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Case Presentation (Dr Pankaj Nepal)
A 96-year-old woman with multiple comorbidities (cor-
onary artery disease, type 2 diabetes mellitus, and severe 
cervical spine stenosis) presented to the emergency de-
partment with nonspecific abdominal pain and diarrhea. 
Contrast-enhanced CT of the abdomen and pelvis was 
performed to evaluate for acute abnormalities. No acute 
abnormalities were identified at CT, and the patient was 
subsequently diagnosed with Clostridium difficile colitis 
and treated appropriately. However, two indeterminate 
low-attenuation liver lesions were identified in segment 
II and segment V and/or VI, and the attenuation of 
both lesions was higher than that of normal fluid (Fig 
1A). A dedicated contrast-enhanced MRI examination 
of the abdomen was performed to characterize the liver 
lesions. The patient was anxious, in mild distress, and 
claustrophobic. Although she was appropriately coun-
seled about the importance of breath holding, the ini-
tial precontrast conventional breath-hold T1-weighted 
gradient-echo (GRE) images showed substantial motion 
artifacts (Fig 1B). A decision was made to use a com-
mercially available gated navigator sequence for T2-
weighted images (Prospective Acquisition Correction 
[PACE]; Siemens) (Fig 1C) and free-breathing dynamic 
contrast-enhanced (DCE) MRI using golden-angle 
radial sparse parallel (GRASP) imaging (Fig 2A–D). 
GRASP images showed a peripheral rim of heteroge-
neous late arterial phase enhancement and progressive 
contrast material fill-in in the portal venous and delayed 
phases. T2-weighted PACE images showed intermediate 
signal intensity in the two lesions. Delayed postcontrast 
conventional breath-hold T1-weighted images (Fig 2E) 
were also obtained after acquisition of dynamic post-
contrast GRASP images (the patient was injected only 
once with a 6.1-mL dose of intravenous gadobutrol) but 
showed significant motion artifacts. Postcontrast imag-
ing characteristics of liver lesions were better evaluated 
on GRASP images.

MRI findings were not diagnostic for hepatic heman-
giomas because the peripheral enhancement pattern was 
not nodular. Typically, hemangiomas show high T2 signal 

intensity; however, only intermediate T2 signal intensity 
was present on the PACE T2-weighted images. Given the 
rapid enhancement (high vascularity) of the lesions, the 
differential diagnosis included hypervascular metastasis, 
cholangiocarcinoma, epithelioid hemangioendothelioma, 
and angiosarcoma. The patient underwent image-guided 
percutaneous biopsy of the segment II lesion. The histo-
pathologic diagnosis was consistent with primary liver 
angiosarcoma with oligometastatic disease. Nonenhanced 
chest CT helped confirm the absence of distant metastasis. 
The patient is currently doing well 9 months after under-
going stereotactic beam radiation therapy for the right and 
left liver lesions.

Case Discussion (Dr Hersh Chandarana)
MRI of the abdomen faces several significant challenges 
owing to respiratory motion, bowel peristalsis, and the 
need for large volumetric coverage. Imaging is typically 
performed during multiple breath holds to avoid motion 
artifacts. The position of the upper abdominal organs, es-
pecially the liver, can vary up to several centimeters during 
one breathing cycle (1–3). Failed breath holding can pro-
duce substantial image blurring, resulting in degraded im-
age quality and/or image misregistration, which may po-
tentially mask a focal liver lesion. Herein, we aim to briefly 
discuss some of the methods that can be applied to manage 
respiratory motion in abdominal MRI.

Conventional Methods for Motion Suppression
If a patient can cooperate, breath holding, in a typical dura-
tion of 10–20 seconds, is the simplest method for avoiding 
respiratory motion–induced effects. This approach is cur-
rently widely used in clinical practice. Generally, because of 
its short repetition time and small flip angle, GRE imaging 
is faster than fast spin-echo or turbo spin-echo imaging. A 
three-dimensional (3D) T1-weighted GRE image can be 
obtained on the order of 10–20 seconds with parallel im-
aging acceleration, and images are usually acquired during 
suspended respiration. Multisection two-dimensional T2-
weighted imaging of the whole abdomen using the turbo 
spin-echo sequence can take up to several minutes and can 
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Other approaches to manage motion include (a) accelerated im-
aging that can shorten the time of image acquisition and thus a 
decrease in the breath-hold duration and (b) free-breathing im-
age acquisition methods.

Accelerated Imaging Techniques
Accelerated or fast MRI techniques such as parallel imaging  
and/or compressed sensing (CS) can provide acceleration of 
MRI data acquisition. It should also be noted that although fast 
imaging alone is not a method for motion management, it can 
help by shortening image acquisition time and, thus, improving 
image quality (11) (Fig 3).

Advanced parallel imaging.—Parallel imaging is a tech-
nique that is most widely used to accelerate MRI data ac-
quisition using arrays of receiver coils with spatially varying 
sensitivities (12,13). Multicoil arrays permit simultaneous 
encoding of MRI signals, thus allowing a reduced number 
of phase-encoding steps at regular intervals. The main limi-
tation of parallel imaging is reduced signal-to-noise ratio 
(SNR) and severe noise amplification at high acceleration 
factors (>4) (14,15).

Recent advances in parallel imaging methods, such as con-
trolled aliasing in parallel imaging results in higher accelera-
tion (CAIPIRINHA; Siemens), enable higher acceleration. 
Multiple sections are excited at the same time using multiband 
radiofrequency pulses (16). CAIPIRINHA provides more ro-
bust parallel imaging reconstruction with fewer aliasing ar-
tifacts by optimizing the sampling mode of phase encoding.  
CAIPIRINHA-accelerated volumetric interpolated breath-hold 
examination, or VIBE, can enable further acceleration compared 
to standard parallel imaging, thus providing higher temporal 
resolution while preserving the diagnostic image quality (16–19). 
Time-resolved angiography with interleaved stochastic trajec-
tories (TWIST; Siemens) is a dynamic imaging technique that 
combines fast volumetric 3D GRE acquisition with view-sharing 
reconstruction (19). Differential subsampling with Cartesian or-
dering (DISCO; GE Healthcare) is another rapid dynamic MRI 
technique that combines multiple technical features including a 
dual-echo spoiled gradient-echo acquisition for Dixon water-fat 
separation, pseudorandom variable-density k-space segmentation, 

be performed in multiple breath holds, during free breathing 
with multiple averages, or with respiratory triggering. To shorten 
the breath-hold time, spatial resolution and volumetric coverage 
often must be sacrificed (4). With respiratory triggering or gat-
ing techniques, patients can breathe normally during an MRI 
examination and data can be either collected at the same phase 
during the respiratory cycle (triggering) or acquired continu-
ously and then selected retrospectively (gating). This, however, 
significantly prolongs the overall imaging time and is not com-
patible with all imaging studies, such as DCE MRI (5). Such ac-
quisition schemes may also not be reliable in patients with highly 
irregular breathing patterns.

Like respiratory triggering, navigator techniques prospec-
tively coordinate specific stages of the respiratory cycle and 
MRI data collection by tracking the lung-liver interface with 
a radiofrequency pulse (6–10). Navigator echo pulses can be 
negatively affected by radiofrequency field distortions and 
can also increase radiofrequency deposition at higher mag-
netic field strengths, thus creating signal interference with 
that from the liver (3).

In our patient’s case, both of these two conventional methods 
were deployed initially, but they still suffered from limitations. 

Abbreviations
AI = artificial intelligence, CS = compressed sensing, DCE = dynamic 
contrast-enhanced, DL = deep learning, GRASP= golden-angle radial 
sparse parallel, GRE = gradient echo, MRCP = MR cholangiopancreatog-
raphy, SNR = signal-to-noise ratio, 3D = three-dimensional

Summary
Several methods can be synergistically combined for motion management 
strategies to enable robust and diagnostic MRI of the abdomen in all pa-
tients irrespective of their breath-holding capacity.

Teaching Points
 ■ MRI of the abdomen is frequently impaired by respiratory mo-

tion, which may potentially mask a focal lesion that would influ-
ence patient treatment.

 ■ Several strategies can be applied to manage respiratory motion, in-
cluding accelerated or free-breathing motion-robust imaging.

 ■ Artificial intelligence methods to manage motion artifacts are un-
der development but require testing for generalizability.

Figure 1: Images in a 96-year-old woman with acute abdominal pain. (A) Axial contrast-enhanced CT scan of the abdomen shows two low-attenuation lesions 
(arrows) in segment II of left lobe and segment V and/or VI of the right lobe of liver. (B) Initially acquired axial conventional breath-hold T1-weighted gradient-echo 
MRI scan shows avidly enhancing lesions in both lobes. Image  shows significant motion artifacts, limiting accurate lesion characterization. (C) T2-weighted fat-
saturated MRI scan acquired using a commercially available gated navigator sequence (prospective acquisition correction technique [PACE, Siemens]) helps mitigate 
motion artifacts and delineate the T2 intermediate character of the two lesions (arrows).
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parallel imaging, and view-sharing reconstruction. It offers the ad-
vantage of achieving multiple arterial phase acquisitions during a 
single breath-hold period and further increases the chance of dis-
playing arterial anatomy including small blood vessels (20).

CS method.—CS is another method that enables highly accel-
erated imaging by reconstructing unaliased images from un-
dersampled measurements by exploiting the concept of image 
compressibility or sparsity (8). Nominal SNR is better preserved 
compared with parallel imaging, and it is possible to achieve 
higher acceleration. However, images can appear smooth if over-
regularized, and there is a risk of image blurring and a theoretical 
risk of omitting important information (8).

One example of CS in abdominal imaging includes CS 3D 
MR cholangiopancreatography (MRCP), which showed com-
parable image quality to standard 3D MRCP but with shorter 
imaging times (21). The use of CS enables highly accelerated 
3D MRCP within a single breath hold (approximately 20 sec-
onds), which would otherwise necessitate respiratory-triggered 
acquisition up to 5–6 minutes (12). CS MRCP demonstrated 
high diagnostic accuracy in detecting the communication be-
tween cystic lesions and the pancreatic duct (21). Combining 
parallel imaging with CS is also feasible in pediatric patients, 
with rapid image reconstruction and improved image quality 
devoid of motion artifacts (22).

Motion-robust MRI Acquisition
Aside from the conventional methods, newer techniques for 
motion-robust MRI include non-Cartesian MRI acquisition 
and artificial intelligence (AI)–based techniques (Table).

Different non-Cartesian MRI acquisition schemes have been 
shown to enable motion-robust MRI examinations, which can be 
performed during free breathing (23). For example, radial k-space 
sampling collects data along the rotating spokes that cross each 
other at the center of the k-space. Central k-space is repeatedly 
sampled in radial imaging, resulting in motion-averaged acquisi-
tion. This is an advantage over Cartesian imaging techniques in 
terms of motion robustness (5,24). Furthermore, with radial sam-
pling, every spoke has a different readout direction and motion 
artifacts appear as mild blurring or radially oriented streaks. These 
streaking artifacts are more dispersed compared to Cartesian un-
dersampling artifacts, and they could be more tolerated in clinical 
applications. However, it is important to note that extensive mo-
tion can still result in blurring and aliasing artifacts with radial 
imaging (streaks of radial trajectories) (12,13,24).

Radial imaging offers the potential for free-breathing data ac-
quisition, but it has the disadvantage of prolonged time of image 
acquisition compared to Cartesian acquisition for the same ac-
quisition parameters. Hence, additional acceleration is needed to 
perform dynamic imaging. One such technique for accelerated 
radial imaging combines CS and parallel imaging with golden 
angle radial sampling. GRASP imaging uses motion-robust ra-
dial acquisition in combination with CS, which allows for free-
breathing acquisition (3,24). High temporal resolution can be 
achieved by exploiting the data sparsity presented on dynamic 
images. GRASP was used to perform multi-phase diagnostic im-
aging of the liver in our patient mentioned earlier because she 
could not adequately hold her breath. Theoretically, a temporal 
resolution of fewer than 3 seconds per volume for liver MRI is 
possible, but this is not necessary for clinical practice (24,25).

Figure 2: Axial free-breathing dynamic postcontrast images (golden-angle radial sparse parallel [GRASP]) in the same patient as in Figure 1, devoid of motion artifacts. Im-
ages obtained (A) before contrast material administration and (B) 30 seconds, (C) 60 seconds, and (D) 190 seconds after gadolinium-based contrast material administration. 
Contrast-enhanced images demonstrate peripheral complete rim of heterogeneous late arterial phase enhancement (B), thus excluding hemangioma, with progressive centrip-
etal contrast material fill-in on the portal venous (C) and delayed phase images (D). (E) Conventional breath-hold contrast-enhanced axial T1-weighted MRI scan in delayed 
phase was also acquired after GRASP (the patient was injected only once with 6.1-mL dose of intravenous gadobutrol). Image shows avidly enhancing lesions in both lobes of 
liver. When compared to GRASP images, this breath-hold image shows significant motion artifacts limiting accurate lesion characterization. Arrows in B–E indicate lesions.
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Studies have shown that motion-robust free-breathing T2-
weighted and contrast-enhanced T1-weighted imaging using 
radial sequences (T2 MultiVane XD; Philips) provide similar 
image quality to breath-hold sequences (25). Their application 
in infants and neonates resulted in a decreased need for sedation 
and intubation (26).

AI-based Methods for Improvement of Image Quality
AI in clinical imaging has led to breakthroughs in image classifi-
cation, segmentation, super-resolution, and image reconstruction 
(27–30). Recently, studies have shown that AI methods can be 
used to remove artifacts, including residual motion artifacts, to 
improve image quality (29,30). Deep learning (DL) is a machine 
learning method that relies on neural networks with many hid-
den layers. A convolutional neuronal network is a DL method 
that has shown considerable promise in image reconstruction 
(30). A convolutional neuronal network can be applied either in 
the k-space domain to fill in the missing k-space data (before per-
forming Fourier transform) or in the image space after perform-
ing Fourier transform to remove aliasing artifacts. Supervised 
training is usually performed using high-quality reference images, 
and the input is corresponding undersampled k-space data or im-

ages. Upon completion of the convolutional neuronal network 
training for a particular application, the trained neural network 
can be used to reconstruct new images acquired with the same 
undersampling pattern, allowing reduction of various streak and 
aliasing artifacts and substantially improving the image quality 
(29–33). Reconstruction of undersampled MRI data also pro-
vides opportunities for further improvement of rapid MRI (29).

AI-enabled fast imaging.—Compared with conventional 
rapid imaging techniques such as parallel imaging and CS, 
DL-based reconstruction uses a data-driven approach to 
characterize imaging features and removes undersampling 
artifacts by inferencing features from a large image database. 
AI-enabled accelerated T2-weighted image acquisition was 
performed in our second example patient (Fig 4), with ap-
proximately one-third of data collected in a single breath 
hold. This resulted in better image quality with reduced 
blurring artifacts. Image reconstruction with the DL half-
Fourier acquisition single-shot turbo spin-echo sequence 
(HASTE; Siemens) employs a variational network com-
posed of data consistency layers and regularizers (29). Regu-
larizers used in DL reconstruction are data-driven, which 

Figure 3: Diagrammatic representation of k-space acquisition. (A) Conventional k-space, (B) limited k-space (parallel or compressed sensing), and  
(C) radial imaging. Dashed lines indicate sparse sampling.

Motion-robust Acquisition Techniques

Motion Management 
Strategy Advantages Limitations
Non-Cartesian  

acquisition
Usually performed with radial or  

spiral sampling of the k-space
Dense central k-space sampling results 

in high SNR
Benefits of retrospective self-gating, no 

need for external device or navigator 
technique

Needs additional acceleration

AI-based fast imaging Can accelerate image reconstruction,  
as well as improve image quality

Performance not tested widely, long 
training time, may be challenging to 
include all possible motion artifact 
patterns in training

AI-based artifact reduction Wide applications, even if breath-
holding ability is unpredictable

Robustness and generalizability not tested 
widely

Needs validation

Note.—AI = artificial intelligence, SNR = signal-to-noise ratio.
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means they are trained specifically to reconstruct the desired 
type of images. These trained regularizers are possibly su-
perior to conventional iterative reconstruction methods in 
denoising and correcting aliasing artifacts (30,33–36). Al-
though DL takes a considerable amount of time for initial 
training, the inference is faster than conventional iterative 
reconstruction methods (36).

A comparison between T2-weighted MRI of the liver with 
DL-based image reconstruction by Shanbhogue et al (34) 
showed superior image quality compared to that with a con-
ventional T2-weighted sequence despite a fourfold reduction 
in acquisition time. Herrmann et al (35,36) reported an acqui-
sition time for DL-accelerated half-Fourier acquisition single-
shot turbo spin-echo imaging as low as 16 seconds compared 
with the 4-minute acquisition time for BLADE (a proprietary 
name for periodically rotated overlapping parallel lines with 
enhanced reconstruction [PROPELLER] in MRI systems 
from Siemens). The acquisition time has been reduced to one 
or two breath holds, with a reduction in respiratory motion 
and ghosting artifacts, and increased lesion conspicuity (37). 
Our second patient example with DL-accelerated half-Fourier 
acquisition single-shot turbo spin-echo (Fig 4) was evaluated 
with a 3-T MRI scanner with a single breath-hold acquisition 
and 55 seconds of overall acquisition time (including instruc-
tions for breath holding plus a single breath-hold acquisition), 
with a postprocessing time of 5 minutes. This is a research se-
quence that is added to our liver protocol with certain scanners. 
DL reconstruction has also been evaluated for turbo spin-echo 
acquisition of the abdominopelvic organs. For example, DL 
turbo spin-echo imaging of the prostate allowed a two-thirds 
reduction of examination time yet improved image quality, le-
sion detection, and diagnostic confidence (38).

AI-enabled DCE MRI.—DCE MRI requires an accelerated ac-
quisition of data to achieve high spatiotemporal resolution. A 
compromise on the spatial resolution has an adverse effect on 
the evaluation of morphologic characteristics, whereas poor 

temporal resolution has a negative effect on the analysis of tis-
sue perfusion. Unfortunately, these two requirements are in 
direct conflict. Various acquisition and reconstruction meth-
ods with parallel imaging or CS have been used to accelerate 
DCE MRI (35–40). Conventional CS-based reconstruction 
techniques usually suffer from long computational times, and 
their performance depends on the choice of the sparsity con-
straint (39). Various AI-enabled techniques such as deep neural 
networks learn the reconstruction process from existing data 
sets (during training), thus providing a fast and efficient recon-
struction that can be applied to newly acquired data (39,40).

AI-enabled artifact reduction.—U-Net is a widely accepted 
algorithm that uses a multiresolution convolutional network 
for the segmentation, reconstruction, and denoising of MRI 
scans (41–44). Most of the artifacts observed on MRI scans, 
such as motion, aliasing, or streak artifacts, are distributed 
globally on the image domain. U-Net uses a large receptive 
field, and these artifacts can be effectively removed using 
global structural information (41–44). Advanced DL meth-
ods, such as generative adversarial networks, comprise two 
networks called the generator and discriminator. U-Net en-
ables both rigid as well as nonrigid motion correction (43). 
A method for respiratory motion correction was proposed by 
Jiang et al (45) using a generative adversarial network–based 
network with a U-Net generator. A denoising filter known 
as motion artifact reduction method based on convolutional 
neural network (MARC) has been used for DCE MRI of the 
liver. MARC employs convolution operations between input 
and output filters, therefore successfully extracting the mo-
tion artifacts and blurring without affecting the contrast-to-
noise ratio and SNR of the images (31).

Currently, the major goal of AI is to improve the robust-
ness of DL-based image reconstruction against discrepancies in 
undersampling schemes that may occur between training and 
inference (30–32). DL-based reconstruction could benefit from 
extensively varying undersampling patterns during the training 

Figure 4: Images obtained after liver transplant in a 53-year-old man with a history of chronic hepatitis B and hepatocellular carcinoma. (A) Conventional axial 
T2-weighted fat-saturated MRI scan shows mild motion and phase-related artifacts causing blurring of the region of the biliary anastomoses. (B) Deep learning–based 
T2-weighted MRI scan shows significantly better anatomic clarity and reduced artifact. The accelerated image was acquired with approximately one-third of data col-
lection in a single breath hold, resulting in better image quality with reduced blurring artifacts. Mild biliary dilatation proximal to the surgical anastomoses and a small 
calculus (arrow)are also clearly delineated. (C) Image from endoscopic retrograde cholangiopancreatography shows a filling defect at the anastomoses correlating 
with the calculus seen at MRI (arrow).
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process, leading to better generalization and performance of 
the trained network in the removal of undersampling artifacts. 
SANTIS (sampling-augmented neural network with incoherent 
structure) is one such method for robust MRI reconstruction. 
SANTIS has been used for artifact reduction in radial-based im-
aging of the liver (32).

Several DL techniques have been used to reduce artifacts at 
postprocessing (45,46). The application of a DL-based denois-
ing approach to MRCP images resulted in a reduction of mo-
tion artifacts, higher SNR, improved duct visibility, and im-
proved overall image quality (45). DL-based super-resolution 
reconstruction, a postprocessing technique, combines multiple 
low-resolution two-dimensional image stacks into a single high-
resolution 3D visualization, enhancing sharpness and lesion 
conspicuity in the liver and on MRCP images (47).

Challenges with AI Techniques
One of the challenges for various DL techniques is their gen-
eralizability. It remains to be studied what the performance 
of these methods will be when these methods are applied to 
data that were not included in the initial training (eg, from 
a different scanner and patient population). DL techniques 
also need validation in terms of diagnostic performance in a 
larger patient cohort, hopefully in multi-center trials. There is 
a growing body of literature documenting the artifacts intro-
duced by DL methods, for instance band or streaking artifacts, 
or DL reconstruction instabilities (48,49). Tiny alterations in 
both image as well as sampling domain can lead to a myriad 
of different artifacts, which can be unpredictable for different 
trained networks. Failure of recovering structural changes on 
the reconstructed images may lead to masking of small lesions, 
introduction of pseudolesions, or distortions and blurring of 
the imaging features (48). DL reconstruction instabilities are 
not necessarily rare events, and a future challenge may be find-
ing effective remedies.

Conclusion
In summary, we have briefly discussed various methods to 
overcome motion-related challenges in abdominopelvic MRI. 
These include methods for accelerated imaging such as ad-
vanced parallel imaging, CS, and DL-based methods as well 
as free-breathing methods such as non-Cartesian imaging. The 
methods can be synergistically combined for improved man-
agement of respiratory motion. For example, motion-robust 
acquisition can be combined with acceleration methods to im-
prove imaging performance compared to either of them alone. 
In addition, AI-based methods can be combined with other 
motion management strategies to enable robust and diagnos-
tic imaging of the abdomen in all patients irrespective of their 
breath-holding capacity. 
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