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Automated segmentation of lungs and lung
tumors in mouse micro-CT scans

Gregory Z. Ferl,1,2,7,* Kai H. Barck,2,* Jasmine Patil,3 Skander Jemaa,4 Evelyn J. Malamut,1 Anthony Lima,5

Jason E. Long,6 Jason H. Cheng,5 Melissa R. Junttila,6 and Richard A.D. Carano4

SUMMARY

Here, we have developed an automated image processing algorithm for
segmenting lungs and individual lung tumors in in vivomicro-computed tomogra-
phy (micro-CT) scans of mouse models of non-small cell lung cancer and lung
fibrosis. Over 3000 scans acquired acrossmultiple studies were used to train/vali-
date a 3D U-net lung segmentation model and a Support Vector Machine (SVM)
classifier to segment individual lung tumors. The U-net lung segmentation
algorithm can be used to estimate changes in soft tissue volume within lungs (pri-
marily tumors and blood vessels), whereas the trained SVM is able to discriminate
between tumors and blood vessels and identify individual tumors. The trained
segmentation algorithms (1) significantly reduce time required for lung and
tumor segmentation, (2) reduce bias and error associated with manual image
segmentation, and (3) facilitate identification of individual lung tumors and
objective assessment of changes in lung and individual tumor volumes under
different experimental conditions.

INTRODUCTION

Lung cancer is the leading cause of cancer death, accounting for an estimated 18% of all cancer deaths

globally in 2020.1 Expression of oncogenic mutant Kras and p53 genes in lung tissues of the KrasLsl.G12D;

p53frt/frt; adenoCre.FLP genetically engineered mouse model (GEMM) drives development of lung ade-

nocarcinomas resembling human lung cancers, and enables translational preclinical studies focused on

treatment of non-small cell lung cancer.2 GEMMs of lung cancer have been shown to correlate with human

tumor growth and response to treatment, providing insight into the development of new therapies.2 To

effectively investigate these GEMMs, in vivo micro-CT scans of mouse lungs are used for quantification

of lung tumor burden and detection of individual lung tumors. They can also be used to study longitudinal

response of total tumor burden and individual tumors in response to treatment with anti-VEGF antibodies,

chemotherapy and small molecule kinase inhibitors.2–4 Although manual tissue segmentation has the ben-

efits of simplicity and increased control over the task, both preclinically and clinically, segmentation of the

lungs and lung tumors by a human reader is time-consuming and impacted by inter- and intra-reader bias

and variability. Automated image segmentation is a broad area of research that aims to replace or augment

manual segmentation and reduce bias and variability.5 Although numerous machine learning and deep

learning methods have been proposed for segmentation of lungs and lung tumors in clinical CT images,

there are far fewer published preclinical studies that have utilized these techniques. Published

preclinical lung and lung tumor segmentation methods utilize a wide range of techniques, including

rules-based segmentation, a mix of rules-based and machine learning methods, machine learning

methods with manual intervention and fully automated deep learning approaches.

For preclinical lung segmentation, multiple semi-automated methods have been proposed.6–8 However,

they rely on a combination of manual input and rules-based segmentation, which can be time-consuming

and potentially biased. More recently, several fully automated methods have been reported, which

employ a mix of machine learning techniques with morphological and volumetric methods.3,9,10 Wang

et al.11 adapted a clinical lung segmentation method from Dou et al.12 that involved a two-stage 3D

Convolutional Neural Network (CNN) to segment multiple organs, including lungs. Schoppe et al.13

employed a 2D U-Net-like architecture to automatically segment the lungs in healthy mice and Sforazzini

et al.14 trained a 2-D U-net architecture to automatically segment the lungs in mice with varying

degrees of fibrosis. Most recently, Malimban et al15 compared 2D- and 3D-Unet approaches for
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automatically segmenting the left and right lungs, heart and spinal cord, where the models were trained

and tested on 175 native and contrast enhanced micro-CT images from 30 healthy mice using the nnU-

net method.16

For preclinical segmentation of the entire tumor burden as a single object, both Haines et al. and Ren et al.

estimated total tumor and vasculature volume by calculating functional lung volume and subtracting it from

the total lung volume, defined as the functional lung region plus tumor and blood vessels.6,7 Rodt et al. and

Lalwani et al. employed region growingmethods tomeasure total tumor burden starting with random seed

points.17,18 Blocker et al.19 used tools from the 3D slicer toolbox20 for semi-automated whole-tumor

segmentation. Barck et al. described automated estimation of lung soft tissue volume based on intensity

thresholding, morphological operations and removal of the heart volume, providing an estimate of total

tumor burden that correlated well with manual metrics.3 In 2021, Montgomery et al.21 adapted the

framework from Barck et al. to segment whole tumor burden.

For preclinical segmentation of individual lesions, Li et al. proposed a semi-automated nodule segmenta-

tion method that involved manual detection of nodules to extract a region of interest.22 Rudyanto et al.

devised a semi-automated approach to segment and track nodules during longitudinal studies by

combining manual nodule identification with segmentation by the fast-marching growth method if the

nodule was well circumscribed.8 Recently, Holbrook et al. proposed the first deep learning architecture

to automatically detect and segment lung tumor nodules that employs a V-net convolutional neural

network trained on a small number of micro-CT scans of tumor-bearing mice supplemented by inclusion

of augmented versions of the scans.23 This deep learning approach improves on previous methods of

segmentation but generates bounding boxes around each nodule instead of true segmentation of

nodules.

Although progression of total tumor burden can be monitored by evaluating longitudinal changes in soft

tissue content, automatic detection and segmentation of individual nodules facilitates tracking of change

in individual lesion characteristics over time. Detecting these changes is valuable when researching the

efficacy of new targeted therapies, especially in the preclinical setting where the growth responses of in-

dividual tumors to a given treatment could be related to the genetic profile of each tumor. To this aim,

we are proposing a hierarchical, two-step method for fully automated segmentation of healthy, tumor-

bearing and fibrotic lungs and lung tumors in micro-CT images using (1) a convolutional neural network

(CNN) to segment the lungs and (2) a support vector machine (SVM)-based classifier to distinguish tumors

from other tissues within the lungs.

RESULTS

Automated lung segmentation

The 3D U-net was trained for 15 epochs (Figure S1), with final dice coefficients of 0.928, 0.926 and 0.920

for the training ðn = 2320Þ, cross-validation ðn = 580Þ, and hold-out ðn = 200Þ images, respectively.

Figures 1 and S2 show representative hand-drawn (green) and predicted (red) lung ROIs from 10 scans

in the hold-out test data set; regions where the hand-drawn and predicted ROIs overlap are shown in

yellow. Qualitatively, 3D U-net predicted ROIs closely match the hand-drawn ROIs or outperform the

hand-drawn ROIs in cases where there are interpolation or other errors in the ground-truth ROIs, as

seen in the transverse slices of scans 3 and 9 (Figure 1). Figure 2A compares the 3D U-net lung volumes

to hand-traced, ground truth lung volumes, where a correlation of R2 = 0:924 was observed between the

two, whereas Figure 2B compares the soft tissue volumes (calculated based on the binarized image)

within the 3D U-net lung ROI to soft tissue volumes within the hand-traced, ground truth lung ROIs,

where a correlation of R2 = 0:973 was observed between the two. Note that in this case R2 is the square

of the Pearson correlation coefficient. Figure S3 plots the dice coefficient versus lung soft tissue volume

for GEMM (open circles) and fibrosis (closed circles) mouse models in the ct120 hold-out test set. The

dice coefficient remains relatively constant as total tissue volume in the lung increases, decreasing

slightly for larger tissue volumes (approximately greater than 300 mm3). Note that soft tissue volumes

are primarily composed of blood vessels and tumors (GEMM) or fibrotic tissue (fibrosis model).

Figure S4 shows the log file for all steps in the lung segmentation workflow for the 12 MILabs scans in the

hold-out test set, where prediction of a single lung mask took approximately 2 seconds per scan.
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Automated tumor segmentation

The 2305 tissue objects generated by the image preprocessing steps (Figure 3) weremanually labeled using

the labeling tool (Figure S5), yielding 781 objects labeled as ‘‘tumor’’, 1020 objects labeled as ‘‘vessel’’, and

504 objects labeled as ‘‘other’’. Objects labeled as ‘‘other’’ were typically very small (mean object volume

approximately 0.5 mm diameter) fragments of tissue that could not be identified by visual inspection and

likely were composed of small blood vessel fragments generated during the watershed segmentation

step. Lymph nodes are not typically visible in the lungs on mouse micro-CT scans; however, we cannot

rule out thepossibility that somevery small tissue fragments in the ‘‘other’’ category are lymphnodes. A Sup-

port VectorMachine classifierwith aGaussian kernel was determined tobe thebestmodelwith respect to F1

score for tumor object classification, where Table 1 summarizes the hyperparameter search space and final

hyperparameter values. A priori normalization of the feature array was performed before hyperparameter

optimization. The F1 score for the final SVM model was 0.93 for the training set and 0.85 for the hold-out

test set. Performance of other tissue classification algorithms considered here are summarized in

Table S1 and Figure S6, where SVM and Classification Ensemble methods yielded the highest F1 score of

0.85 on the hold-out test set. However, theClassification Ensemblemethod appeared to over-fit the training

data set with an F1 score of 1 (Table S1), so the SVM model was selected as the final model.

Figure 1. micro-CT images with lung ROIs

Comparison of hand-drawn and 3D U-net-predicted lung ROIs for n= 10 images from the hold-out test image set, where the green ROIs were manually

drawn by a human reader and the red ROIs were predicted by the trained 3D U-net.

See also Figures S1, S2, and S8.
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Figure S7 shows the log file for all steps in the lung tumor segmentation workflow for the 12 MILabs scans in

the hold-out test set, where prediction of lesions for a single scan took approximately 2 minutes. Image

coregistration was the most time-consuming step and accounted for approximately 80% of the total pro-

cessing time.

Segmentation of total tumor burden

The trained 3D U-net/SVM model was used to assess changes in total and individual tumor volumes in 27

GEMM mice that were not a part of the training or hold-out test sets for the U-net lung or SVM tumor

segmentation algorithms. Figures 4A and 4B plot tumor growth in the control and treatment groups,

both as absolute tumor volume (Figure 4A) and change from tumor volume at baseline ðt = 0Þ (Figure 4B).

The U-net + SVM based estimates of total tumor volume (solid circles and lines) show that the rate of

tumor growth is attenuated in the VEGF + carboplatin treated group such that average total tumor

burden at week 10 is approximately 150 mm3 versus 700 mm3 in the untreated control group (Figure 4A).

The rules-based method (open circles and dashed lines) describes a similar trend, but with a bias of

approximately 120 +/- 60 mm3 on a per-scan basis across all time points and treatment groups because

of incomplete removal of non-tumor tissue from the lung volume. When plotting change in total tumor

volume from baseline (Figure 4B), the tumor growth profiles calculated using the U-net + SVM and rules-

based methods are similar.
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Figure 2. Performance of trained 3D U-net for lung segmentation

3D U-net versus manually drawn lung ROIs for n= 200 CT120 hold-out test scans used to calculate A) volumes of 3D U-net

predicted lung ROIs vs. volumes of manually-drawn ground truth lung ROIs and B) volumes of soft tissue within the 3D

U-net predicted lung ROIs vs. volumes of soft tissue within the manually-drawn ground truth lung ROIs.

See also Figure S3.

Table 1. Optimal hyperparameters for final classification model

Model Hyperparameter Type Search space

Optimal

Hyperparameter

F1 score

training hold-out

Support vector

machine

Coding categorical onevsall, onevsone onevsone

0.93 0.85

Box Constraint real [0.001, 1000] 4.7927

Kernel Scale real [0.001, 1000] 3.4563

Kernel Function categorical gaussian, linear, polynomial gaussian

Polynomial Order integer [2, 4] N/A

Standardize categorical true, false false

See Table S1 for details and additional classification models evaluated in this study. See also Figure S6.
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Figure 4C compares change in total tumor volume frombaseline on a per-scan basis as estimated by the 3D

U-net/SVM and rules-based methods. When normalizing to baseline tumor volume, the correlation

between the two methods is high, with an R2 of 0.92 and a fitted line close to the identity line, with a slope

of approximately 1 and y-intercept of 3.32 mm3. However, there is a significant amount of variability

associated with estimated changes in tumor volume when using the rules-based approach, such that in

cases where the 3D U-net/SVM approach estimates change in tumor volume to be close to zero (�15 to

15 mm3), the rules based approach returns estimated changes in tumor volume ranging from approxi-

mately �90 to 90 mm3 because of presence of residual heart and other tissues within the lung ROI (as

indicated by bounding box in Figure 4C).

Segmentation of individual tumors

Individual tumor segmentation allows visualization of individual lesion response to treatment, as shown in

Figure 4D for two representative mice, where themouse in the control group had 5 imaging timepoints and

the animal in the treatment group survived until week 15 after treatment and thus had 6 imaging time

points. Lesions were manually color coded to facilitate tracking of individual lesion response to treatment,

where formation of tumors can be observed and then tracked across time, as seen at week 4 in the treated

(purple and yellow lesions) and control (purples and green lesions) animals. In both animals, the growth of

the primary lesion observed at week 0 can be tracked across all imaging time points.

DISCUSSION

In this study we utilized a large, high-quality data set of approximately 3000 micro-CT images and hand-

drawn lung masks to train a 3D U-net to automatically segment the lungs in scans of healthy, tumor-bearing

and fibrotic mice. Performance of the trained 3D U-net was qualitatively excellent, with a dice coefficient of

0.92 on a hold-out test set of 200 scans and R2 = 0:92 based on linear regression of the 3D U-net versus hand-

drawn lung ROI volumes (Figure 2A). By comparison, the extended rules-based framework recently

described by Montgomery et al., based on Barck et al., obtained a dice score of approximately 0.85 when

comparing model-predicted lung ROIs to manually drawn ROIs (Montgomery 2021). The nnU-net-based

lung segmentation approach described by Malimban et al15 is similar to what we describe here and accu-

rately (dice score = 0.97) segments the right and left lung in native micro-CT scans of healthy mice, where

there is less variability in lung morphology compared to mice with lung tumors or lung fibrosis.

Figure 3. 3D image preprocessing steps for lung tumor segmentation

The key image processing steps for the lung tumor segmentation algorithm are summarized here, where (1) the lungs are

segmented using the region of interest estimated by the trained 3D U-net, the resulting lung CT image is (2) binarized and

(3) small objects are removed via erosion/dilation operations before (4) coregistering the lung ROI to a reference scan

lung ROI; (5) watershed segmentation is then applied to the image generated by step 3, and (6) the resulting objects are

warped to the reference scan coordinates using the affine transformation parameters calculated in step 4.

See also Figure S10.
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In practice, performance of the trained 3D U-net appears to be equivalent to a human reader because

the hand-drawn lung masks include errors where the 3D lung ROI is constructed by interpolating the

manually-drawn 2D ROIs, whereas the 3D U-net generates an ROI on every slice of the image. Impor-

tantly, the U-net trained on images acquired by the CT120 scanner is able to accurately segment mi-

cro-CT images acquired on other scanners, as demonstrated on the respiratory-gated micro-CT images

acquired from the MILabs scanner for training the lung tumor segmentation model which required only

resampling and normalization of the HU distribution to achieve compatibility with the trained U-net

(Figure S8).

A

D

CB

Figure 4. Segmentation of total tumor burden and individual tumors

(A and B) Comparison of A) average change in absolute total tumor volume and B) change in total tumor volume from baseline volume in control vs. treated

GEMM mice as calculated by the U-net + SVM approach (solid lines) and the rules-based approach by Barck et al. (dotted lines). Gray circles and lines

represent the untreated control group and black circles and lines represent the treated group, where the untreated control group contained n = 15, 14, 14,

13, 5 and 0 mice and the treated group contained n = 14, 13, 13, 12, 10 and 4 mice at t = 0, 2, 4, 6, 10 and 15 weeks, respectively. Mean +/- S.E.M. (standard

error of the mean) of calculated tumor volumes are shown at each time point.

(C) Per-scan comparison of change in total tumor volume from baseline volume as calculated by the rules-based (y-axis) and U-net + SVM (x-axis)

approaches. The red line was fitted to the per-scan data using linear regression, where slope ðmÞ = 1:00G0:03, y-intercept ðbÞ= 3:32G5:61 and R2 = 0:92.

Comparison of tumor growth in control ðn = 14Þ vs. anti-VEGF + carboplatin treated ðn = 13Þ GEMM mice, where treatment began at week 0 of the study.

(D) Visualization of individual tumor growth in n= 2 representative mice where individual lesions identified by the U-net + SVM algorithm have been manually

color coded.

See also Figures S5 and S9.
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The morphological features included in the tumor segmentation algorithm (Figure 3 and Table 2) and can

be loosely grouped into four categories: (1) Tissue object size (volume, surface area, eq. diameter, principal

axis length), (2) shape (extent, convex volume, solidity, frac. anisotropy), (3) orientation and (4) location

(centroid). The mean and maximum intensities (HU) of each tissue object were also used as features. HU

intensity of each object and features in each of the four main categories are correlated to one another

to varying degrees, but a priori analysis of the feature array suggests that metrics of tissue object size

and location are strongly correlated with tissue class. Figure S9 describes the results of a priori analysis

of the full feature array using neighborhood component analysis.24

Micro-CT images from the anti-VEGF mAb + carboplatin study versus untreated control mice were

acquired using the CT120 scanner and analyzed using 1) the 3D U-net/SVM model trained on respira-

tory-gatedMILabs images and 2) the rules-based segmentation model by Barck et al.3 The two approaches

performed similarly overall when calculating change in total tumor burden from baseline (Figure 4B).

However, when estimating absolute changes in tumor volume over time the rules-based approach

introduced a bias because of incomplete removal of the heart and other tissues during the lung segmen-

tation process (Figure 4A). This bias appears to be relatively constant across scans when evaluating mean

tumor growth dynamics for each group, but when considering individual scans (Figure 4C) the rules-based

approach demonstrates reduced sensitivity to changes in total tumor burden at lower volumes, on the

order of approximately 100 mm3.

Qualitative evaluation of individual tumor segmentation on individual scans shows that the 3D U-net/SVM

approach is a useful tool with respect to segmenting and tracking individual lesions over a time course (Fig-

ure 4D). Although the SVM classification model for tumor segmentation was trained on the higher-quality,

respiratory-gated MILabs scans, it appears to perform well on scans acquired using the non-respiratory-

gated CT120 scanner because the SVM classifier was trained on MILabs that were pre-processed to

have a similar spatial resolution and HU distribution as compared to the CT120 scanner training set.

Current efforts are focused on automating the temporal linking of individual tumors across longitudinal

micro-CT scans. The current approach automatically segments and quantifies individual tumors in a single

scan, but for longitudinal scans of a single animal the tracking of individual lesions across time required

manual intervention. Ideally, we aim to fully automate segmentation and quantification of individual tumors

across time points to investigate variability among tumors, which may have heterogeneous responses to

treatment because of factors such as genetic, metabolic, and location differences. In addition, we are

Table 2. Radiomic features used for object classification

Feature Description

Volume Number of voxels in the object

Surface area Distance around the boundary of the object

Equivalent diameter Diameter of a sphere with the same volume as the object

Extent Ratio of voxels in the object to voxels in the total bounding box

Convex volume Number of voxels in smallest convex polygon that can contain the object

Solidity Proportion of the voxels in the convex hull that are also in the object

Centroid Center of mass of the object

Fractional anisotropy Scalar between 0 and 1 which trends toward 0 for increasingly spherical objects

Principal axis length Length of the major axes of the ellipsoid that have the same normalized second central

moment as the object

Orientation Euler angles of the object

Mean intensity Mean of all the intensity values in the object

Maximum intensity Highest single-voxel intensity in the object

The features used here are primarily a function of each tissue object’s size, shape and location (volume, surface area, equiv-

alent diameter, extent, convex volume, solidity, centroid, fractional anisotropy, principal axis lengths). The orientation of each

object within the 3-dimensional coordinate system and micro-CT intensities corresponding to each object are also included

as features. The bounding box and convex hull are the smallest cuboid and convex polygon, respectively, that can contain the

tissue object.
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investigating use of the SVM-generated tumor masks as a training set for a CNN-based tumor segmenta-

tion algorithm.

In summary, our method (1) reduced hands-on time required to perform lung segmentation from

approximately 10 min to a few seconds per scan, and reduced hands-on time required to perform lung

tumor segmentation from approximately 15–20 min to 2 min per scan and (2) qualitatively reduced bias

and error associated with manual segmentation of images. We have also shown that (3) our automated

lung tumor segmentation approach performs consistently with previous methods that we have developed

for assessment of changes in total tumor burden in GEMM models under various treatment conditions

(Figures 4A–4C), and furthermore provides qualitatively reasonable segmentation of individual lung

tumors (Figure 4D). Additional studies are required to quantify the amount of bias/error associated with

the manually versus automatically segmented lungs and lung tumors.

Conclusions

Here, we have developed an automated tool (3D U-net) for segmentation of lungs in healthy mice, a genet-

ically-engineered mouse model of lung cancer and the bleomycin mouse model of lung fibrosis.

Performance is qualitatively on par with a human reader (dice score = 0.92), enabling us to replace time-

consuming and potentially error and bias-prone manual segmentation of the lungs with an accurate,

automated method that can be applied to micro-CT scans acquired from different scanners. The U-net

for lung segmentation also serves as the first step in an automated lung tumor segmentation tool (support

vector machine), which automates segmentation of individual lesions and facilitates tracking of individual

tumor response to treatment over time.

Limitations of the study

Limitations of this study include (1) the subjective nature of the training set for lung tumor segmentation, where

a human reader annotated all tissue objects generated by watershed segmentation as tumor or non-tumor; (2)

the trained tumor segmentation model can perform only as well as a human reader and is unlikely to detect

tumors or tumor fragments smaller then approximately 0.5mmdiameter; (3) although the lung tumor segmen-

tation algorithm predicts lung tissue objects most likely to belong to the tumor class, longitudinal tracking of

individual lesions in a single mouse is not automated and requires manual image processing.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for data should be directed to and will be fulfilled by the lead contact,

Gregory Z. Ferl (ferlg@gene.com).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d micro-CT image files corresponding to Figures 1 and 4D and S8 have been deposited at Zenodo and are

publicly available as of the date of publication. DOIs are listed in the key resources table.

d All original code has been deposited at Zenodo and is publicly available as of the date of publication.

DOIs are listed in the key resources table.

d The complete training and hold-out test data sets are available for non-commercial use from the authors

upon reasonable request and with necessary data access agreements in place.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request. from the lead contact upon request.

METHODS DETAILS

Genetically-engineered mouse model (GEMM) of lung cancer

KrasLsl.G12D;p53frt/frt positive animals were generated2,3 and maintained on a C57Bl/6J-Tyr strain back-

ground. Tumors were induced in the KrasLsl.G12D;p53frt/frt mice by infection with 53106 infectious units of

Adeno-FLPe/IRES/CRE at 7 to 9 weeks of age. All animals were dosed and monitored according to the

guidelines from the Institutional Animal Care and Use Committee at Genentech, Inc (South San Francisco,

CA).

Mouse model of lung fibrosis

Lung fibrosis was induced with bleomycin, which causes inflammation and alveolar tissue damage leading

to fibrosis. Bleomycin at various doses was delivered by either intratracheal or oropharyngeal instillation, or

systemic delivery via subcutaneously implanted osmotic pumps.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Selected CT images This paper https://github.com/gzferl/LungTumorSegmentationCode

https://doi.org/10.5281/zenodo.7366902

Software and algorithms

Matlab Mathworks https://www.mathworks.com

Analyze Analyze Direct https://analyzedirect.com

Python Python Software Foundation https://www.python.org

Tensorflow Abadi et al. (2016) https://www.tensorflow.org

Keras Chollet et al. (2015) https://keras.io

Code for lung and tumor segmentation This paper https://github.com/gzferl/LungTumorSegmentationCode

https://doi.org/10.5281/zenodo.7366902
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Data set for training 3D U-net lung segmentation model

3145 lung scans were acquired from a variety of GEMM lung cancer (approx. 2925 scans) and bleomycin

induced lung fibrosis (approx. 220 scans) studies. Individual animals were scanned up to five times, with

at least two weeks between scans. This resulted in a variety of disease states represented in the data

sets, ranging from healthy mice to severe lung tumor burden or lung fibrosis.

Mice were scanned on an in vivo micro-CT system (eXplore CT120, Trifoil Imaging, Chatsworth, CA, USA)

using an in-house built animal holder that allows four mice to be scanned simultaneously. The scanning

parameters were: 900 projections per full rotation, 16 ms integration time, 75 keV photon energy, 40 mA

tube current and 43 4 detector binning. The images from the four mice were reconstructed within individ-

ual regions of 275 x 275 x 300 dimensions and 100 mm isotropic voxel size. The animals were anesthetized

with 2% isoflurane in medical air, and the scan time was approximately five minutes per four mice resulting

in an average scan time of 1.25 minutes per mouse.

Data set for training tumor classification model

71 lung scans were acquired from aGEMM lung cancer study where individual animals were scanned at one

or two time points, yielding a range of imaged tumor burdens from no visible tumor to severe tumor

burden. An MILabs micro-CT system (U-CTUHR, MILabs, The Netherlands) was used to scan one mouse

at a time25 to enable acquisition of higher-quality respiratory gated micro-CT images and generation of

a correspondingly higher-quality ground truth data set for training the tumor segmentation algorithm.

The scanning parameters were: 360 projections per full rotation, 20 ms integration time, 65 keV photon

energy, 0.13 mA tube current and 2 3 2 detector binning. Retrospective respiratory gating was applied

to use only expiration phase projection images for reconstruction. For all animals, a scan was acquired

approximately 16 weeks after administration of adenoCRE.FLP, when tumor burden was very low. For

animals with two imaging time points, scans were performed either 24 (n= 12 animals) or 75 days (n= 19

animals) after the first scan.

Treatment study

The study design and animal dosing protocol was similar to that described by Singh et al.,2 where anti-

VEGF (B20–4.1.1, mouse IgG2a) and control (anti-ragweed, mouse IgG2a) antibodies prepared and

purified at Genentech, Inc. were dosed through intraperitoneal injection at 5 mg/kg twice weekly until

the end of study and chemotherapy (carboplatin: Paraplatin from Bristol-Myers Squibb, New York, NY,

or generic from Pliva d.d., Zagreb, Croatia.) was dosed intraperitoneally at 25 mg/kg for the first 5 days

of the study. The treatment groups were control (n= 14 mice) and anti-VEGF + carboplatin (n= 13 mice)

where each animal was imaged prior to treatment and then at 2 to 5 additional time points selected

from 14, 29, 42, 70 and 105 days post-treatment for a total of 127 scans (61 control, 66 treatment). Mice

were scanned on the eXplore CT120 micro-CT system as described here.

Lung ROI tracing for training image set

The total intra-thoracic space within the rib cage, excluding heart, mediastinum, liver and diaphragm, was

segmented by eight human readers with Analyze software (AnalyzeDirect, Lenexa, KS) by manually drawing

regions in the transverse plane on approximately eight evenly spaced slices and propagating (shape based

interpolation) between the regions to include all slices in the region of interest (ROI). All manually drawn

lung regions of interest were visually inspected for accuracy prior to inclusion in this study, where 174 of

3319 scans were excluded due to qualitatively significant errors in ROI placement. Time required to manu-

ally draw lung ROIs was approximately 10 minutes per image.

Convolutional neural network: Training

A 3D U-net was trained on the micro-CT images with manually-drawn ground truth lung ROIs to perform

automated lung segmentation, where a ‘‘U-net’’ is a type of convolutional neural network commonly

used to process and segment images.26 Briefly, we used a 3D U-Net CNN, which consists of 4 downsam-

pling blocks and 4 upsampling blocks with two convolutional layers of 16 features per block and a ReLU

activation. One minus the dice similarity coefficient (DSC) was used as a loss function, where a total of

2900 images were used during training, with an 80/20 split between training and cross-validation sets.

An additional 200 images of mice that did not appear in the training or cross-validation sets were excluded

from the training process as a hold-out set, for a total of 3100 images. The CNN was trained on 4 GPU
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compute nodes, with a batch size of 4 images per step and 600 steps per epoch. The CNNwas trained using

an RMSProp optimizer and a learning rate of 0.0001 were used for training after hyperparameter tuning and

the approximately 120,000 model parameters were initialized to random values. All images were down-

sampled from the original image dimensions of approximately 275 x 275 x 300 by a factor of 0.8 and padded

to dimensions of 256 x 256 x 256, which is the largest image size the U-net can accommodate.

Convolutional neural network: Forward prediction

When predicting lung ROIs for the 200 image hold-out test using the trained 3D U-net, the following image

processing steps are performed: 1) as in the training set, downsample each image by a factor of 0.8 and pad

to dimensions of 256 x 256 x 256, 2) predict the lung mask using the trained U-net, 3) retain only the largest

connected object in the predicted lung mask, discarding all others, 4) perform a 3D hole-filling operation

on the remaining object, i.e., the lungmask and 5) upsample the predicted lung mask to the original image

dimensions.

Image reconstruction and scaling

The 3D U-net for lung segmentation was trained on images acquired from the high-throughput eXplore

CT120 system, however, the lung tumor segmentation algorithm was trained using the higher-quality res-

piratory-gated images acquired from the MILabs system. As such, preprocessing for the MILabs images

was required to achieve compatibility with the trained U-net lung segmentation model. Briefly, the MILabs

images were reconstructed to the same field of view and dimensions as the CT120 images (275 x 275 x 300

voxels, 100 mm voxel size) and the image intensities were scaled to match the CT120 images based on

Hounsfield units (HU) associated with air and muscle tissue.

Image preprocessing and watershed segmentation

To prepare images for watershed segmentation, each micro-CT image undergoes 4 preprocessing steps:

1) segment the lungs using the trained U-net model, 2) extract and binarize soft tissues in the resulting

image by setting all voxels with intensities between �300 and 200 HU to 1 and all other voxels to zero,

3) apply erosion and dilation operations to remove small objects from the binarized image, and 4) coregis-

ter the lung ROI to a reference scan lung ROI using a linear, affine transformation with 12 degrees of

freedom. Segmentation of the preprocessed images is split into 2 steps, where 1) a watershed segmenta-

tion algorithm is applied to the image, segmenting out discrete objects in the form of a 3D label map, and

2) the 3D label map is warped to the reference scan using the affine transformation array generated in step

4. Matlab R2018b (Natick, MA) was used for steps 1–4 and 6; Analyze software (AnalyzeDirect, Lenexa, KS)

was used for step 5. Representative images from each step are shown in Figures 3 and S10.

Briefly, the watershed segmentation algorithm used here accepts a binary image as input, which is eroded

repeatedly until all voxels are removed and the connected components of the voxels removed in the final

erosion are assigned to unique objects. The algorithm then works backwards, where the voxels removed at

the previous erosion level are considered and are assigned to the closest existing object. Voxels which are

not connected to an existing object form new objects. This is repeated until all original voxels are assigned.

Feature array for training data set

A total of 2305 segmented objects were generated across the 71 scans (40 mice), where 12 scans (6 mice)

were set aside as a hold-out test set such that the training set contained 1941 objects and the test set

contained 364 objects. A custom object labeling tool (Figure S5) was developed using MATLAB’s image

processing toolbox, facilitating manual assignment of tissue class (tumor, blood vessel or unknown) to

each object generated by the watershed segmentation step. Time required to manually label segmented

objects was approximately 15–20 minutes per image. Subsequent to object labeling, 12 features

describing each object’s shape, size, location and intensity are calculated (Table 2) and saved in the feature

array used for classifier training.

Classifier training for lung tumor segmentation

k-nearest neighbors clustering,27support vector machine28 and ensemble methods29–31 were evaluated

with respect to their ability to discriminate between watershed objects that were manually labeled as

‘tumor’ versus objects labeled as ‘blood vessel’ or ‘other’. The hyperparameter space for k-nearest neigh-

bors (KNN), support vector machine (SVM) and classification/regression ensemble (cEnsemble/rEnsemble)
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machine learning algorithms (Table S1) was searched using a Bayesian optimization algorithm and the final

model and hyperparameter values were determined using the F1 score calculated on the hold-out test set

as a goodness-of-fit metric. The classification models were evaluated with and without a priori normaliza-

tion of the feature array.

QUANTIFICATION AND STATISTICAL ANALYSIS

Unless otherwise stated in the figure legends, data is shown as mean G SEM. The n associated with each

plot is found in the figure legends, where n represents the number of mouse micro-CT scans. Performance

of the tissue classification algorithms is assessed by F1 score and accuracy, as defined in the legend for

Table S1. Neighborhood component analysis was used for a priori tissue object feature analysis as

described in the legend for Figure S9. The 3D U-net was implemented using Tensorflow,32 Keras33 and Py-

thon. Watershed segmentation was performed using Analyze (AnalyzeDirect, Lenexa, KS) and Matlab

R2020a (Mathworks, Natick, MA) was used to train and optimize tissue classifiers, perform a priori feature

array analysis and perform all other image pre- and post-processing tasks. See key resources table for

additional details.
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