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A B S T R A C T   

New techniques for individualized assessment of white matter integrity are needed to detect traumatic axonal 
injury (TAI) and predict outcomes in critically ill patients with acute severe traumatic brain injury (TBI). 
Diffusion MRI tractography has the potential to quantify white matter microstructure in vivo and has been used to 
characterize tract-specific changes following TBI. However, tractography is not routinely used in the clinical 
setting to assess the extent of TAI, in part because focal lesions reduce the robustness of automated methods. 
Here, we propose a pipeline that combines automated tractography reconstructions of 40 white matter tracts 
with multivariate analysis of along-tract diffusion metrics to assess the presence of TAI in individual patients with 
acute severe TBI. We used the Mahalanobis distance to identify abnormal white matter tracts in each of 18 
patients with acute severe TBI as compared to 33 healthy subjects. In all patients for which a FreeSurfer 
anatomical segmentation could be obtained (17 of 18 patients), including 13 with focal lesions, the automated 
pipeline successfully reconstructed a mean of 37.5 ± 2.1 white matter tracts without the need for manual 
intervention. A mean of 2.5 ± 2.1 tracts resulted in partial or failed reconstructions and needed to be reinitialized 
upon visual inspection. The pipeline detected at least one abnormal tract in all patients (mean: 9.1 ± 7.9) and 
accurately discriminated between patients and controls (AUC: 0.91). The number and neuroanatomic location of 
abnormal tracts varied across patients and levels of consciousness. The premotor, temporal, and parietal sections 
of the corpus callosum were the most commonly damaged tracts (in 10, 9, and 8 patients, respectively), 
consistent with prior histopathological studies of TAI. TAI measures were not associated with concurrent 
behavioral measures of consciousness. In summary, we provide proof-of-principle evidence that an automated 
tractography pipeline has translational potential to detect and quantify TAI in individual patients with acute 
severe TBI.   

1. Introduction 

Traumatic axonal injury (TAI) is the most common pathologic sub
strate of head trauma, as assessed by post-mortem examination (Brody 
et al., 2015; McGinn & Povlishock, 2016). TAI is caused by high-velocity 
translational and rotational forces that stretch and shear axons, leading 
to either primary axotomy or a secondary cascade that can result in 
further axonal injury (Hill et al., 2016). The overall extent and location 
of TAI have been shown to correlate with level of consciousness, coma 

duration, and with short and long-term cognitive dysfunction (Benson 
et al., 2007; Gennarelli et al., 1982; Jolly et al., 2021; Moe et al., 2020; 
Newcombe et al., 2010; Smith et al., 2000). Therefore, the diagnosis of 
TAI currently relies upon neurological examination of level of con
sciousness and the presence of visible white matter (WM) damage using 
routine neuroimaging techniques. However, due to its diffuse and 
microscopic nature (Adams et al., 1989; Blumbergs et al., 1995; Johnson 
et al., 2013), TAI is challenging to quantify using CT and conventional 
MRI (Betz et al., 2012), and its extent is likely underestimated in clinical 
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practice. Furthermore, individual scores obtained from the neurological 
examination (e.g., the Glasgow Coma Scale) have limited diagnostic 
utility, given that neurologic deficits may reflect a broad spectrum of 
pathophysiologic processes. 

For clinicians and the families of patients with acute severe traumatic 
brain injury (TBI), the lack of reliable diagnostic tools that measure the 
burden of TAI creates prognostic uncertainty and complicates discus
sions about continuation of life-sustaining therapy in the intensive care 
unit (ICU) (Izzy et al., 2013; Turgeon et al., 2011). Given the multifocal 
and heterogenous nature of TAI, neuroimaging studies that compare TBI 
patients at the group level are insensitive to TAI variability and therefore 
are suboptimal for gaining insight into TAI mechanisms in individual 
patients (Betz et al., 2012). New techniques for the individualized 
assessment of WM injury (Jolly et al., 2021; Kim et al., 2013; Yuh et al., 
2014) are therefore needed to enhance detection of TAI and improve the 
accuracy of outcome prediction in critically ill patients with acute severe 
TBI. 

Diffusion MRI (dMRI) probes WM tissue microstructure non- 
invasively (Basser et al., 1994), making it possible to identify TAI in 
vivo (Hashim et al., 2017; Li et al., 2011; Xu et al., 2007). Numerous 
studies have used dMRI to assess WM integrity in patients with TBI 
(Arfanakis et al., 2002; Asken et al., 2018; Galanaud et al., 2012; Hul
kower et al., 2013; Inglese et al., 2005; Newcombe et al., 2007; Zhang 
et al., 2017) and have shown its sensitivity to detect WM abnormalities 
across TBI severities (i.e., mild, moderate, severe) and recovery phases 
(i.e., acute, subacute, chronic). Typically, summary metrics such as 
fractional anisotropy (FA) and mean diffusivity (MD) are extracted from 
WM regions of interest (ROIs) that are manually drawn in subject’s 
space (Inglese et al., 2005; Donald et al., 2011) or segmented from an 
atlas (Galanaud et al., 2012; O’Phelan et al., 2018). Whole-brain voxel- 
based analysis (Van Hecke et al., 2016) and tract-based spatial statistics ( 
Smith et al., 2006) approaches are also used to compare normalized 
scalar maps between patient groups (Kinnunen et al., 2011), or between 
a control group and a patient (Jolly et al., 2021). While these approaches 
have demonstrated sensitivity to TAI (Jolly et al., 2021; Perlbarg et al., 
2009), they do not assess injury of specific WM tracts at the individual 
level. 

Diffusion-based tractography allows for the delineation and quanti
fication of specific WM pathways at the individual level. WM tracts of 
the human brain subserve specific cognitive domains (Catani & Mesu
lam, 2008; Mesulam, 1990), and diffusion abnormalities within these 
tracts correlate with domain-specific cognitive deficits after TBI (Sharp 
et al., 2014). By providing tract-specific evaluation of WM damage, 
tractography methods thus have the potential to elucidate the complex 
relationship between WM damage and cognitive deficits, while also 
informing prognostication and early decisions about continuation of 
life-sustaining therapy. However, few studies have utilized tractography 
in patients with acute TBI (D’Souza et al., 2015; Ordóñez-Rubiano et al., 
2017; Snider et al., 2019; Wang et al., 2008; Warner et al., 2010) or 
acute severe TBI (Ordóñez-Rubiano et al., 2017; Snider et al., 2019; 
Wang et al., 2008). Furthermore, dMRI tractography techniques are not 
routinely used in the clinical setting to assess the extent of TAI 
(Schweitzer et al., 2019) because the presence of focal lesions, the lower 
quality of the dMRI data compared to research settings, and the time 
feasibility constraints all limit the application of available tractography 
pipelines. 

To address these barriers to clinical translation, we tested a pipeline 
for individualized TAI assessment in patients with acute severe TBI that 
combines automated tractography with a multivariate analysis of along- 
tract diffusion metrics. We used TRACULA (TRActs Constrained by 
UnderLying Anatomy), a method for global probabilistic tractography 
with anatomical neighborhood priors (Yendiki et al., 2011), to auto
matically reconstruct 40 WM tracts at the individual level (Maffei et al., 
2021). TRACULA has been successfully applied to clinical populations 
before (Kreilkamp et al., 2017; Sarica et al., 2014) and also in patients 
with mild TBI (Goodrich-Hunsaker et al., 2018). The anatomical 

neighborhood priors in TRACULA encode information about the relative 
position of the tracts with respect to their surrounding anatomical 
structures, rather than their absolute coordinates in an atlas space. 
Therefore, TRACULA does not necessitate accurate registration to an 
atlas (Zöllei et al., 2019; Maffei et al., 2021), which can be challenging in 
the presence of lesions and may not reflect interindividual anatomical 
differences. Furthermore, in contrast to local tractography methods that 
consider the local diffusion orientation at each step, TRACULA uses a 
global approach and would thus not “stop” in the presence of a lesion. 
We previously showed that TRACULA, when trained on high-quality, 
high angular resolution, multi-shell data from the Human Connectome 
Project (Fan et al., 2016), improves the accuracy of tractography re
constructions in routine-quality single-shell data (Maffei et al., 2021) 
when compared to a commonly used multi-ROI automated local trac
tography approach (Behrens et al., 2007). These methodologic advan
tages of TRACULA suggest potential for translation of this technique to 
critically ill patients with acute severe TBI, who are not medically stable 
enough to be scanned with high angular and spatial resolution 
multi-shell dMRI sequences that may require long scan times. 

We applied TRACULA to a dMRI dataset prospectively acquired in a 
cohort of 18 critically ill patients with acute severe TBI who were 
imaged on a clinical 3 Tesla MRI scanner. We used a multivariate 
approach based on the Mahalanobis distance to capture the distinct 
ways in which WM tracts may differ in individual patients compared to 
33 healthy subjects. The Mahalanobis distance allows us to integrate 
multiple along-tract diffusion metrics (e.g., FA, MD) into a single mea
sure, and it has been shown to provide more robust results than tradi
tional univariate analyses (Dean et al., 2017; Owen et al., 2021). The 
goals of this study were: i) to test the feasibility of obtaining correct 
automated TRACULA reconstructions of WM tracts in patients with 
acute severe TBI, including those with focal lesions; ii) to implement an 
individualized multivariate approach to measure patient-specific TAI 
severity, using tract reconstructions and along-tract dMRI metrics 
derived from the automated TRACULA tractography pipeline; and iii) to 
test for associations between the degree of TAI, as measured by tract- 
specific multivariate measures, and behavioral measures of 
consciousness. 

2. Methods 

2.1. Participants 

We prospectively enrolled 18 patients (mean ± standard deviation 
age: 28.6 ± 8.7 years, age range: 18–51; 13 male) with acute severe TBI, 
sixteen of whom were enrolled as part of a previously described pilot 
study (Edlow et al., 2017), and two of whom were subsequently enrolled 
as pilot cases for an ongoing observational study (ClinicalTrials.gov 
NCT03504709; see Table 1 for additional information). Inclusion 
criteria were: 1) age 18 to 65 years; and 2) traumatic coma, defined by 
Glasgow Coma Scale (GCS) (Teasdale & Jennett, 1974) total score ≤ 6 
without eye opening on at least one neurologic examination before ICU 
admission; and 3) no eye opening for at least 24 h after injury. Exclusion 
criteria were: 1) prior history of severe brain injury or neurodegenera
tive disease; 2) life expectancy less than six months per physician 
judgment; 3) presence of metal contraindicating MRI; and/or 4) no pre- 
injury English fluency. 

We also enrolled 33 healthy control subjects (mean ± standard de
viation age 30.9 ± 8.8 years, age range: 21–59; 21 male) with no history 
of neurological (including concussions), psychiatric, cardiovascular, 
pulmonary, renal or endocrinological disease (Edlow et al., 2017). We 
tested for significant differences in age and sex between the two groups 
using respectively a nonparametric Wilcoxon sum rank test and a chi- 
square test in Python 3 (SciPy Stats 1.3.1) (Jones et al., 2001). Written 
informed consent was obtained from healthy subjects and from patients’ 
surrogate decision-makers in accordance with a study protocol approved 
by the Mass General Brigham Institutional Review Board. 
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2.2. Behavioral assessment of consciousness 

The level of consciousness (LOC) was prospectively assessed by a 
neurologist on the investigator team (B.L.E.) immediately prior to the 
MRI. For each patient, the LOC was assessed via behavioral evaluation 
with the Coma Recovery Scale-Revised (CRS-R) (Giacino et al., 2004), 
and the Confusion Assessment Protocol (CAP) (Sherer et al., 2005). Per 
routine ICU care at our institution, neurological examinations and GCS 
assessments were performed off of sedation every-two-to-four hours 
(depending on clinical stability and safety considerations) by treating 
clinicians. ICU clinician GCS assessments were used to determine time 
from injury to coma emergence (i.e., eye opening or localization to 
noxious stimulation) and time to command-following. If a patient’s 
neurological examination fluctuated, the first behavioral evidence of 
coma emergence and command-following were reported. The GCS Total 
was included as a primary dependent variable in this study given its 
widespread use clinically; however, its limitations (i.e., only moderate 
psychometric properties, administration process is not standardized) 
must be acknowledged (Bodien et al., 2021). The CRS-R, which has 
strong psychometric properties and a standardized administration pro
cess (Giacino et al., 2004; Teasdale et al., 2014), along with the CAP, 
were used in addition to the GCS to more precisely classify each patient’s 
LOC into the following categories: coma, vegetative state, minimally 
conscious state minus (MCS-; MCS without language function), MCS plus 
(MCS+; MCS with language function), and post-traumatic confusional 
state (PTCS). Functional outcome at 6 months was measured with the 
Glasgow Coma Scale-Extended (GOS-E) (Wilson et al., 1998) and with 
the Disability Rating Scale (DRS) (Rappaport et al., 1982). Patients and 
their surrogates were assessed either in-person at the study site or, if this 
was not feasible, through validated phone questionnaires. All outcome 
assessments were conducted by a single investigator (B.L.E). 

2.3. MRI data acquisition 

MRI data were acquired as soon as the treating clinicians deemed 
patients stable for transport. Diffusion weighted imaging (DWI) data 

were acquired in the ICU on a 3 T Skyra scanner (Siemens Medical So
lutions, Malvern, PA) with a 32-channel head coil using an echo-planar 
imaging (EPI) sequence with the following parameters: 2x2x2mm, 60b =

2, 000s/mm2 and 10b = 0s/mm2 volumes, TR = 13,700 ms, and TE =

98ms. Out of 33 healthy controls and 18 patients, 4 healthy controls and 
9 patients were scanned using simultaneous multi-slice (SMS) acceler
ation (acceleration factor = 2) (Setsompop et al., 2012) which resulted 
in slightly different TR and TE (TR = 6,700ms, TE = 100ms). All other 
parameters remained the same. A previous publication from our group 
that included data from the same patients showed that diffusion-derived 
connectivity metrics did not differ significantly between these two ac
quisitions (Snider et al., 2019). In addition, we conducted a linear mixed 
effects model with a random intercept for subject to test whether our 
dependent variables (i.e., average DM of affected tracts and number of 
affected tracts) differed for patients with SMS (n = 9) and without SMS 
(n = 8). The length of the diffusion sequence was 8 min and 46 s. Multi- 
echo MPRAGE structural images (van der Kouwe et al., 2008) were also 
acquired with the following parameters: 1x1x1mm, acquisition matrix =
256X256, TE = 1.69ms, TR = 2530ms, flipangle = 7◦. All patients and 
healthy subjects were imaged using the same scanner and head coil. 

2.4. Diffusion MRI data processing 

Diffusion weighted images were skull stripped and corrected for 
eddy-current distortions and movement in FSL 6.0.1 (Andersson and 
Sotiropoulos, 2016). The tensor and the ball-and-stick model were fit to 
the data using DTIFIT and BEDPOSTX (Behrens et al., 2003) in FSL 6.0.1, 
respectively. Automated reconstruction of 40 major WM pathways was 
performed using the global probabilistic tractography algorithm TRA
CULA in FreeSurfer 7.2.0 (Maffei et al., 2021; Yendiki et al., 2011) using 
default parameters (200 initial iterations [nburnin]; 7500 sample paths 
[nsample]). Although TRACULA can reconstruct a total of 42 WM tracts, 
we decided to exclude the right and left fornix, because optimal iden
tification of these WM bundles requires segmentation of thalamic sub
nuclei that are not provided by the standard “recon-all” FreeSurfer 
processing pipeline. The mathematical formulation of TRACULA has 

Table 1 
Demographics and Clinical Characteristics of the TBI patients. CRS-R: Coma Recovery Scale-Revised; CRS-R-T: Total score of the CRS-R; CRS-R-M: Motor CRS-R sub- 
scale; CRS-R-A: Auditory CRS-R sub-scale; CRS-R-O/V: Oromotor-verbal CRS-R sub-scale; DRS: Disability Rating Scale; GCS: Glasgow Coma Scale; GCS-T: Total score of 
the GSC; GOS-E: Glasgow Outcome Scale-Extended; LOC: level of consciousness; MCS+ = minimally conscious state plus, evidence of language function (e.g., 
reproducible movement to command, object recognition, intelligible verbalization); MCS- = minimally conscious state minus, no evidence of language function, but 
shows at least one behavior consistent with a minimally conscious state (e.g., automatic motor response); MVA: motor vehicle accident; Ped vs car: pedestrian versus 
car; PTCS: post-traumatic confusional state; SD: standard deviation; VS: vegetative state. *Unable to determine exact date based on intensive care unit clinician as
sessments. We used 1 day for further analysis. **Patients who died in the ICU after withdrawal of life sustaining therapy and before command-following was observed.  

ID Age Sex Mechanism of 
injury 

Days in 
Coma 

Days Until 
Command- 
Following 

Day of 
MRI 

LOC at 
MRI 

GCS-T 
at MRI 

CRS-R- 
T at 
MRI 

CRS-R- 
M at 
MRI 

CRS-R- 
A at 
MRI 

CRS-R- 
O/V at 
MRI 

DRS 6 
month 

GOS-E 6 
month 

P1 27 M MVA 1 1 16 PTCS 15 23 6 4 3 7 3 
P2 21 M Ped vs car 1 6 1 MCS- 7 4 3 0 1 0 7 
P3 19 F MVA 5 10 3 Coma 5 1 1 0 0 0 7 
P4 19 M Fall 1 2 17 PTCS 14 23 6 4 3 0 7 
P5 34 M Fall 6 26 15 VS 7 3 0 0 2 8 3 
P6 28 F MVA 2 9 7 VS 9 6 2 0 1 5 3 
P7 45 M MVA 1 6 13 MCS+ 13 18 5 3 3 4 5 
P8 33 M Fall 1 7 8 PTCS 11 20 5 4 2 5 3 
P9 32 M Ped vs car 1 8 11 MCS+ 10 9 2 3 1 5 4 
P10 24 M Assault 1 7 12 MCS- 10 10 5 1 1 3 5 
P11 22 F Ped vs car 1 9 14 PTCS 14 22 6 4 3 0 7 
P12 27 F Fall 13 ** 8 Coma 5 1 1 0 0 30 1 
P13 18 M Fall 1 2 4 MCS+ 10 12 5 3 1 0 7 
P14 51 M Ped vs car 8 ** 8 VS 6 3 1 0 0 30 1 
P15 29 M Ped vs car 3 8 7 MCS- 7 3 3 0 0 3 5 
P16 33 M Fall 3 3 3 MCS+ 10 12 5 4 0 2 5 
P17 26 F Ped vs car 4 ** 12 VS 8 3 1 0 0 30 1 
P18 26 M Fall 1 0–2* 28 PTCS 11 18 6 3 2 18 3 
Mean 

(SD) 
28.6 
(8.6)   

3.0 
(3.3) 

7.0 (6.1) 10.4 
(6.5)  

9.6 
(3.1) 

10.6 
(8.1) 

3.5 
(2.2) 

1.8 
(1.8) 

1.3 
(1.2)   

Range 18–51   1–13 1–26 1–28  5–15 1–23 0–6 0–4 0–3 0–30 1–7  
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been described elsewhere (Yendiki et al., 2011). Briefly, the algorithm 
models a pathway as a cubic spline, which is initialized with the median 
streamline of the training set. A random sampling algorithm is used to 
draw samples from the posterior probability distribution of the pathway, 
which is decomposed into the likelihood term and the prior term. The 
likelihood term fits the shape of the spline to the diffusion orientations 
obtained from the ball-and-stick model in the voxels that it goes 
through. The prior term fits the shape of the spline to its anatomical 
neighborhood, given the manually labeled examples of this pathway 
from the training set and the anatomical segmentation volumes of both 
test and training subjects. The number of control points of the cubic 
spline were chosen as previously described (Maffei et al., 2021). 

Along-tract tensor-derived metrics obtained from DTIFIT were 
extracted for each of the reconstructed tracts to perform a pointwise 
assessment of streamline tractography attributes (Jones et al., 2005). For 
each of the 40 tracts, 1D along-tract profiles of FA and MD were 
generated by projecting the value of each measure from every point on 
every automatically reconstructed streamline to its nearest point on a 
reference streamline, as previously described (Maffei et al., 2021). The 
reference streamline is the mean of the training streamlines for each 
tract, ensuring that all subject data were sampled at the same number of 
cross-sections along a given bundle. Before extracting the diffusion 
measures, the posterior probability distribution estimated by TRACULA 
was thresholded by masking out all values below 20 % of the maximum, 
which is the default threshold in TRACULA (Maffei et al., 2021; Yendiki 
et al., 2011; Zöllei et al., 2019). For each subject, the quality of the DWI 
data was assessed by extracting volume-by-volume translation and 
rotation estimates obtained from the results of the eddy-current distor
tion correction step, as well as slice-by-slice signal drop-out measures 
specific to DW-MRI (Benner et al., 2011; Yendiki et al., 2014). The 
quality of the WM tract reconstruction was visually assessed as described 
in Section 2.6. All the pre-processing steps detailed above are performed 
automatically by the TRACULA pipeline. 

2.5. Structural MRI data processing 

The anatomical segmentation that was needed to compute the 
anatomical neighborhood priors in TRACULA was obtained by 
analyzing the structural T1-weighted image in FreeSurfer 7.1.1 (Dale 
et al., 1999; Fischl et al., 1999; Fischl et al., 2004). The automated 
“recon-all” pipeline was run with default parameters, except for the 
“bigventricle” option, which was added to optimize segmentation in 
patients that may have enlarged ventricles post-injury. The obtained 
segmentation volumes included a combination of the Desikan-Killiany 
cortical parcellation labels (Desikan et al., 2006) and the standard 
FreeSurfer subcortical segmentation (Fischl et al., 2002). We did not 
visually inspect the accuracy of the obtained segmentations and did not 
manually edit the recon-all outputs, as we aimed at assessing the feasi
bility of obtaining automated TRACULA reconstructions independent of 
the accuracy of the segmentation volumes. To compute the prior prob
abilities on the anatomical neighbors of the tracts using TRACULA, the 
anatomical segmentations were transformed to the subject’s individual 
dMRI space. This within-subject, dMRI-to-T1 alignment was performed 
using a boundary-based, affine registration method (Greve & Fischl, 
2009). To ensure that the relative position of the anatomical structures 
was the same for all subjects, and to map the median streamline from the 
training data to the subject during initialization, all subjects’ images 
were mapped onto a template brain. We used the non-linear symmetric 
normalization (SyN) in ANTs (Avants et al., 2008) to map each subject’s 
images onto an FA template constructed from the training dataset 
(Maffei et al., 2021). It is important to highlight that this step is only 
used to initialize the reconstruction of the tract, which is then refined by 
fitting it to the anatomy of the individual subject. For each patient, the 
results of the within-subject and subject-to-template registration were 
visually checked to ensure no major mis-alignment errors were present 
due to lesions. 

2.6. Quality assessment of tract reconstructions 

To assess the feasibility of implementing TRACULA in a clinical 
setting, we performed a qualitative assessment to evaluate the accuracy 
of the tract reconstructions in patients with acute severe TBI. We 
considered the application of TRACULA in this population to be feasible 
if more than 50 % of the automated reconstructions were successful. For 
this qualitative assessment, a study investigator (C.M.) visually inspec
ted all 40 tracts for all patients. Reconstructions were considered suc
cessful if the tracts traversed the WM regions and reached the cortical 
areas used to define these tracts in the manual labeling protocols. These 
protocols were carefully defined by the known anatomy of each tract 
and are detailed in (Maffei et al., 2021). 

When a focal lesion was present, the reconstruction was considered 
successful if the tract reached the cortical termination regions delineated 
in (Maffei et al., 2021), even if the tract’s course was altered by the 
presence of the lesion. As TRACULA uses a global probabilistic approach 
to estimate the tracts, post-processing steps to remove false positive 
reconstructions were not necessary. However, when a suitable solution 
for the initial reconstruction of the pathway is not found, the tract ap
pears as a single curve. This can be due to errors in the subject-to- 
template registration step, or to a misplacement of the FreeSurfer seg
mentation labels in the presence of lesions. We refer to these re
constructions as “failed reconstructions” (See Fig. 1 for a simulated 
example). Moreover, as a single threshold is used across all tracts and 
groups to threshold the posterior probability of the tract (i.e., 20 % of the 
maximum), some reconstructions can result in incomplete tracts or in 
unusually small tracts for which many voxels did not survive the 
threshold. We refer to these reconstructions as “partial reconstructions” 
(See Fig. 1 for an example). 

We reran TRACULA on the tracts that resulted in either failed or 
partial reconstructions reinitializing the control points of the initial 
spline by setting the reinit parameter to 1 (Yendiki et al., 2011). This 
would rerun the estimation of the specified tract using a different set of 
initial control points, thereby changing the initial guess of the tract. We 
retained the re-initialized reconstructions if they resulted in correct 
tracts as defined above. The same criteria were applied to patients and 
healthy subjects. This was the only manual intervention performed in 
the TRACULA pipeline. Tracts that had partial or failed reconstructions 
after reinitialization were excluded from subsequent analyses. 

2.7. Multivariate analysis 

Fig. 2 shows the steps of the multivariate analysis. To measure the 
extent of TAI in each patient, we employed a multivariate analysis that 
included along-tract measures of both FA and MD. We focused on along- 
tract measures of FA and MD, as these microstructural measures are the 
most commonly studied in the field of TBI (Hulkower et al., 2013; Mac 
Donald et al., 2007). For this analysis we used both the tracts that had 
been successfully reconstructed without need of reinitialization and the 
tracts that needed to be reinitialized (Section 2.6). For each subject, each 
tract was divided uniformly in i = 1, .., 4 segments and the along-tract 
measures of FA and MD, extracted at each point along the tract in 
TRACULA (Section 2.4), were averaged within each segment to obtain a 
total of eight features for each tract (FA1, FA2, FA3,FA4,MD1, MD2, MD3, 
MD4). We collapsed the along-tract measurements in four equidistant 
segments to ensure that, for each tract, the number of features (i.e., the 
measures for each tract; m = 8) was smaller than the number of obser
vations (i.e., the number of healthy control subjects; n = 33). The 
number of segments was kept constant across all 40 tracts to allow inter- 
tract comparison of multivariate measures. To meet normality assump
tions, we conducted Shapiro-Wilk tests in Python 3 using SciPy Stats 
1.3.1 (Jones et al., 2001) and tested for the normality of FAi and MDi for 
each of the 40 tracts in the control group. For the tracts for which the 
distribution of FAi or MDi departed significantly from normality 
(p < 0.05) we applied a rank-based inverse normal transformation to the 
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data for both healthy controls and patients in Python 3 (Blom constant =
3/8, (Blom, 1958)), as in (Jolly et al., 2021). 

For each of the 40 WM tracts, we compared the 8-D feature vector of 
dMRI measures (FA1,⋯,4 and MD1,⋯,4) between each patient and the 

healthy population based on the Mahalanobis distance DM, which is 
defined as (Mahalanobis, 1936): 

D2
M = (x − μ)T ⋅C− 1⋅(x − μ)

Fig. 1. Simulated examples of failed, partial, and successful TRACULA reconstructions for a representative tract (the left arcuate fasciculus) in a control subject. 
Reconstructions are shown thresholded (20% of the maximum posterior probability) and unthresholded. Reconstructions are shown on sagittal fractional anisotropy 
scalar maps. 

Fig. 2. Schematic of the automated individualized pipeline. After pre-processing of diffusion weighted imaging (DWI) and structural T1-weighted imaging data, 
which included extraction of the FreeSurfer (FS) anatomical labels, the 40 white matter tracts were reconstructed in TRACULA. Along-tract measures derived from 
the diffusion tensor (DT) were then extracted for four equidistant segments for each of the 40 tracts. We checked the normality of the distribution for these measures 
in the controls and applied a Rank-based inverse normal transformation (INT) to the tracts for which assumptions of normality were not met (p < 0.05). We then 
computed the Mahalanobis distance (DM) for each tract using along-tract fractional anisotropy (FA) (FA1, …, FA4) and mean diffusivity (MD) (MD1, …, MD4) as 
features (m = 8) (here shown as a simplified 2D example). Finally, we built individual patient profiles based on the distance of each patient from the controls for each 
of the 40 white matter tracts. 
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where x is the feature vector of a specific WM tract in a patient, μ is the 
mean feature vector of the same tract over controls, and C is the mXm 
covariance matrix of the feature vector in controls. The values of D2

M 
reflect how far a patient, represented as a point in the 8-D feature space, 
is from the distribution estimated from the healthy controls. The 
Mahalanobis distance has been used in neuroimaging studies, e.g., to 
classify between patients with neurological diseases and controls (Lin
demer et al., 2015) and to detect individual neurodevelopmental dif
ferences (Dean et al., 2017). We computed the DM between each 
individual patient and the healthy controls for each of the 40 tracts to 
build individual profiles and identify the location and severity of WM 
abnormalities in patients. For multivariate Gaussian data, the distribu
tion of D2

M values is known to be Chi-squared with degrees of freedom 
equal to the number of features (Gnanadesikan & Kettenring, 1972). We 
computed the p-values corresponding to the Chi-square statistic in Py
thon 3 using SciPy Stats 1.3.1 (Jones et al., 2001) and considered a WM 
tract to be abnormal if its p − value was < 0.001(p < 0.05, Bonferroni 
adjusted for multiple comparisons across 40 tracts). We extracted the 
total number of abnormal tracts for each patient. 

To measure the accuracy of the pipeline in the task of detecting TAI, 
we computed its performance in discriminating between patients and 
controls. First, we computed the DM between each control and the 
remaining control population in a leave-one-out fashion. For each of the 
33 health controls, we used the multivariate distribution of along-tract 
dMRI measures (FA1,⋯,4 and MD1,⋯,4) from the remaining 32 heathy 
controls to compute the DM of each WM tract and extract the total 
number of abnormal tracts at a = 0.001. We used a Wilcoxon rank sum 
test in Python 3 (SciPy Stats 1.3.1) to assess differences in the number of 
abnormal tracts between patients and controls. We then performed a 
receiver operating characteristic (ROC) analysis by varying simulta
neously the alpha threshold used to obtain the number of abnormal 
tracts (range = 0.0001 − 0.05, step = 0.001) for each subject, and the 
number of abnormal tracts used to label a subject as control or patient 
(range = 1 : 40,step = 1). For each combination of alpha and number of 
abnormal tracts, we computed the false positives (FP; number of con
trols classified as patients), the false negative (FN; number of patients 
classified as controls), the true positives (TP; number of patients clas
sified as patients), and the true negatives (TN; number of controls 
classified as controls) to compute the true-positive rate (TPR;TP/(TP +

FN)) and false-positive rate (FPR; FP/(FP + TN)). We obtained the ROC 
curve by plotting the TPR as a function of FPR and computed the area 
under the ROC curve (AUC) to quantify accuracy. To visualize the dif
ference in distribution of D2

M values between the two populations we 
plotted the probability density functions of D2

M values for patients and 
controls for each of the 40 tracts. 

Finally, we compared the results obtained using all tracts – those that 
were successfully reconstructed and those that were reinitialized – to the 
results obtained using only the tracts that were successfully recon
structed without reinitialization (Section 2.6). We used a Wilcoxon 
signed-rank test in Python 3 (SciPy Stats 1.3.1) to assess differences in 
the number of abnormal tracts and their mean DM per patient. 

2.8. Testing for the effect of head motion 

For each subject, we computed a total motion index (TMI) as pre
viously described in (Yendiki et al., 2014). The TMI is a composite score 
of the four motion measures automatically extracted in TRACULA: i) 
average volume-by-volume translation (degrees), ii) average volume-by- 
volume rotation (mm), iii) percent of slices with excessive intensity 
drop-out, and iv) average drop-out score for slices with excessive in
tensity drop-out (Section 2.4) (Yendiki et al., 2014). For each subject, 
the TMI was computed in the following manner: 

TMI =
∑4

j=1

xmj − Mj

Qj − qj  

where j = 1,⋯,4 are the four motion measures listed above, xmj is the 
value of the j-th motion measure for the m-th subject and Mj, Qj, and qj 

are respectively the median, upper quartile, and lower quartile of the j- 
th measure over all the subjects (Yendiki et al., 2014). Rather than 
excluding subjects based on their TMI, we have included this measure in 
our analyses. Specifically, to ensure differences in D2

M values between 
patients and controls were not influenced by head motion in the scanner, 
we first used a nonparametric Wilcoxon rank sum test in Python 3 (SciPy 
Stats 1.3.1) to assess if there were statistically significant differences in 
head motion between the patients and controls. Then, we conducted a 
linear mixed effects regression model in R (RStudio Team, 2020) using 
the ‘lmer’ function in the “lme4” package to test if TMI significantly 
predicted D2

M, while controlling for group (i.e., control, patient) and 
tract (i.e., 40 reconstructed tracts), and including participant as a 
random intercept. 

2.9. Testing the relationship with behavioral measures 

We conducted a series of analyses to test for associations between the 
degree of TAI, as measured by tract-specific multivariate measures, and 
the following behavioral measures of consciousness: GCS Total, CRS-R 
Total, days in coma as defined by the GCS, days to command- 
following as defined by the GCS. 

First, we performed non-parametric Spearman correlations to sup
port variable selection and model building for the primary regression 
analyses. A correlation matrix was constructed in R (RStudio Team, 
2020) using the ‘cor’ function in the “stats” package. The matrix con
sisted of the dependent variables (i.e., GCS Total, CRS-R Total, days in 
coma as defined by the GCS, days to command-following as defined by 
the GCS), the independent variables (i.e., average DM of affected tracts 
and number of affected tracts), and potential confounding variables (i.e., 
age, TMI, days to MRI) (Edlow et al., 2016). P-values were adjusted for 
multiple comparisons using the Bonferroni correction method (p =

0.0009,0.05/55 tests) (Jafari & Ansari-Pour, 2019). 
Next, linear regressions were planned for completion in R using the 

‘lm’ function (RStudio Team, 2020). Separate linear regression models 
would be conducted for each of the dependent variables (i.e., GGS Total, 
CRS-R Total, days in coma, days to command-following) with the 
average DM of affected tracts and the number of affected tracts as in
dependent variables, and any identified confounding variables as 
covariates. Predictor variables that were significantly correlated with 
one another would be included in separate models to avoid 
multicollinearity. 

Then, an ordinal logistic regression analysis was applied to predict 
LOC, given the categorical nature of this variable as defined by the CRS- 
R (i.e., coma, vS MCS-, MCS+, PTCS). The ordinal logistic regression was 
performed in R (RStudio Team, 2020) using the ‘plor’ function from the 
“MASS” package (Venables & Ripley, 2002) with LOC as the dependent 
variable; the average DM of affected tracts and the number of affected 
tracts as independent variables, and any identified confounding vari
ables as covariates (i.e., determined via univariate ordinal logistic 
regression analyses between LOC and age, days to MRI, and TMI). 

Finally, to assess the association between dMRI-derived measures of 
TAI and level of function after TBI, non-parametric Spearman correla
tions were conducted to test the relationship between average DM of 
affected tracts and number of affected tracts with DRS at 6-month 
follow-up. To examine the relationship between dMRI-derived mea
sure of TAI and global outcome after TBI, an ordinal logistic regression 
was applied to assess the relationship between average DM of affected 
tracts and number of affected tracts and the GOS-E at 6-month follow-up 
with the following levels: 1 = Dead, 2 = Vegetative State, 3 = Low Se
vere Disability, 4 = Upper Severe Disability, 5 = Low Moderate 
Disability, 6 = Upper Moderate Disability, 7 = Low Good Recovery, 8 =
Upper Good Recovery. 
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3. Results 

3.1. Patient demographics and clinical characteristics 

Patient demographics and clinical characteristics are provided in 
Table 1, including clinical indicators of coma duration (i.e., days in 
coma, days until command-following, level of consciousness at MRI), 
behavioral measures of consciousness (i.e., GCS and CRS-R total scores), 
including subscales measuring language and motor function, and clin
ical indicators of functional outcomes at 6 months post-injury. A 
nonparametric Wilcoxon sum rank showed no significant differences in 
age between the two groups (W = − 1.12, p = 0.26). A chi-square test of 
independence showed no significant difference in sex between groups 
(X2 = 0.62, p = 0.42). 

3.2. Quality assessment and feasibility of tractography reconstructions 

Fig. 3 shows the reconstruction of the 40 tracts for two representative 
patients, one without focal lesions and one with a large right frontal 
hemorrhagic contusion. We observed that the TRACULA pipeline suc
cessfully reconstructed 93 % of the tracts (mean: 37.52; SD: 2.18) across 
all patients without manual intervention, exceeding our feasibility 
threshold of 50 % by 43 % (Section 2.6). 

Fig. 4 reports the number of reconstructions for each patient that i) 
were reconstructed without the need for reinitialization, ii) resulted in 
either partial or failed reconstruction and were reinitialized successfully, 
and iii) resulted in partial or failed reconstructions even after reinitial
ization (See Section 2.6). Overall, an average of 37.5 tracts (range =

33 − 40) resulted in complete reconstructions, 2.5 resulted in partial or 
failed reconstructions and were reinitialized, 0.2 tracts resulted in par
tial reconstruction after reinitialization, and 0.3 in failed reconstructions 
after reinitialization across all patients. For a complete list of tracts that 
were reinitialized for each patient see Supplementary Table S1. In one 
patient (P1) the FreeSurfer “recon-all” stream failed due to the presence 
of a massive lesion that injured a substantial portion of the cerebral 
cortex in the right hemisphere. This patient was thus excluded from the 
TRACULA pipeline and is not reported in further results. For five of the 
remaining 17 patients (P2, P3, P6, P12, P16), reconstructions were 
complete and did not require reinitialization, even in the presence of 
focal lesions (P2, P6, P12) (Supplementary Fig. S1). For the remaining 
twelve patients, a small number of tracts (mean = 2.47, range = 1 − 7) 
resulted in failed or partial reconstructions and required reinitialization. 

For nine patients out of twelve, reinitialization led to successful re
constructions (as defined in Section 2.6). For one of these twelve pa
tients (P4) two tracts were only partially reconstructed after 
reinitialization (MCP, LH CST), and for two patients (P10, P14) two and 
three tracts respectively (P10: ACOMM, RH UF; P14: ACOMM, RH SLFII, 
CC BODYPF) did not improve after reinitialization and resulted in failed 
reconstructions (Fig. 3, P14). Upon visual inspection, failed or partial 
reconstructions were attributable to hemorrhagic contusions in the 
temporal and frontal lobes, respectively, which caused disruption of 
three tracts each (Supplementary Fig. S2). 

3.3. Multivariate individualized assessment of white matter damage 

The Shapiro-Wilk test showed that the distribution of FAi and MDi 
departed significantly from normality (p − value < 0.05) in 8.6 tracts per 
measure on average in the controls. Supplementary Table S2 reports the 
tracts along with the W − and p − value. We applied a rank-based inverse 
normal transformation to these tracts for both healthy controls and 
patients before proceeding with the multivariate analysis (Section 2.7). 
Fig. 5 shows the D2

M-based individual profiles obtained from the 
multivariate analysis for four representative patients at different levels 
of consciousness (Coma, vS MCS, PTCS). Individual profiles for all 17 
patients are shown in Supplementary Fig. S3. The individual profiles 
show the Mahalanobis distance of each of the 40 WM tracts from the 
multivariate distribution of diffusion measures (along-tract FA and MD 
values) for that tract in the control population. We considered a WM 
tract to be abnormal if its distance exceeded the critical value of the Chi- 
squared statistic at α = 0.001 (pink dashed line in Fig. 5) (Section 2.7). 
The number and type of abnormal tracts varied across LOC (Fig. 5, 
Supplementary Fig. S3). To investigate whether a common pattern of 
TAI localization was visible across individuals, we grouped the recon
structed WM tracts as follows: i) commissural tracts: ACOMM, CC- 
BODYC, CC-BODYT, CC-BODYPF, CC-BODYP, CC-BODYPM, CC-GENU, 
CC-ROSTRUM, CC-SPLENIUM; ii) projection tracts: CST, ATR, AR, OR; 
iii) association tracts: all the other WM tracts. Commissural tracts were 
shown to have overall higher D2

M values (Supplementary Fig. S4) that 
resulted in a higher number of significantly extreme values (p < 0.001) 
across patients compared to projection and association tracts (Supple
mentary Fig. S5). Specifically, the CC-BODYPM, the CC-BODYP, and CC- 
BODYT resulted abnormal in 10, 9, and 8 patients respectively. To 
ensure these results were not driven by the presence of significant 
midline shift in the patients, the amount of midline shift at the septum 

Fig. 3. TRACULA reconstructions. The 
40 tracts automatically reconstructed in 
TRACULA are shown in 3D sagittal view 
(right hemisphere) for one control and 
two patients, one with no focal lesions 
(P13), and one with a focal lesion in the 
right frontal lobe (P14). For each sub
ject, tracts are overlaid on the T1- 
weighted structural volume. Color la
bels are reported only for tracts visible 
in the figure. Complete list of WM tracts 
abbreviations: ACOMM: anterior 
commissure; AF: arcuate fasciculus; AR: 
acoustic radiation; ATR: anterior 
thalamic radiation; CC BODYC: central 
section of the body of the CC; CC 
BODYP: parietal section of the body of 
the CC; CC BODYPF: prefrontal section 
of the body of the CC; CC BODYPM: 

premotor section of the body of the CC; CC BODYT: temporal section of the body of the CC; CC GENU: genu of the CC; CC ROSTRUM: rostrum of the CC; CC 
SPLENIUM: splenium of the CC; CBD: dorsal portion of cingulum bundle; CBV: ventral portion of the cingulum bundle; CC: corpus callosum; CST: cortico-spinal tract; 
EMC: extreme capsule; FAT: frontal Aslant tract; ILF: inferior longitudinal fasciculus; LH: left hemisphere; ILF: middle longitudinal fasciculus; MVA: motor vehicle 
accident; OR: optic radiation; Ped vs car: pedestrian versus car; RH: right hemisphere; SLF I,II,III: first, second, and third branch of the superior longitudinal 
fasciculus; UF: uncinate fasciculus.   
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Fig. 4. The number of correct reconstructions that 
did not need to be reinitialized (blue), the number of 
correct reconstructions after reinitialization (pink), 
and number of tracts that resulted in partial (red) or 
failed (maroon) reconstructions even after reinitiali
zation are shown for each patient. * For P1, the 
FreeSurfer automated segmentation pipeline failed 
due to the presence of a massive lesion, which made 
it infeasible to run the TRACULA pipeline. Recons: 
reconstructions; Reinit: reinitialized. (For interpre
tation of the references to color in this figure legend, 
the reader is referred to the web version of this 
article.)   

Fig. 5. Individual Tract Profiles. The figure shows 
the individual profiles for four representative 
subjects, each with a different level of conscious
ness (Coma, vS MCS+, PTCS). The Mahalanobis 
distance for the reconstructed tracts is plotted 
using polar bar plots. The pink dashed line corre
sponds to the critical value of the Chi-squared 
statistic at α = 0.001. Bars that extend beyond 
the dashed line represent tracts for which the 
multivariate diffusion measures (along-tract FA 
and MD values) were significantly different from 
the multivariate distribution of those measures in 
controls and were considered damaged. White 
matter tracts are grouped in commissural (red), 
associative (green), and projection pathways 
(blue). The 3D reconstructions of the 40 WM tracts 
are shown for a representative control subject in 
sagittal and coronal view, color coded based on 
the group they belong to. MCS+: minimally 
conscious state plus; PTCS: post-traumatic confu
sional state; VS: vegetative state; WM: white 
matter. For a complete list of WM tract abbrevia
tions see Fig. 3. (For interpretation of the refer
ences to color in this figure legend, the reader is 
referred to the web version of this article.)   
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pellucidum and pineal gland in each patient was measured by an neu
rocritical care physician (author B.L.E.) on the T1-weighted structural 
images (Ropper, 1986). Minimal mass effect and midline shift in the 
patient cohort was observed at the time of the MRI (Supplementary 
Table S1), indicating that midline shift does not account for the higher 
D2

M values observed in the CC-BODYPM, the CC-BODYP, and CC- 
BODYT. For each patient we extracted the total number of abnormal 
tracts. On average, 9.1 ± 7.9 SD WM tracts were abnormal in patients 
with TBI (Fig. 6). 

To investigate the accuracy of the multivariate pipeline at detecting 
TAI, we quantified its performance in classifying patients versus con
trols. We first computed the DM for each control in a leave-one-out 
fashion and extracted the number of tracts that exceeded the critical 
value of the Chi-squared statistic at α = 0.001 for each control. On 
average 1.36 ± 1.38 tracts appeared to have significantly abnormal D2

M 
values in controls (Fig. 6, right panel). However, the mean DM of these 
tracts was lower than the mean DM of the abnormal tracts in controls (35 
and 74 respectively). A Wilcoxon sum rank test showed a significant 
difference between the number of abnormal tracts (W = 4.37, p =

1.22e − 05) and between the DM of these tracts (W = 7.11, p =

1.08e − 12) in patients versus controls. We then performed a ROC 
analysis to measure the performance of the pipeline in discriminating 
between patients and controls and found an accuracy of 0.91 (Supple
mentary Fig. S6). To visualize the difference in D2

M values between the 
two populations we plotted the probability density functions of D2

M for 
patients and controls. Fig. 7 shows the probability density functions of 
D2

M values for the different sections of the corpus callosum for patients 
and controls. For subjects with severe TBI, D2

M values are shifted to the 
right suggesting a larger mean and greater degree of microstructural 
deviation from the control reference group. Probability density func
tions of D2

M values for patients and controls for all 40 tracts are shown in 
Supplementary fig. S7. 

Finally, a Wilcoxon signed-rank test showed no significant difference 
in the number of abnormal tracts (p = 0.15) and in the mean DM(p =
0.17) per patient when analyses were conducted including only the 
tracts that had been successfully reconstructed without the need for 
reinitialization (i.e., discarding tracts that were reinitialized) (Supple
mentary Fig. S8). The accuracy in discriminating between patients and 
controls also did not change (AUC = 0.91). This suggests that the low 
number of tracts that needed to be reinitialized across subjects did not 
significantly impact the overall individualized assessment of TAI. 

3.4. Effects of head motion and other confounding variables 

The TMI and the four motion measures used to computei it are re
ported for each subject in Supplementary Table S1. A nonparametric 
Wilcoxon sum rank test revealed a non-statistically significant difference 
in TMI between patients and controls (W = 1.91, p = 0.05). Results of 
the linear mixed effects model revealed that TMI did not significantly 
predict D2

M (B = − 0.18, SE = 0.23, t(df) = − 0.77(46.78), p = 0.44). 
However, group was a significant predictor of D2

M (B = 17.42,SE = 3.65,
t(df) = 4.77(46.79)p < 0.001), with patients demonstrating signifi
cantly higher values than controls, as expected given how D2

M is calcu
lated. See Supplementary Table S1 for full results of the linear mixed 
effects model. Taken together, these results emphasize that the greater 
number of affected tracts detected for patients versus controls was not 
confounded by head motion in the scanner. 

Results of the linear mixed effects model testing for the effect of 
differences in acquisition sequences (with or without SMS) showed that 
SMS, dichotomous predictor variable with two levels (i.e., with SMS, 
without SMS), was not significantly associated with average DM of 
affected tracts (B = 26.66, SE = 14.51, t = 1.84, p = 0.09 ) or 
number of affected tracts (B = 0.05,SE = 4.52,t = 0.01,p = 0.99). This 
null effect held whether head motion was accounted for in the model or 
not, emphasizing the robustness of the result. Finally, this null effect was 
the same when average DM of affected tracts or number of affected tracts 
was derived using tracts that completed reconstruction only (Supple
mentary Note). 

3.5. Relationship with behavioral measures of consciousness 

Average DM of affected tracts was not significantly correlated with 
GCS-Total, (rho = − 0.16, p = 0.54), CRS-R Total (rho = − 0.12, p =

0.65), days to command-following (rho = 0.32, p = 0.26), or days in 
coma (rho = − 0.00, p = 0.99). Similarly, number of affected tracts was 
not significantly correlated with GCS-Total (rho = − 0.29, p = 0.25), 
CRS-R Total (rho = − 0.33, p = 0.19), days to command-following 
(rho = 0.13, p = 0.65 ), or days in coma (rho = 0.15, p = 56). Addi
tionally, none of the potentially confounding variables (i.e., age, TMI, 
days to MRI) showed significant correlations with the average DM of 
affected tracts or the number of affected tracts. Complete results from 
the non-parametric Spearman correlations are reported in Supplemen
tary Table S1. The proposed linear regression models using average DM 
of affected tracts and number of affected tracts to predict GCS-Total, 

Fig. 6. Number of affected tracts per subject. Left panel: The number of abnormal WM tracts is shown for each patient with TBI. A tract was considered abnormal if 
its p − value, corresponding to a Chi-square statistic, was < 0.001 (p < 0.05 corrected for multiple comparisons across 40 tracts). Patients are ordered based on the 
number of abnormal tracts. The color of the bars reflects the level of consciousness (LOC) at the day of MRI. MCS+: minimally conscious state plus; MCS-: minimally 
conscious state minus; PTCS: post-traumatic confusional state; VS: vegetative state. Patient IDs corresponding to those used in Table 1 (P2,⋯,P18) are indicated for 
each patient. Right panel: Boxplots showing the minimum, first quartile, median, third quartile and maximum number of significantly abnormal tracts for controls 
and patients. Outliers are defined as points greater than: third quartile + 1.5 * interquartile range. * significant difference (Wilcoxon rank sum test: W = 4.37, p =

1.22e − 05). 
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CRS-R Total, days to command-following, and days in coma were not 
pursued, given that the correlation analyses did not reveal a significant 
association between these variables. 

No significant relationships were found between LOC and average 
DM of affected tracts (B = − 0.02, SE = 0.01, t = − 1.49, p = 0.13) or 
number of affected tracts (B = − 0.03, SE = 0.05, t = − 0.55, p =

0.58). The univariate ordinal logistic regressions testing the association 
between LOC and age (B = − 0.02, SE = 0.05, t = − 0.42, p = 0.67), 
TMI (B = 0.04, SE = 0.04, t = 0.97, p = 0.33), and days to MRI (B =

0.15, SE = 0.08, t = 1.79, p = 0.07) did not identify any confounding 
relationships, and thus, it was not necessary to include these variables as 
covariates in the model. 

Neither average DM of affected tracts (rho = − 0.01, p = 0.49), nor 
number of affected tracts (rho = 0.34, p = 0.076036155) were signif
icantly correlated with DRS at 6 months follow-up. The ordinal logistic 
regression testing for associations between GOS-E at 6 months follow-up 
and average DM of affected tracts (B = − 0.0008, SE = 0.01, t = − 0.54,
p = 0.59) and number of affected tracts (B = − 0.02, SE = 0.07, t =

− 0.32, p = 0.74) did not identify any significant relationships between 
these dMRI-derived measures of TAI and global outcome after TBI. The 
univariate ordinal logistic regressions testing the association between 
GOS-E and age (B = − 0.19,SE = 0.08,t = − 2.48,p = 0.01), TMI (B =

− 0.006, SE = 0.04, t = − 0.17, p = 0.86), and days to MRI (B = −

0.06, SE = 0.07, t = − 0.95, p = 0.33) did not identify any con
founding relationships, and thus, it was not necessary to include these 
variables as covariates in the model. 

All statistical analyses were repeated using only the tracts that were 
successfully reconstructed without the need for reinitialization and re
sults did not differ (Supplementary note, Supplementary Table S1). 

4. Discussion 

In this prospective observational study, we propose a pipeline that 
combines automated tractography reconstructions with multivariate 
analysis of along-tract diffusion metrics to assess the presence of TAI in 
individual patients with acute severe TBI. We show that i) TRACULA 
(Maffei et al., 2021; Yendiki et al., 2011) provides automated recon
struction of WM tracts from dMRI data in critically ill patients with acute 
severe TBI, even in the presence of large focal lesions; and ii) the 
multivariate analysis detected at least one abnormal WM tract per pa
tient and could accurately differentiate patients from healthy controls 
(AUC = 0.91). These proof-of-principle results suggest that TRACULA 

has the potential to be used by clinicians, in conjunction with conven
tional MRI results, for the acute detection of TAI burden in critically ill 
patients. We discuss the clinical implications and technical limitations of 
the current results and provide further directions for optimization and 
translation of the proposed pipeline. 

With respect to TAI detection, the automated pipeline found that, on 
average, 9.1 ± 7.9 tracts were abnormal in patients with TBI. The 
individualized profiles of WM damage highlighted the degree of het
erogeneity in magnitude, number, and location of WM changes in pa
tients (Figs. 5 and 6 and Supplementary Fig. S3). This finding builds on 
recent studies showing that diffusion measures can be used to identify 
the neuroanatomic distribution and severity of TAI at the individual 
level (Jolly et al., 2021), an important goal given the well-established 
heterogeneity of this condition (Douglas et al., 2019). Despite the het
erogeneity of the specific WM tracts that identified as abnormal across 
patients, and the fact that no clear pattern of WM damage was visible 
within LOC groups (Fig. 5), the multivariate individual analysis revealed 
commissural connections to be more significantly and more frequently 
affected compared to projection and association fibers across all LOC 
(Fig. 5, Supplementary Figs. S4 and S5). Specifically, the premotor, 
parietal, and temporal sections of the CC were the most affected, 
consistent with previous histological and neuroimaging studies in 
humans with severe TBI (Moen et al., 2014; Nolan et al., 2020; Ubukata 
et al., 2016) and with studies in animal models of TAI (Baker et al., 2004; 
Gennarelli et al., 1982). Changes in diffusion measures in these WM 
tracts reflect a series of pathological events caused by shearing and 
straining forces exerted on the axons during TBI. Previous studies 
investigating the association between dMRI and histological measures 
reported correlations between decreased FA and axonal degeneration, 
between increased MD and axonal demyelination, but also between 
increased FA and neuroinflammation (Hutchinson et al., 2018). In this 
work we combined along-tract measures of both FA and MD, as multi
variate approaches have shown higher power in distinguishing different 
clinical populations from controls (Dean et al., 2017). Therefore, 
changes in WM tracts in TBI patients might include both or either FA/ 
MD increase or decrease and reflect a combination of degeneration, 
demyelination, or inflammatory mechanisms. Future studies are needed 
to investigate the prognostic value of different combinations of dMRI 
metrics. 

Interestingly, individual multivariate measures of TAI did not show a 
significant relationship with behavioral measures of consciousness (i.e., 
GCS-Total, CRS-R Total, days to command-following, days in coma). 

Fig. 7. Density plots. Probability density functions of Mahalanobis distance (D2
M) values are shown for patients (shown in red) and controls (shown in blue) for each 

of the different sections of the corpus callosum (CC). Representative 3D reconstructions of the correspondent WM tracts are shown to the right of the density plots. CC 
BODYC: central section of the body of the CC; CC BODYP: parietal section of the body of the CC; CC BODYPF: prefrontal section of the body of the CC; CC BODYPM: 
premotor section of the body of the CC; CC BODYT: temporal section of the body of the CC; CC GENU: genu of the CC; CC ROSTRUM: rostrum of the CC; CC 
SPLENIUM: splenium of the CC. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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There are several potential explanations for this observation. First, many 
clinical factors beyond TAI influence a patient’s LOC in the ICU, 
including other traumatic lesions (e.g., contusions and subdural hem
orrhages) and subclinical seizures, as well as toxic, metabolic, endocri
nologic or infectious causes of encephalopathy. Second, widespread 
tract disruption in the brainstem may have confounded any associations 
between the global burden of TAI and behavioral measures of con
sciousness. TRACULA does not yet provide automated reconstructions of 
brainstem tracts – a key direction for future work in this field, especially 
as the presence of TAI in brainstem pathways can cause altered con
sciousness (Edlow et al., 2013; Snider et al., 2019). Third, the small 
sample size and the variability in days to MRI across patients, along with 
the substantial variation in the patients’ states of consciousness and the 
high number of tracts being tested, could have underpowered our ana
lyses. For instance, a post-hoc power analysis, conducted via G*Power 
(Faul et al., 2007), revealed that our sample size of 17 participants was 
only sufficient to detect correlation of 0.62 or higher with 80 % power 
and an unadjusted Type-1 error control rate of 0.05. Nevertheless, given 
that prior studies have identified correlations between acute tractog
raphy data and long-term cognitive function (Wang et al., 2008), these 
data provide the basis for future studies with larger samples to test 
whether multivariate tract-specific measurements in the ICU predict 
recovery. 

Across the 17 patients included in this study, TRACULA provided, on 
average, complete automated reconstructions of 93 % of the WM tracts 
(range = 33 − 40) without the need of manual intervention. These proof- 
of-principle results suggest its potential for dissemination to a broad 
range of hospital settings without the need for local tractography 
expertise. However, the clinical translation of this pipeline for TAI 
detection in the ICU will require optimization and validation of the 
proposed methods in future studies. While on average TRACULA could 
successfully reconstruct 37.5 of 40 tracts without the need of manual 
intervention, an average of 2.4 tracts resulted in failed or partial re
constructions requiring reinitialization of at least one tract in 12 patients 
(Supplementary Table S1). Even if our results did not change when using 
only the WM tracts that did not require reinitialization, this step relied 
upon a visual quality assessment from a tractography expert that would 
limit TRACULA’s applicability to clinical settings. Furthermore, some 
reinitialized tracts could not be successfully reconstructed due to the 
presence of extensive focal lesions in two patients. While it has been 
previously shown that TRACULA is robust to errors in the anatomical 
segmentation (Zöllei et al., 2019), large lesions can lead to missing labels 
in the FreeSurfer parcellation that can affect tract reconstructions, as 
prior probabilities are based on the relative positions of the bundles with 
respect to these labels. Further optimization of the TRACULA pipeline 
will include i) improved automated assessment of tract reconstructions, 
ii) correct handling of missing FreeSurfer anatomical labels, including in 
cases where the FreeSurfer “recon-all” pipeline fails due to the presence 
of lesions (e.g., Patient 1 in this study), and iii) assessment of TRACULA 
parameter setting in clinical populations. While in this feasibility study 
we used all default parameters, including the threshold applied to the 
posterior probability of the reconstructed tracts (20 % of the maximum), 
future studies should address how different TRACULA parameter set
tings affect the accuracy of the pipeline. Additionally, the dMRI data 
used in this study were acquired with high angular resolution (b = 2,
000 s/mm2, 60 diffusion-encoding directions) and relatively high 
spatial resolution (2 mm isotropic) compared to more standard clinical 
diffusion sequences (Chilla et al., 2015), leading to a longer acquisition 
time (~9 min). Thus, while obtained on a clinical scanner, the dMRI 
data collected in this study were likely of higher quality than dMRI data 
acquired on clinical scanners in most hospitals, and it will be important 
to determine whether automated reconstruction of WM tracts with 
TRACULA is robust in the setting of lower-resolution, lower-quality 
dMRI data in the future. Similarly, future studies should address 
whether multi-shell dMRI data and additional pre-processing steps (e.g., 

correction of susceptibility-induced distortions through the acquisition 
of data with reversed phase-encoding) would improve the accuracy of 
these results. 

It is also important to consider that the individualized assessment 
proposed here can only be performed by comparing patients to a control 
cohort scanned with the same dMRI sequence. For this pipeline to be 
applied in a clinical setting that does not have data from healthy con
trols, future optimizations of this pipeline should explore its robustness 
to dMRI data acquired on a different scanner and with a different dMRI 
sequence. Furthermore, although we found no statistically significant 
differences in age between the patient and control cohorts, and age did 
not correlate with any of the results of the multivariate analysis (Sup
plementary Table S1), the controls used in this study were not enrolled 
with an even distribution of age. As normal ageing is associated with 
changes in tensor-derived diffusion metrics (Pfefferbaum et al., 2000; 
Salat et al., 2005), differences in age between the patient and control 
cohorts (patient mean age: 28.6 ± 8.7, control mean age: 30.9 ± 8.8) 
may have impacted the designation of normal versus abnormal tracts in 
the present study. Future studies should evaluate the relevance of using 
age-specific normative data to account for these differences. Identifi
cation of optimal characteristics and sample sizes for control cohorts is 
an area of active inquiry (Jolly et al., 2021), and future studies may 
leverage large normative databases such as the Human Connectome 
Project in this effort (Bookheimer et al., 2019; Harms et al., 2018). 
Finally, it is important to consider that some patients with acute severe 
TBI are not stable enough to travel to an MRI scanner, and thus this 
pipeline may not be feasible to use until these patients reach the sub
acute stage of care. 

In summary, this study demonstrates the feasibility and utility of an 
automated tractography pipeline for detecting TAI in the acute stage of 
severe TBI. The overall burden and location of TAI, as measured by dMRI 
in the subacute stage, have been shown to predict functional and 
cognitive outcome (Hellyer et al., 2013; Jolly et al., 2021; Kumar et al., 
2009). However, whether these results are extendable to measures ob
tained in the acute stage, and whether a correlation between TAI and 
outcome is due to the total lesion burden or to its location, remains to be 
determined (Kampfl et al., 1998). Thus, while the present results indi
cate that dMRI has diagnostic utility in assessing acute TAI, its potential 
prognostic utility and role in guiding therapeutic decision-making will 
need to be evaluated in future studies. 
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