases with age, with the prevalence of 1% and 4% for
people aged over 60 and 80, respectively (8, 9). Exposure to
pesticides and heavy metals increases the risk of PD (7).
Multiple genes linked to the autosomal dominant form of PD,
such as SNCA, LRRK2, and the autosomal recessive form of
PD, such as PRKN, PINK1, PARK7 (DJ1), and ATP13A2
(PARK9), have been reported (1, 5, 7–9). SNCA encodes
α-synuclein, and one of the typical neuropathologic findings of
PD patients is the abnormal deposition of α-synuclein in the
cytoplasm of certain neurons (5). The G2019S mutation of
LRRK2 is associated with an impaired lysosomal autophagy
system that is critical in the clearance of oligomeric assem-
blies of α-synuclein (10). In the limited pathologic studies of
patients with mutations in Parkin, a ubiquitin E3 ligase, the
pattern of dopamine (DA) neuron loss in the SN without the
presence of Lewy bodies is shown (8, 9). PINK1 in conjunction
with Parkin is highly associated with mitochondria quality
control, and the relationship between mitochondrial dysfunc-
tion and PD pathogenesis is well known (1). Mutations of
PARK7 are involved in increased oxidative stress, which is
linked to the pathogenesis of PD (5). Mutations of ATP13A2
are associated with the dysregulation of lysosomes and
autophagosomes that contribute to PD pathogenesis (5).
While these mutations have been noted in genetic forms of
PD, the dysfunctional pathways that they lead are also impli-
cated in idiopathic PD (11). Specifically, multiple putative
mechanisms are thought to play a role in and include α-syn-
uclein aggregation, mitochondrial dysfunction, abnormal
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Analysis of SN From PD Patients
protein clearance, and neuroinflammation among others (1, 5,
12, 13). Aggregated pathologic α-synuclein causes neuro-
toxicity, and it constitutes the major misfolded proteins found
in Lewy bodies (7, 14). Aging, environmental toxins, and ge-
netic predisposition contribute to mitochondrial dysfunction,
which is considered a key element in both idiopathic and fa-
milial PD (15–20). Clearance of proteins is an essential cell
function to protect cells from proteotoxic stress induced by
misfolded and aggregated proteins. Dysfunctional protein
clearance is associated with PD pathogenesis. The ubiquitin-
proteome system is involved in the clearance of unnecessary
proteins in the cell. Thus, the dysregulation of the ubiquitin-
proteome system can lead to protein aggregation (21). The
autophagy-lysosomal system, which is involved in the
degradation of impaired or misfolded proteins through
microautophagy and macroautophagy and chaperone-
mediated autophagy can also become impaired in PD (22).
Neuroinflammation also contributes to pathogenic mecha-
nisms. Levels of inflammatory cytokines that can induce
neuronal death are increased in PD (23, 24). Despite these
insights into PD pathogenesis, disease-modifying therapy has
not been identified, and additional mechanisms remain to be
discovered. Along these lines, understanding how the prote-
ome changes in PD patients’ brains may provide novel in-
sights into PD pathogenesis.
Mass spectrometry (MS)–based proteomics technology has

been considered the gold standard for proteome analyses and
has been applied to study PD (25–31). Although there have
been multiple studies to uncover dysfunctional signaling
pathways in SN of PD patients, the number of identified pro-
teins from the studies was still too shallow (<1800 proteins) to
uncover key pathways because of the limitation of the used
methods and instruments, and/or the number of the samples
used was too small (10 or less SN samples) (29–31). To this
end, we conducted an in-depth proteome analysis of human
SN tissues from 15 PD patients and 15 healthy control (HC)
individuals using Orbitrap MS. In this study, we employed
isobaric tandem mass tag (TMT)–based multiplexing for
quantification. The validity of the key pathways was inde-
pendently verified. This is the first report of a large-scale in-
depth proteome analysis of human SN in PD versus controls
and provides a foundation for the elucidation of proteomic
changes that contribute to PD pathogenesis.
EXPERIMENTAL PROCEDURES

Acquisition of SN Samples

Human SN tissues from 15 PD patients and 15 HC individuals that
were used for the acquisition of the discovery data and the human SN
tissues from ten PD patients and nine HC individuals that were used
for the acquisition of the replication data were acquired from the Brain
Resource Center at Johns Hopkins University School of Medicine. The
clinical information for the samples is provided in Table 1 and
supplemental Table S1. Diagnosis of PD was based on UK Brain Bank
2 Mol Cell Proteomics (2023) 22(1) 100452
clinical criteria and then autopsy confirmation (32, 33). HCs were in-
dividuals without clinical or neuropathological evidence of Parkin-
sonism. All participants agreed to autopsy prior to their death, and
their next of kin consented to the autopsy procedure at the time of
death. All research was approved by the Johns Hopkins Institutional
Review Board. The inclusion criteria for PD are patients with (1) a
clinical history of PD with or without dementia; (2) neuropathology
changes of Lewy body disease brainstem-predominant, limbic, or
neocortical (34); and (3) age older than 50 years, males and females,
and any race. The exclusion criteria for PD are patients with any sig-
nificant neurodegenerative or vascular comorbidity. This study abided
by the Declaration of Helsinki principles.

Sample Preparation

The SN samples from 15 PD patients and 15 HC individuals were
lysed by sonication (Branson Sonifier 250; Branson Ultrasonics) in 8 M
urea/50 mM triethylammonium bicarbonate (TEAB). The amount of
protein in the samples was quantified using a bicinchoninic acid assay
kit (Pierce). To analyze 30 samples using 11-plex TMT method, three
batches (sets) of 11-plex TMT experiments were conducted including
a reference master pool (MP) in each set. The MP was used for the
normalization of the quantification values from the three sets. The MP
was prepared by combining an equal amount of protein from all 30
samples. Proteins were reduced and alkylated with 10 mM Tris(2-
carboxyethyl) phosphine hydrochloride and 40 mM chloroacetamide
at room temperature (22–25 ◦C) for 1 h. The proteins were then
digested with Lys-C (Lysyl endopeptidase MS grade; Fujifilm Wako
Pure Chemical Industries Co, Ltd) in a ratio of 1:100 at 37 ◦C for 3 h.
Subsequently, trypsin (sequencing grade modified trypsin; Promega)
digestion was conducted by diluting the urea concentration to 2 M by
adding the three volumes of 50 mM TEAB followed by adding trypsin
in a ratio of 1:50 and incubating at 37 ◦C overnight (for 15–18 h). The
resulting peptides were desalted with C18 StageTips (3M Empore; 3M)
and labeled with 11-plex TMT reagents according to the manufac-
turer’s instructions (Thermo Fisher Scientific). The labeling reaction
was performed at room temperature for 1 h, followed by quenching
with 1/10 volume of 1 M Tris–HCl (pH 8.0). The peptides were pooled
and prefractionated by basic pH reversed-phase liquid chromatog-
raphy into 96 fractions, followed by concatenating into 24 fractions by
combining every 24th fraction. The Agilent 1260 offline LC system
(Agilent Technologies) was used for basic pH reversed-phase liquid
chromatography fractionation, which includes a binary pump, UV
detector, an autosampler, and an automatic fraction collector. In brief,
the dried samples were reconstituted in solvent A (10 mM TEAB in
water, pH 8.5) and loaded onto a column (Agilent 300 Extend-C18

column, 5 μm, 4.6 mm × 25 cm; Agilent Technologies). Peptides were
resolved using an increasing gradient of solvent B (10 mM TEAB in
90% acetonitrile [ACN], pH 8.5) at a flow rate of 0.3 ml/min. The total
run time was 150 min. Subsequently, the concatenated 24 samples
were vacuum dried using a SpeedVac (Thermo Fisher Scientific) and
then stored at −80 ◦C until use (24, 35, 36).

The preparation of ten PD and nine HC samples used for the
replication was conducted in the same way as described previously,
except for the preparation of the MP and the employment of the 10-
plex TMT instead of the 11-plex TMT. One HC sample was added
to the two sets of 10-plex TMT experiments and used for the
normalization of quantification values from the two sets.

MS

The peptides were analyzed on an Orbitrap Fusion Lumos Tribrid
Mass Spectrometer (Thermo Fisher Scientific) coupled with an Ulti-
mate 3000 RSLCnano nanoflow liquid chromatography system
(Thermo Fisher Scientific). The peptides from each fraction were
reconstituted in 50 μl of 0.5% formic acid (FA), and 30% of



TABLE 1
Information on the SN samples used in the discovery study

No. Diagnosis Age at death Sex Race PMD (h) CERAD

1 PD with dementia, AD definite 64 M W 21 C
2 PD with dementia, AD probable 82 F W 5 B
3 PD with dementia, AD probable 80 M W 13 B
4 PD, no dementia 73 F W 6 A
5 PD with dementia, LBD neocortical 84 M W 5 0
6 PD, LBD neocortical, AD 74 M W 19 C
7 PD, LBD limbic 95 F W 12 0
8 PD with dementia 76 M W 19 0
9 PD with dementia 76 M W 17 0
10 PD with dementia, AD probable 85 F W 11 B
11 PD, no dementia 86 M W 22.5 0
12 PD with dementia, AD probable 83 F W 4 B
13 PD with dementia 60 M W 15.5 0
14 PD with dementia, AD definite 80 F W 16 C
15 PD with dementia, AD probable 85 M W 14 B
16 HC, NFT, & frequent tau neurites in HP (age-associated tau pathology) 76 M W 25 0
17 HC, moderate Tau+ neurites in HP and ERC 67 M W 37 0
18 HC, GVD in HP, Tau NFT and neurites in ERC (Braak I) 71 F B 37 0
19 HC, rare NFT in ERC, no amyloid plaques, old contusions (Braak I) 81 M W 26 0
20 HC, rare NFTs in ERC and HP, no amyloid plaques (Braak II) 80 F W 37 0
21 HC, no Tau or amyloid lesions 67 M W 25 0
22 HC, rare Tau+ neurites in HP, no amyloid plaques 67 M W 8 0
23 HC, NFT in ERC but not in HP, no amyloid plaques 71 F W 57 0
24 HC, rare NFT in HP and ERC (Braak II) 66 M B 25 0
25 HC, NFT in HP and ERC, no amyloid plaques (Braak II) 77 F W 33 0
26 HC, NFT in ERC but none in HP 80 M B 21 0
27 HC, mild NFT in HP and ERC, no amyloid plaques (Braak II) 87 F W 7 0
28 HC, NFT in HP, ERC and ITC, plaques in temporal lobe (Braak III) 90 F B 22 A
29 HC, no NFT, no amyloid plaques 60 M W 16 0
30 HC, NFT in ERC and HP, few amyloid plaques in HP 87 F W 35 A

Abbreviations: AD, Alzheimer’s disease; B, black; CERAD, Consortium to Establish a Registry for Alzheimer’s Disease; ERC, entorhinal cortex;
F, female; GVD, granulovacuolar degeneration; HP, hippocampus; ITC, inferior temporal cortex; LBD, Lewy body dementia; M, male; NFT,
neurofibrillary tangle; W, white
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reconstituted peptide solution were loaded on a trap column (Acclaim
PepMap 100, LC C18, 5 μm, 100 μm × 2 cm, nanoViper; Thermo Fisher
Scientific) at a flow rate of 8 μl/min. The peptides were resolved at
0.3 μl/min flow rate using an increasing gradient of solvent B (0.1% FA
in 95% ACN) on an analytical column (Easy-Spray PepMap RSLC C18,
2 μm, 75 μm × 50 cm; Thermo Fisher Scientific), which was fitted with
an EASY-Spray ion source that was operated at a voltage of about
2.0 kV. The total run time was 120 min. MS analysis was carried out in
data-dependent acquisition mode with a full scan in the mass-to-
charge ratio (m/z) range of 300 to 1800 in the “Top Speed” mode
with 3 s per cycle. MS1 and MS2 were acquired for the precursor ions
and the peptide fragmentation ions, respectively. MS1 scans were
measured at a resolution of 120,000 at anm/z of 200. MS2 scans were
acquired by fragmenting precursor ions using the higher-energy
collisional dissociation (HCD) method, which was set to 35% of
collision energy, and detected at a mass resolution of 50,000 at anm/z
of 200. Automatic gain control targets were set to one million ions for
MS1 and 0.05 million ions for MS2. The maximum ion injection time
was set to 50 ms for MS1 and 100 ms for MS2. The precursor isolation
window was set to 1.6 m/z with 0.4 m/z of offset. Dynamic exclusion
was set to 30 s, and singly charged ions were rejected. Internal cali-
bration was carried out using the lock mass option (m/z 445.12002)
from ambient air (24, 35, 36).

The peptides for the replication experiment were analyzed on an
LTQ-Orbitrap Elite mass spectrometer (Thermo Fisher Scientific)
coupled with an EASY-nano liquid chromatography II system (Thermo
Fisher Scientific). The peptides from each fraction were reconstituted
in 30 μl of 0.5% FA, and 50% of the reconstituted peptide solution was
loaded on the trap column at a flow rate of 10 μl/min. The peptides
were resolved at 0.25 μl/min flow rate using an increasing gradient of
solvent B (0.1% FA in 95% ACN) on an analytical column
(75 μm × 50 cm) that was packed in a house for the LTQ-Orbitrap Elite
mass spectrometer. MS analysis was carried out in the data-
dependent acquisition with a full scan in the m/z range of 300 to
1700 in top N mode setting to eight most intense ions. Full MS scans
were measured at a resolution of 120,000 at anm/z of 400. MS2 scans
were acquired by fragmenting precursor ions using the HCD method
and detected at a mass resolution of 30,000 at an m/z of 400. Auto-
matic gain control targets were set to one million ions for MS1 and 0.2
million ions for MS2. The maximum ion injection time was set to
100 ms for MS1 and 300 ms for MS2. Dynamic exclusion was set to
60 s, and singly charged ions were rejected. Internal calibration was
carried out using the lock mass option (m/z 371.101236 and
445.12002) from ambient air.

Data Analysis

Proteome Discoverer (version 2.2.0.388; Thermo Fisher Scientific)
suite was used for quantitation and identification. During MS2 pre-
processing, the top ten peaks in each window of 100 Da were selected
for database search. The tandem MS data were then searched using
SEQUEST HT algorithms against a human UniProt database that
Mol Cell Proteomics (2023) 22(1) 100452 3



Analysis of SN From PD Patients
includes both Swiss-Prot and TrEMBL (released in May 2018 with
73,112 entries) with common contaminant proteins (115 entries). The
search parameters used were as follows: (a) trypsin as a proteolytic
enzyme (with up to two missed cleavages); (b) peptide precursor mass
error tolerance of 10 ppm; (c) fragment mass error tolerance of
0.02 Da; and (d) carbamidomethylation of cysteine (+57.02146 Da) and
TMT tags (+229.16293 Da) on lysine and peptide N termini as fixed
modifications; (d) oxidation (+15.99492 Da) of methionine as a variable
modification. The minimum peptide length was set to six amino acids,
and the minimum number of peptides per protein was set to 1. Pep-
tides and proteins were filtered at a 1% false discovery rate (FDR) at
the peptide-spectrum match (PSM) level using a percolator node and
at the protein level using the protein FDR validator node, respectively.
The protein quantification was performed with the following parame-
ters and methods. The most confident centroid option was used for
the integration mode, whereas the reporter ion tolerance was set to
20 ppm. The MS order was set to MS2, and the activation type was
set to HCD. Both unique and razor peptides were used for peptide
quantification, whereas protein groups were considered for peptide
uniqueness. Coisolation threshold was set to 50%. Reporter ion
abundance was computed based on signal-to-noise ratios, and the
missing intensity values were replaced with the minimum value. The
average reporter signal-to-noise threshold was set to 50. The quan-
tification value corrections for isobaric tags and data normalization
were disabled. Protein grouping was performed with a strict parsi-
mony principle to generate the final protein groups. All proteins
sharing the same set or subset of identified peptides were grouped,
whereas protein groups with no unique peptides were filtered out.
Proteome Discoverer iterated through all spectra and selected PSM
with the highest number of unambiguous and unique peptides, and
then final protein groups were generated. The Proteome Discoverer
summed all the reporter ion abundances of PSMs for the corre-
sponding proteins in the TMT run (24, 35, 36).

Experimental Design and Statistical Rationale

The number of SN samples used in this study was 15 PD samples
and 15 HC samples for the main experiment and ten PD samples and
nine HC samples for the replication experiment. We conducted sam-
ple size analysis using the pwr package in R (The R Foundation). When
we wanted to detect proteins with 1.5-fold differences between
groups, the required minimum sample size was 9.4. When the sig-
nificance level was 0.0001, power was 0.8, sigma was 0.208, and delta
was 0.585 (= log21.5). This sigma value of 0.208 was derived from our
in-house TMT proteomics experiments. The significance level of
0.0001 was determined based on our previous studies. When we
identified several thousands of proteins, the majority of the proteins
with p < 0.0001 showed q < 0.05. Based on this sample size analysis
result, we decided to use 15 samples per group. The statistical
analysis was performed with the Perseus software (version 1.6.0.7,
Max Planck Institute of Biochemistry). Since we are conducting mul-
tiple comparisons, we calculated an FDR by comparing data with and
without permutations between groups. For the normalization, the re-
porter ion intensity values were divided by the MP included in each set
followed by dividing by the median values of each protein. The relative
abundance values for each sample were z-score transformed after
log2 transformation. We removed proteins with one or more missing
values before conducting statistical analysis. To remove batch effects,
further normalization was conducted with the ComBat package in R
(The R Foundation) (37). Proteins with q < 0.05 were considered
differentially expressed in PD compared with HC groups. The fold
changes between the two groups were calculated by dividing the
average abundance values of each protein of PD patients by the ones
of HC individuals. According to our normality test using Shapiro–Wilk
test in the dplyr package in R, the majority of the proteins showed
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normal distribution. Thus, p values between the two groups were
calculated by the Student's two-sample t test. The q values for the
volcano plot were calculated by significance analysis of microarray
(SAM) and a permutation-based FDR estimation (38). As an orthogonal
method to increase the reliability of the selection for differentially
expressed proteins between groups, we also used bootstrap receiver
operating characteristic (ROC) curve–based statistical analysis
(39–42). Bootstrap ROC analysis was carried out using the fbroc
package in R. The sampling for the bootstrap ROC was conducted
with replacement. The area under the curve (AUC) of a bootstrap ROC
of two groups in each sampling was computed. Mean and SD values
of AUCs from 1000 bootstrap ROC were then calculated (43, 44). The
q values of bootstrap AUC analysis data were calculated as follows:
(1) the mean AUC values for nonpermutated and permuted data were
sorted in descending order for proteins with mean AUCs >0.5 and in
ascending order for proteins with mean AUCs <0.5; (2) the ratios of the
protein numbers for the nonpermuted data to the protein numbers for
the permuted data were calculated as lowering the cutoff threshold,
and the ratios were used as q values.

Pathway Analysis

The differentially expressed proteins between PD and HC groups in
both SAM and bootstrap AUC analyses were used for Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathway analysis embedded in
DAVID bioinformatics resources (version 6.8, Laboratory of Human
Retrovirology and Immunoinformatics) (45, 46). Interactome analysis
was carried out by the STRING protein–protein interaction (PPI) data-
bases (version 11) (47, 48). The weighted gene coexpression network
analysis (WGCNA)wasconductedusing theRsoftwarepackage (49, 50).

RESULTS

Quantitative Proteome Analysis of SN Samples

To identify differentially expressed proteins in the SN of PD
patients, we conducted a quantitative proteome analysis of
SN samples from 15 PD patients and 15 HC individuals. For
the analysis of 30 SN samples using an 11-plex TMT labeling
method, we prepared an MP by pooling a small portion of 30
SN samples. We added the MP to one of the 11 TMT channels
in each TMT experimental set for the purposes of normaliza-
tion (supplemental Fig. S1). The proteins were digested with
trypsin and LysC followed by labeling 11-plex TMT reagents.
The peptide samples labeled with TMT were prefractionated in
24 fractions with basic pH RPLC and analyzed by LC–MS/MS.
In total, 3,167,187 MS/MS spectra were acquired, and
857,332 spectra were assigned to peptides leading to the
identification of 134,786 peptides and 9748 proteins. The
number of identified proteins from each TMT experimental set
and the overlapping proteins among the sets are presented in
the Venn diagram (Fig. 1A). The numbers of identified proteins
from batches 1, 2, and 3 were 9088, 9148, and 9031,
respectively (Fig. 1A and supplemental Data S1). The number
of proteins identified in all batches was 8352. To conduct a
statistical analysis of the data acquired from three sets of the
TMT experiments, the intensity values of each protein in each
set were normalized by the ones of MP. We assessed whether
the data from three TMT experiments still retain a batch effect
by conducting a principal component analysis. The three sets
still showed a residual batch effect (Fig. 1B, left). To minimize



FIG. 1. The number of identified proteins and removal of batch effect by the ComBat package. A, the number of the identified proteins in
each batch is shown in the Venn diagram. B, to minimize batch effects of the three different TMT experiments, they were further normalized using
the ComBat package after normalizing each set using MP. Thirty SN samples were shown on a 2D PCA plot to show potential batch effects
before (left panel) and after (right panel) the normalization using the ComBat package. MP, master pool; PCA, principal component analysis; SN,
substantia nigra; TMT, tandem mass tag.
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the batch effect, a further normalization was conducted once
again using the ComBat package (9). The normalized data by
the ComBat package showed more even distribution sug-
gesting that the batch effect was reduced (Fig. 1B, right).

Statistical Analysis for the Identification of Differentially
Expressed Proteins

To identify proteins that are potentially involved in the pro-
cess of PD pathogenesis, statistical analysis was conducted
using two different methods; the SAM-based analysis that
uses p value and fold change, and the bootstrap ROC–based
analysis that uses the AUC and SD of ROCs calculated by
random sampling with replacement (supplemental Data S2).
The differentially expressed proteins were defined by q < 0.05.
The number of differential proteins selected by the SAM-
based analysis was 1383 (Fig. 2A and supplemental
Table S2). NXT1, SAA1, TPD52L2, LUC7L2, CD63, CAAP1,
SERF2, MT1F, PCNP, SDC4, and so on were the most
upregulated proteins, whereas MRPL28, MRPL13, RTL8C,
MRPL37, MRPS24, ELAVL2, MRPS21, SLC6A3, CPNE9, and
so on were the most downregulated proteins. As expected,
ALDH1A1 and TH that are uniquely expressed in dopami-
nergic neurons also showed approximately eightfold down-
regulation suggesting dopaminergic neuronal death in the PD
patients’ brains. The number of differentially expressed pro-
teins selected by the AUC of the bootstrap ROC was 1361
(Fig. 2B and supplemental Table S3). When the list of proteins
is sorted by SD value in ascending order, TPD52L2, EIF4B,
CD63, MCEE, VAPA, LUC7L2, PCNP, MT1F, NIPBL, SERF2,
SDC4, and so on were the most upregulated proteins in PD,
whereas MRPL28, hCG_1984214, MRPL37, MRPS9, RTL8C,
MRPS24, TIMM23B, MRPL3, MRPL38, LNPEP, and so on
were the most downregulated proteins in PD. When the dif-
ferential proteins from the volcano plot with q value of <0.05
were compared with the ones from the bootstrap AUC anal-
ysis with q value of <0.05, 1140 proteins were common
(Fig. 2C). We used 1140 proteins that were common between
the two analyses for further analysis.

Gene Set Enrichment Analysis

To identify the enriched pathways of the differentially
expressed proteins, we conducted gene set enrichment
analysis using the KEGG pathway maps. Strikingly, the ribo-
some pathway was selected as the most enriched pathway,
followed by gamma-aminobutyric acid (GABA)ergic synapse,
retrograde endocannabinoid signaling, cell adhesion mole-
cules (CAMs), morphine addiction, prion disease, and PD
pathways (Table 2 and supplemental Table S4). The ribosome
pathway was enriched with 42 proteins with p value of
1.4 × 10−16 (Fig. 3). Of 42 proteins, 17 and 25 proteins were
ribosomal proteins (RPs) and mitochondrial ribosomal proteins
(MRPs), respectively. Among the 17 RPs, two proteins were
upregulated and 15 proteins were downregulated in PD
(supplemental Table S5). Among 25 MRPs, all of them were
downregulated in PD (supplemental Table S6). The GABAergic
synapse pathway was enriched with 18 proteins with a p value
of 6.2 × 10−5. Eight of 18 proteins were GABA receptor pro-
teins, and three of 18 were guanine nucleotide–binding pro-
teins. The retrograde endocannabinoid signaling pathway was
enriched with 18 proteins with a p value of 5.5 × 10−4. Five of
18 proteins were GABA receptor proteins, and four of 18 were
guanine nucleotide–binding proteins. The CAM pathway was
enriched with 22 proteins with p value of 7.8 × 10−4, and three
of them were integrin proteins. The morphine addiction
Mol Cell Proteomics (2023) 22(1) 100452 5



FIG. 2. Volcano plot and bootstrap AUC analysis of the SN proteins identified from PD patients and HC individuals. A, the quantified SN
proteins from 15 PD patients and 15 HC individuals were plotted on a volcano plot. The curved line is the boundary for a q value of 0.05. The
proteins with q < 0.05 are colored in red font. The proteins on the left and right sides of the q value line were downregulated and upregulated in
PD, respectively. B, the quantified SN proteins from 15 PD patients and 15 HC individuals were plotted on a bootstrap AUC plot. The differ-
entially expressed proteins with q < 0.05 are shown outside the horizontal lines. C, the differentially expressed proteins common in the volcano
plot and bootstrap AUC analysis are shown in the Venn diagram. AUC, area under the curve; HC, healthy control; PD, Parkinson's disease; SN,
substantia nigra.
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pathway was enriched with 16 proteins with p value of
1.4 × 10−3. Seven of 16 proteins were GABA receptor proteins,
and three of 18 were guanine nucleotide–binding proteins. The
prion disease pathway was enriched with nine proteins with p
value of 1.9 × 10−3, and three of them were complement
TABLE 2
Enriched pathways of the differentially expressed proteins

Term Count/PH Percent p

Ribosome 42/136 30.9 1.40E-16
GABAergic synapse 18/85 21.2 6.20E-05
Retrograde endocannabinoid
signaling

18/101 17.8 5.50E-04

CAMs 22/142 15.5 7.80E-04
Morphine addiction 16/91 17.6 1.40E-03
Prion diseases 9/34 26.5 1.90E-03
PD 20/142 14.1 4.40E-03

Abbreviation: PH, the total number of proteins in the pathway.
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proteins. The PD pathway was enriched with 20 proteins with
a p value of 4.4 × 10−3, and seven of them were NADH de-
hydrogenase subcomplex proteins. Interestingly, three path-
ways, GABAergic synapse, retrograde endocannabinoid
signaling, and morphine addiction, share GABA receptors and
guanine nucleotide–binding proteins, and these shared pro-
teins contribute to the enriched pathways. These results
suggest that the main protein clusters formed by differentially
expressed proteins in SN of the PD brain are MRPs, RPs,
GABA receptors, and NADH dehydrogenase subcomplex
proteins.

Interactome Analysis

Although we have identified a few enriched pathways for the
differentially expressed proteins in the SN of the PD patients,
we reasoned that an orthogonal analysis would enable us to
narrow down key pathways. For this, we conducted an inter-
actome analysis with the upregulated and downregulated



FIG. 3. Ribosome pathway map identified by the gene set enrichment analysis. The ribosome pathway that was selected as the most
enriched one of the differentially expressed proteins in PD using KEGG pathway analysis is displayed here. The ribosomal proteins (RPs) were
colored in orange, and the mitochondrial ribosomal proteins (MRPs) are colored in magenta. KEGG, Kyoto Encyclopedia of Genes and Ge-
nomes; PD, Parkinson's disease.
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proteins to unravel key functional modules using the STRING
functional protein association network (48, 51). For the upre-
gulated proteins, RNA splicing–related proteins formed the
most connected cluster followed by vesicle-mediated trans-
port and complement cascade pathways (Fig. 4A). While
activated immune response is a well-known factor in PD
pathogenesis, only three proteins formed a small cluster.
Thus, we investigated how many differentially expressed im-
mune response–related proteins were identified. We could
identify nine immune response–related proteins differentially
expressed. Interestingly, all the differentially expressed
inflammation-related proteins, complement proteins (C1Q, C9,
C1B, C1C, C4B, C4A, CFHR1, and C1S), and interferon-
gamma receptor 1 were increased, clearly showing that the
activated complement proteins are one of the potential main
causative factors of PD (supplemental Data S2). For the
downregulated proteins, the MRPs formed the most con-
nected cluster, followed by RPs (Fig. 4B). Since MRPs and
RPs formed large clusters only for the downregulated pro-
teins, we investigated how many of the MRPs and RPs were
downregulated among all the identified proteins. Interestingly,
all the MRPs and the majority of RPs were downregulated in
the SN from PD patients (Tables 3 and 4). The human genome
has 85 RPs and 78 MRPs in the UniProt knowledgebase (52).
In this study, we identified 81 RPs and 70 MRPs. While 19
(23%) of 81 RPs were dysregulated, 51 (73%) of 70 MRPs
Mol Cell Proteomics (2023) 22(1) 100452 7



FIG. 4. STRING PPI analysis of the differentially expressed proteins in PD. A, STRING PPI analysis was conducted to estimate the
connectivity of the upregulated proteins. The network contains 634 nodes with 70 edges. The experiment alone was used as an active inter-
action source with the highest confidence threshold of 0.9 (average node degree: 0.221, average local clustering coefficient: 0.0946, and PPI
enrichment p value: 0.00013). The blue, red, and green nodes denote RNA splicing (GO: 0008380), vesicle-mediated transport (GO: 0016192),
and complement cascade pathways (HSA-166658), respectively. The gray nodes belong to other pathways. B, STRING PPI analysis was
conducted to estimate the connectivity of the downregulated proteins. The network contains 502 nodes with 821 edges. The experiment alone
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TABLE 3
List of differentially expressed RPs

Protein name Protein symbol p q z-score (PD/HC)

60S ribosomal protein L36a-like RPL36AL 5.02E-06 0 2.42
60S ribosomal protein L37a RPL37A 0.006372 0.009278 1.75
Ribosomal protein S6 kinase alpha-5 RPS6KA5 0.004994 0.031981 0.65
Ribosomal protein S6 kinase alpha-3 RPS6KA3 1.09E-05 0.017386 −0.41
60S ribosomal protein L30 RPL30 0.002938 0.046668 −0.46
60S ribosomal protein L11 RPL11 0.000192 0.009427 −0.61
60S ribosomal protein L38 RPL38 0.000162 0.007457 −0.65
60S acidic ribosomal protein P0 RPLP0 0.000124 0.004742 −0.72
40S ribosomal protein S27-like RPS27L 0.002075 0.01566 −0.76
40S ribosomal protein S20 RPS20 0.000877 0.0098 −0.76
60S acidic ribosomal protein P2 RPLP2 2.59E-05 0.001787 −0.78
40S ribosomal protein S28 RPS28 2.22E-05 0.001374 −0.82
40S ribosomal protein S14 RPS14 0.000389 0.005355 −0.83
60S ribosomal protein L9 RPL9 2.32E-06 0.000464 −0.84
40S ribosomal protein SA RPSA 1.60E-06 0.000325 −0.86
40S ribosomal protein S12 RPS12 4.69E-06 0.00046 −0.91
60S ribosomal protein L10a RPL10A 1.67E-06 0.000233 −1.00
60S acidic ribosomal protein P1 RPLP1 1.12E-06 0.000222 −1.00
60S ribosomal protein L35 RPL35 0.001919 0.00586 −1.24

Analysis of SN From PD Patients
were dysregulated in the SN of the PD patients. Other than
RPs, respiratory electron transport proteins and tRNA
aminoacylation–related proteins formed clusters too. These
results suggest that mitochondrial ribosomal functions were
more severely compromised in the SN of the PD patients’
brains, followed by the functions of RPs, spliceosome pro-
teins, respiratory complex proteins of mitochondria, vesicle-
mediated transport proteins, and complement cascade
proteins.

Coexpression Analysis Using WGCNA

The gene set enrichment and interactome analyses of the
differential proteins in the SN of the PD patients’ brains sug-
gested that mitochondrial ribosome could be the most
affected pathway in the PD brains. However, we still could not
rule out the possibility that this pathway could be identified by
other traits of the samples than the PD pathology. To address
this, we conducted an unbiased coexpression analysis using
WGCNA, which clusters proteins with similar patterns and
calculates correlations of the 26 protein cluster modules with
various traits of the samples, such as diagnosis, age, sex, and
postmortem delay (PMD) (Table 1 and supplemental Data S3)
(50). The WGCNA results showed that the M5 (cyan), M11
(green), M12 (brown), and M13 (pink) modules showed a
positive correlation (p < 0.05) with PD implying that the pro-
teins in the clusters have a pattern of increased expression
level in the PD samples. On the other hand, M21 (blue), M22
was used as an active interaction source with the highest confidence t
coefficient: 0.189, and PPI enrichment p value: <1.0E-16). The blue, pin
0140053), eukaryotic translation elongation (HSA-156842), respiratory e
translation (GO: 0006418), respectively. The gray nodes belong to other
protein interaction.
(magenta), and M23 (salmon) modules showed a negative
correlation (p < 0.05) with PD implying that the proteins in the
cluster have a pattern of decreased expression level in the PD
samples (Fig. 5 and supplemental Fig. S2). Because the gene
set enrichment and interactome analyses showed that MRPs
were decreased in PD, we postulated that the MRPs would be
clustered in the modules that had the pattern of decreased
expression level in the PD samples. For this reason, we con-
ducted a KEGG pathway analysis with the proteins in the M21,
M22, and M23 modules to identify the module that has
enriched MRPs. The M21 module showed the most significant
enrichment with MRPs (supplemental Fig. S3A and
supplemental Table S7, top). In addition, the M23 module also
showed the most significant enrichment with RPs
(supplemental Fig. S3B and supplemental Table S7, bottom).
Although the M21 module showed almost no correlation with
age and sex, it showed a mild positive correlation with PMD.
These results suggest that there is the possibility that PMD
could affect the identification of mitochondrial ribosomes as
an enriched pathway in the PD samples. To rule out this
possibility, we conducted statistical analysis by classifying
samples into two groups based on PMD. The PMD was
divided into low and high based on its median value, resulting
in the regrouping of three participants. The statistical analysis
results showed no differential proteins, suggesting that the
downregulated MRPs are not correlated to PMD but to PD
(supplemental Fig. S4).
hreshold of 0.9 (average node degree: 3.27, average local clustering
k, green, and red nodes denote mitochondrial gene expression (GO:
lectron transport (HSA-611105), and tRNA aminoacylation for protein
pathways. GO, Gene Ontology; PD, Parkinson's disease; PPI, protein–
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TABLE 4
List of differentially expressed mitochondrial RPs

Protein name Protein symbol p q z-score (PD/HC)

28S ribosomal protein S21, mitochondrial MRPS21 2.51E-07 0 −2.81
28S ribosomal protein S24, mitochondrial MRPS24 3.57E-08 0 −2.24
39S ribosomal protein L28, mitochondrial MRPL28 1.51E-09 0 −2.24
39S ribosomal protein L23, mitochondrial MRPL23 5.13E-05 0.000202 −1.81
39S ribosomal protein L13, mitochondrial MRPL13 1.91E-09 0 −1.78
39S ribosomal protein L21, mitochondrial MRPL21 2.46E-06 0 −1.73
28S ribosomal protein S34, mitochondrial MRPS34 2.61E-06 0 −1.63
28S ribosomal protein S9, mitochondrial MRPS9 7.78E-08 0 −1.58
39S ribosomal protein L41, mitochondrial MRPL41 2.26E-06 0 −1.57
28S ribosomal protein S16, mitochondrial MRPS16 1.49E-05 0.000211 −1.55
28S ribosomal protein S7, mitochondrial MRPS7 3.14E-06 0.000114 −1.55
39S ribosomal protein L3, mitochondrial MRPL3 4.22E-07 0 −1.53
28S ribosomal protein S25, mitochondrial MRPS25 1.09E-06 0 −1.52
39S ribosomal protein L24, mitochondrial MRPL24 9.94E-06 0.000225 −1.47
28S ribosomal protein S10, mitochondrial MRPS10 6.81E-07 0 −1.43
28S ribosomal protein S31, mitochondrial MRPS31 0.000464 0.001912 −1.30
28S ribosomal protein S35, mitochondrial MRPS35 0.000333 0.001547 −1.28
28S ribosomal protein S22, mitochondrial MRPS22 0.001102 0.003783 −1.28
39S ribosomal protein L42, mitochondrial MRPL42 4.10E-06 0.000215 −1.25
39S ribosomal protein L47, mitochondrial MRPL47 6.97E-05 0.000741 −1.20
39S ribosomal protein L49, mitochondrial MRPL49 2.82E-05 0.000442 −1.17
39S ribosomal protein L19, mitochondrial MRPL19 5.71E-06 0.00022 −1.15
39S ribosomal protein L37, mitochondrial MRPL37 2.60E-08 0 −1.14
39S ribosomal protein L53, mitochondrial MRPL53 9.83E-06 0.000291 −1.12
39S ribosomal protein L44, mitochondrial MRPL44 1.60E-05 0.000383 −1.09
39S ribosomal protein L1, mitochondrial MRPL1 0.000131 0.001516 −1.04
28S ribosomal protein S27, mitochondrial MRPS27 0.000629 0.004009 −1.03
28S ribosomal protein S18b, mitochondrial MRPS18B 2.53E-06 0.000215 −1.03
28S ribosomal protein S15, mitochondrial MRPS15 0.000321 0.002953 −1.00
28S ribosomal protein S23, mitochondrial MRPS23 0.000929 0.00569 −0.99
39S ribosomal protein L16, mitochondrial MRPL16 2.06E-07 0.0002 −0.98
28S ribosomal protein S6, mitochondrial MRPS6 0.000179 0.00238 −0.97
39S ribosomal protein L50, mitochondrial MRPL50 0.000187 0.002615 −0.95
39S ribosomal protein L30, mitochondrial MRPL30 0.0006 0.0048 −0.95
39S ribosomal protein L45, mitochondrial MRPL45 0.000201 0.002754 −0.94
28S ribosomal protein S33, mitochondrial MRPS33 0.00118 0.007917 −0.91
39S ribosomal protein L20, mitochondrial MRPL20 2.30E-05 0.001 −0.90
39S ribosomal protein L10, mitochondrial MRPL10 0.000118 0.002372 −0.90
39S ribosomal protein L38, mitochondrial MRPL38 3.08E-06 0.000337 −0.90
28S ribosomal protein S28, mitochondrial MRPS28 3.69E-05 0.001225 −0.89
39S ribosomal protein L46, mitochondrial MRPL46 0.001204 0.008648 −0.87
39S ribosomal protein L40, mitochondrial MRPL40 4.80E-05 0.001552 −0.87
39S ribosomal protein S30, mitochondrial MRPS30 2.48E-05 0.001151 −0.87
39S ribosomal protein L17, mitochondrial MRPL17 1.01E-05 0.000979 −0.84
39S ribosomal protein L52, mitochondrial MRPL52 0.000731 0.007355 −0.83
39S ribosomal protein L27, mitochondrial MRPL27 0.000305 0.004996 −0.81
39S ribosomal protein L11, mitochondrial MRPL11 0.000853 0.009026 −0.79
39S ribosomal protein L22, mitochondrial MRPL22 6.40E-06 0.00107 −0.77
39S ribosomal protein L14, mitochondrial MRPL14 0.00237 0.016919 −0.75
39S ribosomal protein L39, mitochondrial MRPL39 3.86E-05 0.002897 −0.73
39S ribosomal protein L4, mitochondrial MRPL4 0.003948 0.037657 −0.55

Analysis of SN From PD Patients
An Independent Replication Experiment of the Pathways
Discovered in the Main Experiment

Gene set enrichment and interactome analyses showed that
the ribosome pathway, especially MRPs, is a key protein
cluster linked to PD pathology. However, we still cannot
10 Mol Cell Proteomics (2023) 22(1) 100452
exclude the possibility that the dysregulated ribosome
pathway was a feature unique to the SN samples that we used
in the main experiment. Thus, we reasoned that if we could
observe similar results from an independent experiment using
a different cohort of SN samples, we could have higher con-
fidence in the identified pathways. For this, we analyzed the



FIG. 5. The module–trait relationships of the WGCNA of SN proteome data. The module–trait relationships of WGCNA of the SN proteome
data were presented in the form of a heatmap. The Pearson correlations between 26 protein cluster modules and four traits composed of
diagnosis, age, sex, and PMD were calculated and colored on a scale of 1 (positive correlation) to −1 (negative correlation). A protein cluster
module was generated by collecting proteins with similar expression patterns across the samples. The correlation values are shown at the top of
each box, and the p values are shown on the bottom of each box inside the parenthesis. PMD, postmortem delay; SN, substantia nigra;
WGCNA, weighted gene coexpression network analysis.
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proteome data of SN from ten PD patients and nine HC in-
dividuals that was acquired before the main experiment was
conducted by an independent researcher using a different
mass spectrometer. Statistical and data analysis were per-
formed in the same way as the main experiment (supplemental
Figs. S5 and S6 and supplemental Data S4). The gene set
enrichment analysis showed that the ribosome pathway was
the most enriched pathway, as was observed in the main
experiment (supplemental Table S8, supplemental Fig. S7,
and supplemental Data S5). The interactome analysis also
showed that the MRPs and RPs were the most connected
clusters, as observed in the main experiment (supplemental
Fig. S8). We identified 76 RPs and 51 MRPs, and 44 (58%)
of 76 RPs and 36 (71%) of 51 MRPs were dysregulated in SN
of PD patients. This replication experiment suggests that the
ribosome pathway discovered in the main experiment is linked
to PD pathology with high confidence.
DISCUSSION

In this study, we conducted MS-based proteome analysis
of human SN brain tissue samples from 15 PD patients and
15 HC individuals using the TMT labeling method. This is the
first in-depth proteome analysis of the human SN region from
PD patients and HC individuals in which we identified ~10,000
proteins. In this study, we conducted two different statistical
analyses, the SAM-based one and the bootstrap ROC–based
one, to find differentially expressed proteins between the two
Mol Cell Proteomics (2023) 22(1) 100452 11
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groups. The SAM-based statistical analysis is the most widely
used in the proteomics field. However, while conducting
SAM-based statistical analysis, variable q value cutoff lines
can be generated depending on the S0 values that users set.
When the S0 value is 0, the q value cutoff line is solely
affected by p values. As the S0 value increases, more weight
is given to the fold change than the p value in determining the
q value cutoff line. Therefore, the proteins in the proximity of
the q value cutoff line are subjected to be included or
excluded depending on the S0 value that users set. To mini-
mize this ambiguity, we added another layer of statistical
analysis by employing the bootstrap ROC. Since bootstrap
analysis uses resampling approaches, it outperforms Stu-
dent's t statistics in finding true-positive and true-negative
proteins (53). Thus, the two different statistical analyses
employed in this study would be helpful in sifting true-positive
differentially expressed proteins with reduced ambiguity.
Gene set enrichment analysis using differentially expressed
proteins in PD showed that ribosome, GABAergic synapse,
retrograde endocannabinoid signaling, CAM, morphine
addiction, prion diseases, and PD pathways were the most
enriched ones, suggesting that they could be potentially
involved in the PD pathogenesis. Strikingly, the majority of the
RPs enriched in the gene set enrichment analysis were
mitoribosomes. The subsequent STRING PPI analysis and
WGCNA also showed that mitoribosomes formed the largest
highly connected cluster. In addition, more than 50% of the
proteins enriched in the PD pathway are mitochondria-related
proteins. These results indicate that many mitochondria-
related proteins are dysregulated in the SN of PD patients,
consistent with many previous reports of abnormal mito-
chondrial function in PD (18, 19, 31, 54, 55).
Previously, van Dijk et al. (56) performed the proteomic

analysis with human locus coeruleus brain tissues from six PD
patients and six HC individuals identifying 2495 proteins with
87 differential proteins. They discovered that the main affected
pathways were mitochondrial dysfunction, oxidative stress,
protein misfolding, cytoskeleton dysregulation, and inflam-
mation. Lachén-Montes et al. (57) performed proteome anal-
ysis with human olfactory bulb tissues from 12 PD patients
and eight HC individuals, quantifying 1629 proteins with 268
differentially expressed proteins. They discovered modulation
in ERK1/2, MKK3/6, and PDK1–PKC signaling axis. Basso
et al. (29) performed proteome analysis with human SN brain
tissues from four PD patients and four HC individuals identi-
fying 44 proteins with nine proteins with abundance change.
Werner et al. (30) performed proteome analysis with human SN
tissues from five PD patients and five HC individuals identi-
fying 38 proteins with 16 differentially expressed proteins.
They discovered alterations of GSH-related proteins as well as
alterations of proteins involved in retinoid metabolism. Licker
et al. (31) performed proteome analysis with human SN from
three PD patients and three HC individuals employing a TMT-
based LC–MS/MS analysis identifying 1795 proteins with 204
12 Mol Cell Proteomics (2023) 22(1) 100452
differentially expressed proteins. They discovered that the
most altered pathways were mitochondrial dysfunction,
oxidative stress, or cytoskeleton impairment. Choi et al. (58,
59) and Gómez and Ferrer (60) also performed proteome
analysis with human cortex brain tissues from PD patients.
Choi et al. (58, 59) reported altered expression of ubiquitin
carboxyl-terminal hydrolase L1 and oxidative damage of DJ1
in the PD brain. Gómez and Ferrer (60) reported oxidative
damage of aldolase A, enolase 1, and glyceraldehyde dehy-
drogenase. Consistent with our study, these proteomics
studies of PD using human brain tissues suggested that the
affected pathways in the PD brains were mitochondrial
dysfunction. In addition, these other proteomic studies indi-
cated that oxidative stress, protein misfolding, cytoskeleton
impairment, and inflammation play a role in the pathogenesis
of PD. Although mitochondrial dysfunction is well known in
PD, little is known about the involvement of mitoribosomes.
Billingsley et al. (61) reported that MRPS34, a mitoribosome,
could be a PD risk gene. Since mitoribosomes are involved in
the translation of mitochondrial proteins encoded by mito-
chondrial DNA (mtDNA), the downregulated mitoribosome
would affect the translation of mitochondrial proteins encoded
by mtDNA (mtDNA-encoded proteins). Our study showed that
four of five mtDNA-encoded proteins show a trend of down-
regulation in SN of PD, but those mtDNA-encoded proteins
did not show statistically significant differences. There are
multiple explanations for why mtDNA-encoded protein levels
did not change while mitoribosome proteins were down-
regulated. The first possible explanation is that mtDNA-
encoded proteins were downregulated in neuronal cells but
upregulated in other cell types. When we analyze the mixture
of proteins from multiple cell types, the outcome of the sum-
med protein abundance often misleads the interpretation of
the results. The second possible explanation is that the
mtDNA-encoded proteins have longer protein turnover, and
they were less affected by the downregulation of mitor-
ibosomes. Thus, cell type–specific proteome analysis and
protein turnover study on mitochondrial proteins would pro-
vide a clue on why mtDNA-encoded proteins were not
downregulated.
GABAergic synapse, retrograde endocannabinoid

signaling, and morphine addiction pathways that were
enriched with GABA receptor proteins suggested that GABA-
related pathways were also potentially compromised in the
SN of PD patients. The direct relevance between PD patho-
genesis and the GABAergic system is unknown, but their
potential indirect relevance has already been reported by
several research groups (62, 63). For example, although SN
does not have GABAergic neurons, the SN pars reticulata
(SNr) region has receptors for GABAergic projection exons
(64). It is known that DA depletion induced by dopaminergic
neuronal death in SN pars compacta (SNc) of PD patients
affects GABAergic transmission in basal ganglia and this, in
turn, possibly affected the expression of GABAergic
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receptors in SNr (65). Therefore, dysregulation of GABA re-
ceptor proteins in the SN of PD could be considered a
consequence of dopaminergic neuronal death. At a glance, it
would be considered that the downregulation of GABAergic
receptors will lead to the upregulation of glutamatergic neu-
rons. We identified 20 glutamate receptor proteins in this
study. Interestingly, three proteins with q < 0.05 (SAM anal-
ysis) were downregulated, and most of the remaining pro-
teins also showed a trend of downregulation although their q
values >0.05 (supplemental Table S9). According to the basal
ganglia neural circuit, SNr receives GABAergic transmission
from the caudate/putamen and SNr sends GABAergic
transmission to the thalamus. On the other hand, both SNc
and SNr receive glutamatergic transmissions from the sub-
thalamic nucleus. Subsequently, SNc sends a dopaminergic
transmission to caudate/putamen, and SNr sends GABAergic
transmission to the thalamus (66, 67). Therefore, the down-
regulated GABAergic receptors in SNr will result in reduced
GABAergic transmission from SNr to the thalamus, not
affecting glutamatergic transmission in SN. So, the down-
regulated glutamatergic receptors in SN discovered in this
study can be explained by dopaminergic neuronal death in
SNc because the dopaminergic neuronal death will result in
the loss of glutamatergic receptors on dopaminergic neu-
rons. Another possible explanation of the downregulated
glutamatergic receptors is that it was the consequence of
downscaling of the glutamatergic receptors caused by
constitutive glutamatergic stimulation. It is already known
that the consistent stimulation of DA neurons by gluta-
matergic stimulation from the subthalamic nucleus is
involved in PD pathogenesis (68).
Further study to understand their correlation is required. The

PD pathway was enriched with 20 differentially expressed
proteins. TH and SLC6A3, which are dopaminergic neuron-
specific proteins, showed downregulation (69). SLC18A2, a
transmembrane protein that transports monoamines, also
showed downregulation. When SLC18A2 function is inhibited,
DA cannot be released into the synapse via a typical release
mechanism (70). The downregulation of TH, SLC6A3, and
SLC18A2 can be explained by dopaminergic neuronal death in
SN. On the other hand, GPR37, which is a putative substrate
of Parkin, was increased. This protein is known to be linked to
juvenile PD, and misfolded GPR37 has been found in Lewy
bodies. Elderly GPR37 knockout mice displayed deficits in
motor performance, and properly folded GPR37 can have a
neuroprotective effect (71). UBE2L3 is an E2 ubiquitin–
conjugating enzyme that plays a role in Parkin-mediated
mitochondrial elimination (72). COX6B1, COX7B, NDUFA1,
NDUFA4L2, NDUFAB1, NDUFB2, NDUFB3, NDUFB9,
NDUFC1, UQCRH, and UQCRQ are mitochondrial proteins
(73–75). Thus, the dysregulation of UBE2L3, COX6B1,
COX7B, NDUFA1, NDUFA4L2, NDUFAB1, NDUFB2,
NDUFB3, NDUFB9, NDUFC1, UQCRH, and UQCRQ is
potentially linked to mitochondrial dysfunction too. In addition
to the proteins that were manifested in the gene set enrich-
ment analysis, NXT1, SAA1, TPD52L2, LUC7L2, CD63,
CAAP1, SERF2, MT1F, PCNP, and so on were significantly
upregulated, and RTL8C, ELAVL2, CPNE9, ALDH1A1, KCNJ6,
and so on were significantly downregulated in PD. A strong
increase of a metallothionein protein, MT1F, in the astrocytes
in PD SN was previously reported consistent with our findings
(76). ALDH1A1 is involved in the catabolism of reactive DA
metabolites in dopaminergic neurons (77), and the reduction
of ALDH1A1 in PD SN reflects the loss of dopaminergic
neuronal functions. However, little is known about the rele-
vance of the rest of the proteins to PD.
In addition to the pathways revealed by the gene set

enrichment analysis, the STRING PPI analysis exhibited
highly clustered nodes that were not revealed by the gene
set enrichment analysis, such as RNA splicing–related pro-
teins, vesicle-mediated transport proteins, complement
cascade–related proteins, and tRNA aminoacylation–related
proteins. The implication of aberrant alternative splicing of
PD-related proteins in the PD pathogenesis has been re-
ported; alternative splicing of SNCA can accelerate or
decelerate the aggregation of α-synuclein, several patho-
genic mutations affect LRRK2 alternative splicing, and
alternative spliced PARK2 (Parkin) variants are implicated in
juvenile Parkinsonism (78–80). The dysregulation of the
vesicle-mediated transport pathway is also well known to be
involved in PD pathogenesis (81, 82). For example, VPS35,
which is one of the known PD-related genes, encodes the
protein that transports endosomal cargoes to vesicles and
tubes, and the mutation on VPS35 results in the dysregu-
lation of the vesicle transports (83). The complement
cascade proteins also have been reported to be involved in
PD pathogenesis (24, 84–86). Ma et al. (24) reported that the
complement and coagulation cascade has been dysregu-
lated in two representative PD mouse models. Loeffler et al.
(86) reported activation of the complement pathway in the
SN of PD patients. Gregersen et al. (85) reported α-synu-
clein-mediated activation of the classical complement
pathway in α-synuclein-expressing cellular model. However,
little is known about the involvement of tRNA
aminoacylation–related proteins. It seems that the cluster
formation of tRNA aminoacylation–related proteins could be
caused by the downregulation of RPs.
To analyze 30 samples, we conducted three batches of

TMT experiments in this study. Although the three batches of
11-plex TMT-based data were normalized by the reference
sample, an obvious batch effect was observed, and further
normalization by the ComBat package minimized it. This result
suggests that simple normalization by a common reference
sample is not enough to remove the batch effect when mul-
tiple batches of TMT experiments are conducted. In this study,
we discovered that multiple dysregulated pathways occurred
in PD patients’ brains, and especially the mitochondrial
pathway was the most dysregulated one. We cannot exclude
Mol Cell Proteomics (2023) 22(1) 100452 13
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the possibility that these pathways are only observable during
the terminal stage since the tissue samples used in this study
were from postmortem brains at the terminal stage of PD.
Recently, we reported the α-synuclein gut-to-brain propaga-
tion mouse model that best recapitulates the Braak hypothe-
sis (87). The SN proteome change of the mouse model over
the disease progression would potentially provide a clue when
the mitoribosome dysfunction appears. Furthermore, we
should deconvolute which cell types manifest this mitor-
ibosome dysfunction through cell type–specific proteome
analysis. Despite these limitations, this study has discovered
that mitoribosome dysfunction is potentially involved in the PD
pathogenesis process for the first time, and this study paves
the way to future studies investigating mechanisms of PD
pathogenesis.
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62. Muñoz, M. D., de la Fuente, N., and Sánchez-Capelo, A. (2020) TGF-
β/Smad3 signalling modulates GABA neurotransmission: implications in
Parkinson's disease. Int. J. Mol. Sci. 21, 1–22

63. Murueta-Goyena, A., Andikoetxea, A., Gómez-Esteban, J. C., and Gabi-
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