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A B S T R A C T   

COVID-19 is the most serious public health event of the 21st century and has had a huge impact across the world. 
The spatio-temporal pattern analysis and simulation of epidemic spread have become the focus of current 
research. LSTM model has made a lot of achievements in the prediction of infectious diseases by virtue of its 
advantages in time prediction, but lacks the spatial expression. CA model plays an important role in epidemic 
spatial propagation modeling due to its unique evolution characteristics from local to global. However, no 
existing studies of CA have considered long-term dependence due to the impact of time changes on the evolution 
of the epidemic, and few have modeled using location data from actual diagnosed patients. Therefore, we 
proposed a LSTM-CA model to solve above mentioned problems. Base on the advantages of LSTM in temporal 
level and CA in spatial level, LSTM and CA are integrated from the spatio-temporal perspective of geography 
based on the fine-grained characteristics of epidemic data. The method divides the study area into regular grids, 
simulates the spatial interactions between neighborhood cells with the help of CA model, and extracts the pa-
rameters affecting the transition probability in CA with the help of LSTM model to assist evolution. Simulations 
are conducted in Python 3.4 to model the propagation of COVID-19 between Feb, 6 to Mar 20, 2020 in China. 
Experimental results show that, LSTM-CA performs a higher statistical accuracy than LSTM and spatial accuracy 
than CA, which could demonstrate the effectiveness of the proposed model. This method could be universal for 
the temporal and spatial transmission of major public health events. Especially in the early stage of the epidemic, 
we can quickly understand its development trend and cycle, so as to provide an important reference for epidemic 
prevention and control and public sentiment counseling.   

1. Introduction 

The outbreak of the Corona Virus Disease 2019 (COVID-19) has had a 
serious impact on people's lives and health, social security and economic 
growth trends in China as well as the world [1–4]. In March 2020, the 
World Health Organization declared COVID-19 a pandemic [5]. 
Modeling the spatio-temporal transmission trend of infectious diseases is 
the primary task of establishing and improving epidemic prevention and 
control system, especially for highly pathogenic infectious diseases with 
fast transmission speed [6–9], which makes the prediction of infectious 
diseases an important research topic. 

Time series statistics of epidemic cases record information such as 
daily new cases, recovered cases, death cases. To simulate the time series 
spread of the epidemic, classical analytical and numerical models in 
epidemiology were employed based on statistical data [10,11]. Among 

prediction methods for modeling based on nonlinear relations in time 
series, Long Short-Term Memory (LSTM) networks is considered as the 
most representative one [12]. LSTM solves the problem of limited long- 
term dependence of Recurrent Neural Network (RNN) by adding inter-
nal gating mechanism [13], has been quite successful and widely used 
on a number of issues, such as high-speed traffic forecast, stock price 
forecasts and air pollution forecasts [14–17]. Nanshan Zhong's team 
demonstrated the effectiveness of SEIR and LSTM in predicting the 
epidemic situation of infectious diseases at the very beginning of the 
COVID-19 outbreak [18]. Li et al. built a prediction model using a fusion 
neural network combined Convolutional Neural Networks (CNN) with 
LSTM to estimate the future infection risk by considering the spatial 
pattern and temporal trend of population movement [19]. ArunKumar 
proposed state-of-art deep learning Recurrent Neural Networks (RNN) 
models to predict the country-wise cumulative confirmed cases, 
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cumulative recovered cases and the cumulative fatalities [20]. However, 
at the early stage of the spread of infectious diseases, the time series data 
of cumulative infections is as high as a rising trend, is a non-stationary 
series. Therefore, LSTM can only successfully make short-term predic-
tion according to the time sequence, while long-term forecast results 
show that the existing number of confirmed cases will continue to grow, 
unable to estimate the development of the ceiling, this is clearly contrary 
to fact. 

To control the propagation of the disease, the government took a 
series of Non-Pharmaceutical Interventions (NPI), such as home quar-
antine and travel ban [21,22]. Although these measures can slow down 
the spread of the epidemic to a certain extent [23,24], each time the 
prevention and control of the epidemic will cause significant losses to 
the economic and social development of the affected areas [25,26]. 
Therefore, in addition to a reasonable anticipation of the temporal level 
of the development of epidemic, effective judgment and prediction of 
the spatial spread of epidemic diseases should also be made, which helps 
the decision-making departments in different areas for different levels of 
precision differential control, in order to minimize its epidemic control 
costs as well as to effectively control the spread of the epidemic [27]. 

As of Cellular Automaton (CA) has the characteristics of discrete 
time, space and state, and can reflect the complex changes of the whole 
system by synchronous evolution of local rules, which provides a 
promising direction for the spatial simulation of infectious diseases. A 
few years ago, A lot of research in this field has emerged. For example, Li 
et al. simulated the transmission process of HIV/AIDS with the classical 
two-dimensional cellular automata, and considered the influence of 
population size, initial infection rate and other factors on the trans-
mission of the disease [28]. Guan Chao et al. proposed a cellular au-
tomaton model with extended neighborhood to simulate an infectious 
disease outbreak, and facilitated the study of the dynamics of epidemics 
of different infectious diseases [29]. Peter M.A. Sloot et al. constructed a 
4-state cellular automata model to study the transmission characteristics 
of AIDS using European AIDS distribution data [30]. Since the outbreak 
of COVID-19, scholars have also modeled and predicted it based on CA 
[31]. Some researchers used sequential evolutionary genetic algorithm 
to optimize the parameters of the CA model to simulate the COVID-19 
epidemic development curve [32,33]. The spread of COVID-19 is also 
simulated by using a probabilistic cellular automaton and effects of 
distinct quarantine regimes on disease propagation are investigated 
[34,35]. However, those methods have two limitations. Firstly, existing 
models does not take the influence of temporal dependence into ac-
count, so the model is not satisfactory for the prediction of continuous 
time series data in its present form. All the models mentioned above fail 
to consider the complex behavior of cells in the process of disease 
transmission, and fail to discuss the influence of various factors such as 
population flow on disease transmission, thus failing to achieve the 
purpose of effective prediction. On the other hand, most of the existing 
CA-based simulations of infectious diseases are based on virtual 
geographic grids (simulated data), each small box or cell in this lattice 
can be occupied by a person [36], instead of a real house or residential 
area. Although they can simulate the impact of policy changes on the 
spread of epidemics, they cannot simulate, let alone predict, the spread 
of epidemics in real areas. 

In this paper, based on the advantages of CA and LSTM in space and 
time, the integration and coupling of LSTM-CA were carried out from the 
mechanism, and the spatio-temporal prediction method of epidemic 
spread of infectious diseases was constructed to model the spatio- 
temporal propagation of COVID-19 in China. In LSTM-CA, LSTM 
makes use of its gating advantages to automatically extract the time 
information generated by long-term dependence in historical data, make 
a long-term series prediction of epidemic development in each cell, and 
thereby affect the transition probability of CA. CA makes use of the 
advantage of spatial dimension and finally determines the state of the 
microscopic cellular unit by defining the transformation rules of the cell. 
Through the evolution of CA in the micro state, the statistical data in the 

macro state is obtained, and the statistical data is fed to LSTM for a new 
round of update of the transition probability until the prediction step 
size or convergence is reached. A lattice in CA can be generalized as a 
real area of China, and GIS was employed to enable people to understand 
the epidemic propagation more intuitively. Summarily, our core con-
tributions of our proposed LSTM-CA method could be listed as below:  

• In terms of time series, the LSTM-CA method proposed in this paper 
can get a good simulation effect of epidemic situation, and the 
average prediction statistical accuracy of epidemic situation reaches 
as high as 94 %.  

• The proposed LSTM-CA model mines its changing trend from time 
series, simulates its diffusion result from spatial level, and achieves 
spatio-temporal prediction.  

• The proposed LSTM-CA method can significantly reduce the 
modeling complexity of epidemic simulation and improve the 
computational efficiency of spatio-temporal data. It provides a novel 
way for spatio-temporal simulation of infectious diseases in complex 
environment.  

• This study demonstrates the effectiveness of location-based modeling 
for epidemic modeling and prediction. 

In the subsequent sections, we present details about the LSTM-CA 
models. Firstly, detailed theory of proposed LSTM-CA method and 
experimental data used in our study are given in Section 2. Afterwards, 
analysis and discussion of the simulated results are reported in Section 3. 
Finally, in Section 4, the main contributions of this paper are summa-
rized as well as future work items are enumerated. 

2. Methodology 

2.1. Model description 

In this section, we define a spatially explicit epidemiological model 
through combining CA with the transition probability parameters esti-
mated by LSTM. We suppose that, each cell in the CA represents a real 
geographical unit of 10 km*10 km on the map of China, and the grid has 
attributes such as geographical location, population density, migration 
index, and confirmed number of COVID-19 cases. By defining trans-
formation rules, the simulation evolution of epidemic situation based on 
CA is realized. The main features of LSTM-CA model are as mentioned 
below: 1) Since we defined a real spatial unit as cellular unit in CA, the 
transformation of disease status of a single patient is not considered in 
this model, and we mainly consider the change of the total number of 
diagnosed patients with cellular unit as the principal part. 2) Interaction 
between CA model and LSTM model mainly depends on three indicators, 
namely relative growth infectious rate (IR), recovered rate (RR) and 
death rate (DR), which jointly determine the number of confirmed cases 
in each cell. The relative growth infectious rate is responsible for 
increasing the number of confirmed cases, while cure rate and death rate 
are responsible for removing the number of confirmed cases. 3) No birth 
or immigration is considered, keeping the total number of people in the 
population constant. 4) Since Wuhan was the main outbreak area in 
China at the beginning of 2020, in order to reflect the impact of the 
number of people migrating from Wuhan on the development of the 
local epidemic, we took the migration index as one of the attributes of 
the grid to control the evolution of the cumulative number of confirmed 
cases in the grid. With these features considered, the framework of 
LSTM-CA can be established as a combination of LSTM and CA model as 
is described in following subsections. 

2.2. Model building and implementation 

2.2.1. Extension of LSTM 
LSTM, a typical variant of RNN, adds memory units between neurons 

in the hidden layer so that can control the information of time series. The 
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memory and forgetting degree of the previous data information and the 
current data information can be controlled through several controllable 
gates when each unit of the hidden layer of LSTM is transferred each 
time, such as forgetting gate, input gate and output gate, so as to make 
the recurrent neural network memory information for a longer time, for 
the practical application of recurrent neural network also has a greater 
role. Compared with ordinary RNN, LSTM increases the controllability 
of memory function. The traditional LSTM infrastructure network 
structure for time series prediction is shown in Fig. 1, and Hochreiter 
et al. introduced the formula principle of LSTM in detail [12]. 

In this study, we apply LSTM model with rolling update mechanism 
for relatively long forecast period, as what we did in our previous work 
[37]. Therefore, the confirmed cases, recovered cases and death cases 
can be projected by LSTM model, and based on the predicting result, the 

IR, RR and DR, which would be employed in CA modeling are calculated 
according to these formulas: 

IR =
DailyConf t+1

AccuConf t
(1)  

RR =
DailyRecovt+1

AccuRecovt
(2)  

DR =
DailyDeatht+1

AccuDeatht
(3) 

where the DailyConf t+1, DailyRecovt+1, DailyDeatht+1 represents the 
number of daily confirmed, daily recovered and daily death cases on day 
t+ 1, and AccuConf t, AccuRecovt, and AccuDeatht describe the accu-
mulated number of confirmed, recovered and death cases on day t, 

Fig. 1. The structure of LSTM. LSTM consists of forgetting gate, input gate and output gate. The forgetting gate is responsible for selectively forgetting information in 
the cell state, the input gate determines what new information to store in the cell state, and the output gate determines what values to output. 
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Fig. 2. The procedure of LSTM-CA proposed in this study. The input of LSTM-CA consists of daily confirmed cases data, migration rate data and spatial location data. 
After the processing of LSTM-CA combined with two model, the output data including spatial and statistical result are given when reaching the predictive step size. 
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respectively. 

2.2.2. CA model algorithm 
In the early 1940s, Von Neumann proposed the concept of CA, which 

has been widely used as a bottom-up dynamic modeling method to 
simulate the evolution of complex linear systems [38]. In the 1980s, S. 
Wolfram [39] made a comprehensive study of CA. CA represent entities 
in discrete space and they have certain behavior rules. These cells are 
contained in a grid with a set of rules of behavior that they can interact 
with and influence their state over time. This numerical approach is 
consistent with understanding the precise nature of disease contami-
nation in controlled environments. CA is used to simulate the interaction 
mechanism of space system from top to bottom by reflecting the changes 
of micro scale through four elements: cell, cell state, neighborhood and 
transformation rules. 

For the CA model, defining five basic components, including cell 
space, cell state, neighborhood, time step, and transition rules is needed. 
Space can be represented as a grid of discrete cells. Each cell saves an 
initial state from a predefined finite set of states and evolves along 
discrete time steps, with the neighbors of a given cell defined as a set of 
cells based on proximity. CA captures the spatial dependence of local 
interactions between cells by establishing transition rules that are 
applied to each cell in regular discrete time steps, and calculates the new 
state of a given cell by considering the previous state of the given cell 
and the cells surrounding the defined neighborhood. For the prediction 
model of infectious disease transmission, the precise transformation rule 
is the key factor to determine the prediction ability of the model. The 
automaton rules in our study can be listed below:  

- Rule 1, the cell is the most basic and smallest unit in the CA model 
and is the object of model research.  

- Rule 2, cell space represents as a grid of discrete cells where the cell 
located.  

- Rule 3, cell state is the state of each cell, in our study, the state is 
depended on a series of attributes of this cell, such as population 
density, migration index and geographic location.  

- Rule 4, neighborhood can influence the state of each cell. It usually 
includes the Von Neumann neighborhood and the Moorish neigh-
borhood. The von Neumann neighborhood has eight neighbors while 
the Moorish neighborhood has four basic adjacent neighbors. 
Considering the geographical proximity of infectious disease trans-
mission, we choose the Von Neumann neighborhood in our research.  

- Rule 5, time step controls the evolution of our model, each cell can 
evolute to a new state at each time step. 

Table 1 
Details of experimental datasets.  

Dataset Data collectors Type 

COVID-19 statistics 
dataa 

Johns Hopkins University Center for Systems Science 
and Engineering (CSSE) 

.csv 

Migration index 
datab 

Harvard University .csv 

Population census 
datac 

the Resource and Environmental Data Cloud 
Platform 

.shp 

Patient location 
datad 

GeoHey .shp  

a https://github.com/CSSEGISandData/COVID-19 
b https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/D 

VN/FAEZIO 
c https://www.resdc.cn/data.aspx?DATAID=251 
d https://gitee.com/geohey/gh-2019-nCoV-community-data/tree/master/ 

Fig. 3. Number of accumulated confirmed cases (red), recovered cases (blue), 
death cases (gray), and active confirmed cases (green) in China from Jan. 22 to 
Jun. 14. A and B represents the day when Wuhan was locked and unlocked, 
respectively (For interpretation of the references to colour in all figure legend in 
this paper, the reader is referred to the web version of this article.) (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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Fig. 5. Comparison of the spread of COVID-19 based on CA in actual results (the map with red point) and simulated results (the map with orange point) in Feb. 6 (a 
and b), Feb. 8 (c and d), Feb. 13. (e and f), 2020, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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Fig. 6. Accumulated confirmed cases predicted with LSTM-CA model in China. (a) Feb. 6, 2020 (actual number), (b) Feb.6, 2020 (predicted number), (c) Feb.8, 2020 
(predicted number), (d) Feb.13, 2020 (predicted number), (e) Feb.23, 2020 (predicted number), (e) Mar. 20, 2020 (actual number). 
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- Rule 6, transition rules are the core compartment of CA model. CA 
model has three characteristics in simulation: synchronous change, 
local influence (by adjacent cells), global consistency (all cells are 
bound by the same rules), and the state of each cell changes with the 
change of time. The state of the cell at the next moment is determined 
by the current state of the cell and the state of its neighborhood, that 
is, the transformation process of traditional CA can be expressed by 
the following formula: 

Ct+1
i,j = f

(
Ct

i,j,N
t
i,j

)
(4)  

where Ct+1
i,j represents the cellular state of cell (i, j) at time t+ 1, Ct

i,j 

represents the cellular state of cell (i, j) at time t, Nt
i,j represents the 

neighborhood cellular state of cell (i, j) at time t, and f represents the 
transformation function of cell from the state at time t to the state at time 
t+ 1. 

Population movement during the Spring Festival travel rush is an 
important reason for the rapid spread of COVID-19 in China in early 
2020, so we took the migration index into consideration in the 
modeling. In addition, the spread of the disease is population-based, so 
we also considered the impact of the local population density on the 
spread of the disease. Based on the transmission characteristics of 
COVID-19, the transformation rules of cellular automata in this paper 
can be defined as follows: 

Ct+1
i,j = f

(
Ct

i,j,Nt
i,j, IR

t,RRt,DRt,MigIndext
i,j,PopDent

i,j,Rant

)
(5)  

where IRt ,RRt ,DRt represents the relative growth infectious rate, 
recovered rate and death rate at time t, respectively. MigIndext

i,j indicates 
the population migration from Wuhan to the cell (i, j), while PopDent

i,j 

signifies the population density at time t. Moreover, Rant denotes 
random events at time t, f is the transition rule function, which signifies 
a set of transition rules [40,41]. 

2.2.3. LSTM-CA 
By combining LSTM and CA, LSTM makes use of its gating advan-

tages to automatically extract the time information generated by long- 
term dependence in historical data, make a long-term series prediction 
of epidemic development, and affect the transition probability of each 
cell in CA with migration index, population density and random factors. 
CA makes use of the advantage of spatial dimension and finally de-
termines the state of the microscopic cellular unit by defining the 
transformation rules of the cell. 

The main procedure of LSTM-CA model is illustrated in Fig. 2. Esti-
mating a LSTM-CA model typically involves the following steps:  

(1) Construct the LSTM model with statistical data of COVID-19. At 
first, an improved model is built based on LSTM with daily 
confirmed cases training set. Then, to improve the accuracy of the 
prediction, the rolling update mechanism is embedded with 
LSTM for long-term projections. Finally, calculating the relative 
growth rate IR, RR and DR. We implemented time series fore-
casting for each cell.  

(2) Initialize CA model with two time period confirmed location files, 
and assign factors influencing model evolution, such as IR, RR, 
DR, migration index and population density to the model. Then, 
set threshold values for evolution.  

(3) LSTM and CA models are connected by relative growth rates and 
statistical data of predict, the model then begins to iterate until 
the predicted step size is reached.  

(4) When evolution stops, predicted results are exported as raster 
file, while spatial and statistical data are collected, and spatial 
and statistical accuracy are calculated to evaluate the model. 

Eq. (5) defines the transition rule function of CA. It can be seen that 
based on the traditional CA conversion function, this paper adds the 
characteristics of the cell itself, its environmental conditions and 
random infection factors to expand the CA conversion rule. The 
extended transition probability can be calculated by a series of formulas, 
as follows. 
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Fig. 7. The number of accumulated confirmed cases predicted by LSTM (blue), 
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the actual data of COVID-19 in China. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of 
this article.) 
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At time t, the probability of cell (i, j) converting from the state at time 
t to the state at time t + 1 is Pt

(i,j), which is determined jointly by the 
transition probability of the cell itself St

(i,j), the influence probability of 
the cell neighborhood Nt

(i,j), the cell's own environmental factors 
affecting the probability Et

(i,j) and the random disturbance term Rant
(i,j), 

can be expressed as: 

Pt
(i,j) = f

(
St
(i,j) ,N

t
(i,j) ,E

t
(i,j) ,Rant

(i,j)

)
(6)  

in which St
(i,j),N

t
(i,j) can be calculated according to the traditional CA 

transition probability calculation method[40], through the two-stage 
infected data. Et

(i,j) represents the influence probability of migration 
index and population density on the central cell, which can be expressed 
as: 

Et
(i,j) = f

(
EMt

(i,j) ,EPt
(i,j)

)
(7) 

The above formulas can be synthesized as: 

Pk,t = St
(i,j) × (IRt − RRt − DRt)×

∑8

k=1
Nt

(i,j,k) ×EMt
(i,j) ×EPt

(i,j) ×Rant
(i,j) (8)  

where IRt, RRt and DRt represents the relative growth rate of the number 
of patients infected, recovered and death in the cell itself, and St

(i,j) ×

(IRt − RRt − DRt) is the improved self-transition probability at time t. 
∑8

k=1Nt
(i,j,k) shows the effect of neighborhood probability, Nt

(i,j,k) is the 
influence probability of the neighborhood cell value on the change of the 
central cell value. EMt

(i,j),EPt
(i,j) represent the influence probability of 

migration index and population density, respectively. Rant
(i,j) represents 

some disturbances with uncertainty and contingency (such as accidental 
factors include natural disasters, wars, political events, etc.), and its 
calculation formula can be expressed as follows: 

Rant
(i,j) = 1+( − lnγ)α (9)  

where γ is a random number between 0 and 1, α is used to control the 
interference strength of the random disturbance term, and is an integer 
between 1 and 10. 

The raster files used in our study were prepared in ArcGIS ver. 10.5, 
whereas modeling procedure were conducted in Python 3.4, using GDAL 
3.3.0, Numpy 1.21, Matplotlib 3.3.2, and Scikit-Learn 0.23.2 libraries. 

2.3. Evaluation criterion 

In this study, we measure the effectiveness of the model in two di-
mensions: Statistical Accuracy (StAcc) and Spatial Accuracy (SpAcc). 
StAcc, as its name suggests, indicates the forecast accuracy of the model. 
StAcc = n/N, where n is the predicted number of confirmed cases in 

Fig. 9. The impact of population flow from Wuhan to prefecture-level cities in all provinces (except Hubei province) and the distribution of confirmed cases 
simulated by LSTM-CA. (a) Migration rate on New year, 2020. (b) Migration rate on Lunar New year, 2020. (c) Confirmed cases on Feb. 1, 2020. (d) Confirmed cases 
on Feb. 25, 2020. 
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China, and N is the actual confirmed cases count. SpAcc is computed by 
the accuracy of cellular prediction with confirmed cases. SpAcc = q/Q, 

where q represents the number of cells which have predicted confirmed 
cases and Q is the number of cells with confirmed cases in fact. 

2.4. Datasets 

For this study, we employed four publicly available datasets for 
China (excluding Hong Kong, Macao and Taiwan), including COVID-19 
statistical data, migration index data, population census data and spatial 
location data of confirmed cases. Considering the fine-grained location 
data of patients were obtained between February 6, 2020 and March 20, 
2020, we selected this period as the main time range for this study. All 
spatial data were unified to the Lambert Conformal Conic (LCC) coor-
dinate system. Details of those datasets are listed in Table 1. Moreover, 
to eliminate the influence of different dimensions, the migration rate, 
population census data were normalized to (0,1). 

2.4.1. COVID-19 statistical data 
Statistical data on COVID-19 in country level of China from February 

6, to March 20, 2020 is derived from real-time statistics from John 
Hopkins University. The most updated epidemical data of COVID-19 are 
provided by an ArcGIS platform repository published by Dong et al. 
[42], the Johns Hopkins University Center for Systems Science and 
Engineering (CSSE) compiles from state health department reports and 
makes available through a public repository. The data we used included 
the daily accumulated confirmed cases, deaths cases, cured cases and 
daily new confirmed cases in this paper (Fig. 3). 

2.4.2. Migration index data 
Baidu's migration index reflects the rate of people moving in or out of 

a city. In our study, we collected migration index data from Wuhan to 
other prefecture-level cities (Fig. 4). These data are available through at 
Harvard University. We plotted the migration rate from Wuhan to other 
prefecture-level cities inside Hubei and outside Hubei, respectively. 
Considering China announced a lockdown of Wuhan in Jan 23, 2020, we 
collected the migration rate data from Jan 1, to Jan 31, 2020 to model 
LSTM-CA. 

2.4.3. Population census data 
Population census data is contained from the Resource and Envi-

ronmental Data Cloud Platform. The dataset is a 1 km*1 km grid of 
population spatial distribution data, reflecting the detailed spatial dis-
tribution of population data in the whole country, contains 2015 pop-
ulation size, area, demographic characteristics, and other provincial 
attributes. The data is a grid data type, and each grid represents the 
number of people in the grid range. In order to ensure the consistency of 
the research scale, we resampled it and obtained the population density 
data of 10 km*10 km. 

2.4.4. Patient location data 
The daily spatial location of infected cases of COVID-19 are derived 

from a publicly repository provided by GeoHey. GeoHey compromised 
the spatial location of confirmed cases from Tencent Kandian and Nandu 
Media, which is accurate to the neighborhood or building where the 
confirmed patient lives. The time period of this dataset is from February 
6, 2020 to March 20, 2020. In order to unify the scale with migration 
index, population density and other data, we dropped the case points 
onto a grid of 10 km*10 km by ArcMap 10.5, and calculated the sum of 
the number of cases in this grid, which was used to obtain the raster data 
map of the confirmed location, so as to facilitate the calculation of each 
grid. 

3. Simulation and discussion 

In this section, two group of experiments are performed to analyze 
the effectiveness of our proposed LSTM-CA model for predicting the 
spread of COVID-19 in China. That is to simulate the spatial propagation 
of COVID-19 by CA and LSTM-CA. Then the comparison of StAcc be-
tween LSTM and LSTM-CA and SpAcc between CA and LSTM-CA are 
analyzed to validate the performance of our proposed model. 

3.1. Simulation of COVID-19 propagation based on CA model 

Based on the CA model, we simulated the nationwide spread trend of 
COVID-19 with the geographical location data of confirmed patients on 
February 6, and February 7, 2020 (except Hubei province, Hong Kong, 
Macao and Taiwan) as input. The modeling results are shown in Fig. 5. 
As can be seen from the graph, the spread of the epidemic is mainly 
centered in Hubei and spreading to neighboring cities. In addition, the 
epidemic is also spreading faster in the Yangtze River Delta, Pearl River 
Delta, Beijing and other regions with large population bases and large 
floating populations. According to the comparison between the real 
transmission situation and the simulation situation, the CA model can 
simulate the spatial transmission trend of the epidemic basically. 
However, sporadic outbreaks in the process could not be captured in 
time, which led to inaccurate prediction of epidemic changes in Gansu, 
Shaanxi, Yunnan, Guangxi, Shanxi and Hebei province by CA model. 

3.2. Simulation of COVID-19 propagation based on LSTM-CA model 

Based on the geographical location data of confirmed patients, CA 
model alone cannot simulate the outbreak time and scale in places 
without epidemic disease in initial training data, since CA only considers 
spatial dependence and ignores the influence of time dependence caused 
by time changes on evolution rules. After adding LSTM model, according 
to LSTM's advantage in time series prediction, the transformation 
probability of CA at the time of evolution was gradually adjusted, so that 
the epidemic changes in Gansu, Shaanxi, Yunnan, Guangxi, Shanxi and 
Hebei province could be appropriately simulated. The modeling results 
of LSTM-CA are shown in Fig. 6. The modeling results can capture 
sporadic outbreaks of epidemics in provinces far away from Hubei 
province, such as Xinjiang, Northeast China, Yunnan and Guangxi 
province, so as to dynamically adjust the modeling results. According to 
Fig. 6, from the perspective of visual effects, LSTM-CA is basically 
consistent with the simulation of real epidemic transmission. Mean-
while, similar to the conclusion in Section 3.1, the epidemic spread 
faster in the Pearl River Delta and Yangtze River Delta. According to our 
analysis, the more developed the economy is, the faster the epidemic 
spread, which is consistent with the conclusions of previous studies [43]. 

3.3. Validation of simulated LSTM-CA 

In this section, we compared the predictive result between LSTM, 
LSTM-CA and the actual number of confirmed cases. As is shown in 
Fig. 7, we can see that the epidemic curve simulated by LSTM-CA is more 
consistent with the real situation. We also compared StAcc of LSTM and 
LSTM-CA, and SpAcc of LSTM-CA and CA. The experimental results are 
shown in the Fig. 8 below, from which it can be drawn that LSTM-CA has 
higher accuracy than LSTM in terms of statistical number prediction. In 
terms of spatial prediction, LSTM-CA has higher spatial accuracy than 
CA. 

An accuracy assessment revealed a very high statistical average ac-
curacy (>94 %) between simulated results and actual confirmed cases in 
China from February 6, 2020 to Mar. 20, 2020, as is illustrated in Fig. 8 
(a). Meanwhile, the spatial accuracy of LSTM-CA is always approxi-
mately 90 %, as is shown in Fig. 8 (b). 

In the modeling of LSTM-CA, we not only considered the impact of 
local population density on the spread of the epidemic, but also included 
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the impact of Wuhan's population migration before the Spring Festival 
on the development and changes of the local epidemic. Therefore, we 
also analyzed the impact of population size flowing from Wuhan to 
prefecture-level cities in all provinces (except Hubei province) on the 
development of the epidemic there one month later. As shown in Fig. 9, 
the distribution of migration index on January 1 (Gregorian New Year) 
and January 25 (Lunar New Year) was highly correlated with the dis-
tribution of cumulative confirmed cases in prefecture-level cities across 
the country on February 1 and February 25. This indicates that the 
proposed LSTM-CA model can reflect the main conclusion that popula-
tion mobility drives the spread of the epidemic, and is consistent with 
the conclusion of existing studies [44]. 

4. Conclusion 

In this paper, the coupling of LSTM and CA is realized. Based on the 
advantages of LSTM in time dimension and CA in space dimension, 
LSTM and CA are integrated based on machine learning model from the 
spatio-temporal perspective of geography based on the fine-grained 
characteristics of epidemic data. The method divides the study area 
into regular grids, simulates the spatial interactions between neighbor-
hood cells with the help of CA model, and extracts the time series de-
pendencies with the help of LSTM model. The innovation lies in the 
integration of time and space information, which provides a new way to 
solve the short-term epidemic trend prediction. The hybrid model not 
only has the ability of spatially fine and near real-time prediction of 
epidemic trend, but also has the attribute of geographical information in 
the prediction results of epidemic statistics, which can be directly used 
to achieve visual expression on the map. 

Of course, the results of our proposed method also have a lot to do 
with the willingness of the public to cooperate, so changes in individual 
behavior should be considered further. Our future research will focus on 
the following aspects: First, we will combine prediction and decision- 
making, establish a complete epidemic prediction and decision- 
making linkage system, and use GIS technology to display the devel-
opment and changes of the epidemic more vividly. Second, due to 
limited data acquisition, the model in this paper cannot be verified in a 
larger scope. In the future, new data should be generated based on 
simulation environment to assist modeling. In addition, we reiterate our 
call for public health authorities around the world to provide more 
anonymous, location-based patient data so that researchers can further 
study the spatial-temporal patterns and characteristics of COVID-19 
transmission. 

Notes  

a. https://github.com/CSSEGISandData/COVID-19  
b. https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi 

:10.7910/DVN/FAEZIO  
c. https://www.resdc.cn/data.aspx?DATAID=251  
d. https://gitee.com/geohey/gh-2019-nCoV-community-data/tree 

/master/ 
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