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ABSTRACT We present a unified conceptual framework and the associated software package for single-molecule Förster
resonance energy transfer (smFRET) analysis from single-photon arrivals leveraging Bayesian nonparametrics, BNP-FRET.
This unified framework addresses the following key physical complexities of a single-photon smFRET experiment, including:
1) fluorophore photophysics; 2) continuous time kinetics of the labeled system with large timescale separations between photo-
physical phenomena such as excited photophysical state lifetimes and events such as transition between system states; 3) un-
avoidable detector artefacts; 4) background emissions; 5) unknown number of system states; and 6) both continuous and
pulsed illumination. These physical features necessarily demand a novel framework that extends beyond existing tools. In
particular, the theory naturally brings us to a hidden Markov model with a second-order structure and Bayesian nonparametrics
on account of items 1, 2, and 5 on the list. In the second and third companion articles, we discuss the direct effects of these key
complexities on the inference of parameters for continuous and pulsed illumination, respectively.
WHY IT MATTERS smFRET is a widely used technique for studying kinetics of molecular complexes. However, until now,
smFRET data analysis methods have required specifying a priori the dimensionality of the underlying physical model (the
exact number of kinetic parameters). Such approaches are inherently limiting given the typically unknown number of
physical configurations a molecular complex may assume. The methods presented here eliminate this requirement and
allow estimating the physical model itself along with kinetic parameters, while incorporating all sources of noise in the
data.
INTRODUCTION

Förster resonance energy transfer (FRET) has served as
a spectroscopic ruler to study motion at the nanometer
scale (1–4), and has revealed insight into intra- and inter-
molecular dynamics of proteins (5–11), nucleic acids
(12), and their interactions (13,14). In particular, single-
molecule FRET (smFRET) experiments have been used
to determine the pore size and opening mechanism of
ion channels sensitive to mechanical stress in the mem-
brane (15), the intermediate stages of protein folding
(16,17), and the chromatin interactions modulated by
thehelper proteinHP1a involved inallowinggenetic tran-
scription for tightly packed chromatin (18).

A typical FRET experiment involves labeling mole-
cules of interest with donor and acceptor dyes such
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that the donor may transfer energy to the acceptor
via dipole-dipole interaction when separated by dis-
tances of 2–10 nm (19). This interaction weakens
rapidly with increasing separation R and goes as
R� 6 (20,21).

To induce FRET during experiments, the donor is illu-
minated by a continuous or pulsating light source for
the desired time period or until the dyes photobleach.
Upon excitation, the donor may emit a photon itself
or transfer its energy nonradiatively to the acceptor
which eventually relaxes to emit a photon of a different
color (20,21). As such, the data collected consist of
photon arrival times (for single-photon experiments)
or, otherwise, brightness values in addition to photon
colors collected in different detection channels.

The distance dependence in the rate of energy trans-
fer between donor and acceptor is key in using smFRET
as a molecular ruler. Furthermore, this distance depen-
dence directly manifests itself in the form of higher
fraction of photons detected in the acceptor channel
when the dyes are closer together (as demonstrated
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in Fig. 1). This fraction is commonly referred to as the
FRET efficiency,

eFRET ¼ nA
nA þ nD

¼ 1

1 þ ðR=R0Þ6
;

where nD and nA are the number of donor and acceptor
photons detected in a given time period, respectively. In

addition, R0 is the characteristic separation that corre-
sponds to a FRET efficiency of 0.5 or 50% of the
emitted photons emanating from the acceptor.

Now, the aim of smFRET is to capture on-the-fly
changes in donor-acceptor distance. However, this is
often confounded by several sources of stochasticity,
which unavoidably obscure direct interpretation. These
include: 1) the stochasticity inherent to photon arrival
times; 2) a detector's probabilistic response to an
incoming photon (22); 3) background emissions (2);
and 4) fluorescent labels' stochastic photophysical
properties (2). Taken together, these problems neces-
sarily contribute to uncertainty in the number of distinct
system states visited by a labeled system over an ex-
periment's course (23–25).

Here, we delve into greater detail into items 2 and 4.
In particular, item 2 pertains to questions of crosstalk,
detector efficiency, dead time, dark current, and instru-
ment response function (IRF) introducing uncertainty in
excited photophysical state lifetime assessments
(22,26,27).

Item 4 refers to a collection of effects including
limited quantum yield and variable brightness due to
blinking of dyes caused by nonradiative pathways
(28,29), photobleaching or permanent deactivation of
the dyes (2,28,29), spectral overlap between the donor
and acceptor dyes, which may result in direct excitation
of the acceptors or leaking of photons into the incorrect
channel (2,26), or a donor-acceptor pair's relative
misalignment or positioning resulting in false signals
and inaccurate characterization of the separation be-
tween labeled molecules (2,30).

Although the goal has always remained to analyze
the rawest form of data, the reality of these noise prop-
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erties has traditionally led to the development of
approximate binned photon analyses even when data
are collected at the level of single photons across
two detectors. Binning is either achieved by directly
summing photon arrivals over a time period when using
single-photon detectors (23,31) or by integrating inten-
sity over a few pixels when using widefield detec-
tors (32).

While binned data analyses can be used to deter-
mine the number and connectivity of system states
(33)—by computing average FRET efficiencies over
bin time windows and using them in turn to construct
FRET efficiency histograms (23,25,31,34–36)—they
come at the cost of averaging kinetics that may exist
below a time bin not otherwise easily accessible
(32,37,38). They also eliminate information afforded
by, say, the excited photophysical state lifetime in the
case of pulsed illumination.

While histogram analyses are suited to infer static
molecular properties, kinetics over binned time traces
have also been extracted by supplementing these tech-
niques with a hidden Markov model (HMM) treatment
(23,25,34–36,39).

Using HMMs, binned analysis techniques immedi-
ately face the difficulty of an unknown number of sys-
tem states visited. Therefore, they require the number
of system states as an input to deduce the putative ki-
netics between the candidate system states.

What is more, the binned analysis' accuracy is deter-
mined by the bin sizes where large bins may result in
averaging of the kinetics. Moreover, increasing bin
size may lead to estimation of an excess number of
system states. This artifact arises when a system ap-
pears to artificially spend more time in the system
states below the bin size (38). To address these chal-
lenges, we must infer continuous time trajectories
below the bin size through, for example, the use of Mar-
kov jump processes (32), while retaining a binned, i.e.,
discrete measurement model.

When single-photon data are available we may
avoid the binning issues inherent to HMM analysis
FIGURE 1 A cartoon figure illustrating
smFRET data. For the experiments considered
here, the kinetics along the reaction coordinate
defined along the donor-acceptor distance are
monitored using single-photon arrival data. In
the figure above, photon arrivals are repre-
sented by green dots for photons arriving into
the donor channel and red dots for photons
arriving in the acceptor channel. For the case
where donor and acceptor label one molecule,
a molecule's transitions between system
states (coinciding with conformations) is re-
flected by the distance between labels
measured by variations in detected photon
arrival times and colors.



(32,40,41). Doing so, also allows us to directly
leverage the noise properties of detectors for single-
photon arrivals (e.g., IRF) well calibrated at the sin-
gle-photon level. Moreover, we can now also incorpo-
rate information available through photophysical
state lifetimes when using pulsed illumination other-
wise eliminated in binning data. Incorporating all of
this additional information, naturally, comes with
added computational cost (37) whose burden a suc-
cessful method should mitigate.

Often, to help reduce computational costs, further
approximations on the system kinetics are invoked,
such as assuming system kinetics to be much slower
than FRET label excitation and relaxation rates. This
approximation helps decouple photophysical and sys-
tem (molecular) kinetics (16,37,42,43).

What is more, as they exist, the rigor of direct photon
arrival analysis methods are further compromised to
help reduce computational cost by treating detector
features and background as preprocessing steps
(16,37,42,43). In doing so, simultaneous and self-
consistent inference of kinetics and other molecular
features becomes unattainable. Finally, all methods,
whether relying on the analysis of binned photons or
single-photon arrival, suffer from the “model selection
problem.” That is, the problem associated with identi-
fying the number of system states warranted by the
data. More precisely, the problem associated with
propagating the uncertainty introduced by items 1–4
into a probability over the models (i.e., system states).
Existing methods for system state identification only
provide partial reprieve.

For example, while FRET histograms identify peaks
to intuit the number of system states, these peaks
may provide unreliable estimates for a number of rea-
sons: 1) fast transitions between system states may
result in a blurring of otherwise distinct peaks (1) or,
counter-intuitively, introduce more peaks (25,38); 2)
system states may differ primarily in kinetics but not
FRET efficiency (40); 3) detector properties and back-
ground may introduce additional features in the
histograms.

To address the model selection problem, overfitting
penalization criteria (such as the Bayesian information
criterion or BIC) (23,44) or variational Bayesian (24) ap-
proaches have been employed.

Often, these model selection methods assume im-
plicit properties of the system. For example, the BIC re-
quires the assumption of weak independence between
measurements (i.e., ideally independent identically
distributed measurements and thus no Markov kinetics
in state space) and a unique likelihood maximum, both
of which are violated in smFRET data (24). Further-
more, BIC and other such methods provide point esti-
mates rather than full probabilities over system
states ignoring uncertainty from items 1–4 propagated
over models (45).

As such, we need to learn distributions over system
states and kinetics warranted by the data and whose
breadth is dictated by the sources of uncertainty dis-
cussed above. More specifically, to address model se-
lection and build joint distributions over system states
and their kinetics, we treat the number of system states
as a random variable just as the current community
treats smFRET kinetic rates as random variables
(25,40,41). Our objective is therefore to obtain distribu-
tions over all unknowns (including system states and
kinetics) while accounting for items 1–4. Furthermore,
this must be achieved in a computationally efficient
way avoiding, altogether, the draconian assumptions
of existing in single-photon analysis methods. In other
words, we want to do more (by learning joint distribu-
tions over the number of system states alongside
everything else) and we want it to cost less.

If we insist on learning distributions over unknowns,
then it is convenient to operate within a Bayesian para-
digm. Also, if the model (i.e., the number of system
states) is unknown, then we must further generalize
to the Bayesian nonparametric (BNP) paradigm
(25,41,46–53). BNPs directly address the model selec-
tion problem concurrently and self-consistently while
learning the associated model's parameters and output
full distributions over the number of system states and
the other parameters.

In this series of three companion articles, we pre-
sent a complete description of single-photon smFRET
analysis within the BNP paradigm addressing noise
sources discussed above (items 1–4). In addition,
we develop specialized computational schemes for
both continuous and pulsed illumination for it to
“cost less.”

Indeed, mitigating computational cost becomes crit-
ical, especially with the added complexity of working
within the BNP paradigm. This, in itself, warrants a
detailed treatment of continuous and pulsed illumina-
tion analyses in two companion articles.

To complement this theoretical framework, we also
provide to the community a suite of programs called
BNP-FRET written in the compiled language Julia for
high performance. These freely available programs
allow for comprehensive analysis of single-photon
smFRET time traces on immobilized molecules ob-
tained with a wide variety of experimental setups.

In what follows, we first present a forward model.
Next, we build an inverse strategy to learn full poste-
riors within the BNP paradigm. Finally, multiple exam-
ples are presented by applying the method to
simulated data sets across different parameter re-
gimes. Experimental data are treated in the two subse-
quent companion articles (54,55).
Biophysical Reports 3, 100089, March 8, 2023 3



FORWARD MODEL

Conventions

To be consistent throughout our three-part article, we
precisely define some terms as follows.

1. a macromolecular complex under study is always
referred to as a system,

2. theconfigurations throughwhichasystemtransitions
are termed system states, typically labeled using s,

3. FRET dyes undergo quantum mechanical transi-
tions between photophysical states, typically labeled
using j,

4. a system-FRET combination is always referred to as
a composite,

5. a composite undergoes transitions among its super-
states, typically labeled using f,

6. all transition rates are typically labeled using l,
7. the symbol N is generally used to represent the total

number of discretized time windows, typically
labeled with n, and

8. the symbol wn is generally used to represent the ob-
servations in the n-th time window.
smFRET data

Here, we briefly describe the data collected from typical
smFRET experiments analyzed by BNP-FRET. In such
experiments, donor and acceptor dyes labeling a sys-
tem can be excited using either continuous illumination
or pulsed illumination, where short laser pulses arrive
at regular time intervals. Moreover, acceptors can
also be excited by nonradiative transfer of energy
from an excited donor to a nearby acceptor. Upon
relaxation, both donor and acceptor can emit photons
collected by single-photon detectors. These detectors
record the set of photon arrival times and detection
channels. We denote the arrival times by

fTstart;T1;T2;T3;.;TK ;Tendg;

and detection channels with

fc1; c2; c3;.; cKg;

for a total number of K photons. In the equations
above, Tstart and Tend are experiment's start and end
times. Further, we emphasize here that the strategy
used to index the detected photons above is indepen-
dent of the illumination setup used.

Throughout the experiment, photon detection rates
from the donor and acceptor dyes vary as the distance
between them changes, due to the system kinetics. In
cases where the distances form an approximately finite
set, we treat the system as exploring a discrete system
state space. The acquired FRET traces can then be
4 Biophysical Reports 3, 100089, March 8, 2023
analyzed to estimate the transition rates between these
system states assuming a known model (i.e., known
number of system states). We will lift this assumption
of knowing the model a priori in the section “nonpara-
metrics: predicting the number of system states.”

Cases where the system state space is continuous
fall outside the scope of the current work and require
extensions of (56) and (57) currently in progress.

In the following subsections, we present a physical
model (forward model) describing the evolution of an
immobilized system labeled with a FRET pair. We use
this model to derive, step-by-step, the collected data's
likelihood given a choice of model parameters. Further-
more, given the mathematical nature of what is to
follow, we will accompany major parts of our deriva-
tions with a pedagogical example of a molecule labeled
with a FRET pair undergoing transitions between just
two system states to demonstrate each new concept
in example boxes.
Likelihood

To derive the likelihood, we begin by considering the
stochastic evolution of an idealized system, transi-
tioning through a discrete set of total Ms system
states, fs1;.; sMs

g, labeled with a FRET pair having
Mj discrete photophysical states, fj1;.;jMj

g, repre-
senting the fluorophores in their ground, excited,
triplet, blinking, photobleached, or other quantum
mechanical states. The combined system-FRET
composite now undergoes transitions between
Mf ¼ Ms �Mj superstates, ff1;.;fMf

g, correspond-
ing to all possible ordered pairs ðsj;jkÞ of the system
and photophysical states. To be precise, we define
fihðsj;jkÞ, where i ¼ ðj � 1ÞMj þ k.

Assuming Markovianity (memorylessness) of transi-
tions among superstates, the probability of finding the
composite in a specific superstate at a given instant
evolves according to the master equation (40).

drðtÞ
dt

¼ rðtÞG; (1)

where the row vector rðtÞ of length Mf has elements
coinciding with probabilities for finding the system-
FRET composite in a given superstate at time t. More
explicitly, defining the photophysical portion of the
probability vector rðtÞ corresponding to system state
si as

rsi
ðtÞ ¼ �

rsi;j1
ðtÞ rsi;j2

ðtÞ . rsi;jMj
ðtÞ �;

we can write rðtÞ as
rðtÞ ¼ �

rs1
ðtÞ rs2

ðtÞ . rsMs
ðtÞ �:



Furthermore, in the master equation above, G is the
generator matrix of size Mf �Mf populated by all tran-
sition rates lfi/fj

between superstates.
Each diagonal element of the generator matrixG cor-

responds to self-transitions and is equal to the negative
sum of the remaining transition rates within the
corresponding row. That is, lfi/fi

¼ � P
jsilfi/fj

.
This results in zero row-sums, assuring that rðtÞ re-
mains normalized at all times as described later in
more detail (see Eq. 5). Furthermore, for simplicity,
we assume no simultaneous transitions among sys-
tem states and photophysical states as such events
are rare (although the incorporation of these events
in the model may be accommodated by expanding
the superstate space). This assumption results
in lðji;sjÞ/ðjl;smÞ ¼ 0 for simultaneous isl and ls m,
which allows us to simplify the notation further.
That is, lðji;sjÞ/ðji;skÞhlsj/sk (for any i) and
lðji;sjÞ/ðjk ;sjÞhlsj ;ji/jk

(for any j). This leads to the
following form for the generator matrix containing
blocks of exclusively photophysical and exclusively
system transition rates, respectively
G ¼

2
6666666664

Gj
s1

�
X
js1

ls1/sjI ls1/s2I . ls1/sMs
I

ls2/s1I Gj
s2

�
X
js2

ls2/sjI . ls2/sMs
I

« « 1 «

lsMs/s1I lsMs/s2I . Gj
sMs

�
X
jsMs

lsMs/sjI

3
7777777775
; (2)
where the matrices on the diagonal Gj
si
are the photo-

physical parts of the generator matrix for a system
found in the si system state. In addition, I is the identity
matrix of size Mj.

For later convenience, we also organize the system
transition rates lsi/sj in Eq. 2 as a matrix

Gs ¼

2
66664

� ls1/s2 ls1/s3 . ls1/sMs

ls2/s1 � ls2/s3 . ls2/sMs

ls3/s1 ls3/s2 � . ls3/sMs

« « « 1 «
lsMs/s1 lsMs/s2 lsMs/s3 . �

3
77775;

(3)

which we call system generator matrix.
Moreover, the explicit forms ofGj

si
in Eq. 2 depend on

the photophysical transitions allowed in the model. For
instance, if the FRET pair is allowed to go from its
ground photophysical state ðj1Þ to the excited donor
ðj2Þ or excited acceptor ðj3Þ states only, the matrix is
given as

Gj
si

¼

2
64

� lsi;j1/j2
lsi;j1/j3

lsi;j2/j1
� lsi;j2/j3

lsi;j3/j1
0 �

3
75

¼

2
6664

� lex ldirect

ld � lFRETsi

la 0 �

3
7775;

(4)

where the � along the diagonal represents the negative
row-sum of the remaining elements, lex is the excita-
tion rate, ld and la are the donor and acceptor relaxa-
tion rates, respectively, and ldirect is direct excitation of
the acceptor by a laser, and lFRETsi

is the donor to
acceptor FRET transition rate when the system is in
its i-th system state. We note that only FRET transi-
tions depend on the system states (identified by dye-
dye separations) and correspond to FRET efficiencies
given by

eFRETsi
¼ lFRETsi

lFRETsi
þ ld

;

where the ratio on the right hand side represents the
fraction of FRET transitions among all competing tran-
sitions out of an excited donor, that is, the fraction of
emitted acceptor photons among total emitted
photons.

With the generator matrix at hand, we now look for
solutions to the master equation of Eq. 1. Due to its
linearity, the master equation accommodates the
following analytical solution:

rðtÞ ¼ rðt0Þ expððt � t0ÞGÞhrðt0Þ Pðt � t0Þ; (5)
Biophysical Reports 3, 100089, March 8, 2023 5



illustrating how the probability vector rðtÞ arises from
the propagation of the initial probability vector at time
t0 by the exponential of the generator matrix (the prop-
agator matrix Pðt � t0Þ). The exponential maps the
transition rates lfi/fj

in the generator matrix to their
corresponding transition probabilities pfi/fj

popu-
lating the propagator matrix. The zero row-sums of
the generator matrix guarantee that the resulting prop-
agator matrix is stochastic (i.e., has rows of probabili-
ties that sum to unity,

P
jpfi/fj

¼ 1).
Example I: State space and generator matrix
For a molecule undergoing transitions between its two conformations, we have Ms ¼ 2 system states given as fs1;s2g. The photophysical
states of the FRET pair labeling this molecule are defined according to whether the donor or acceptor are excited. Denoting the ground state
by G and excited state by E, we can write all photophysical states of the FRET pair as fj1 ¼ ðG;GÞ;j2 ¼ ðE;GÞ;j3 ¼ ðG;EÞg, where the first
element in the ordered pair represents the donor state. Furthermore, here, we assume no simultaneous excitation of the donor and acceptor
owing to its rarity.

Next, we construct the superstate space with M4 ¼ 6 ordered pairs f41 ¼ ðj1;s1Þ;42 ¼ ðj2;s1Þ;43 ¼ ðj3;s1Þ;44 ¼ ðj1;s2Þ;45 ¼ ðj2;

s2Þ;46 ¼ ðj3;s2Þg. Finally, the full generator matrix for this setup reads

G ¼
2
4Gj

s1
� ls1/s2I ls1/s2I

ls2/s1I Gj
s2

� ls2/s1I

3
5

¼

2
666666666666664

� lex ldirect ls1/s2 0 0

ld � lFRETs1
0 ls1/s2 0

la 0 � 0 0 ls1/s2

ls2/s1 0 0 � lex ldirect

0 ls2/s1 0 ld � lFRETs2

0 0 ls2/s1 la 0 �

3
777777777777775

:

Both here, and in similar example boxes that follow, we choose values for rates commonly encountered in experiments (17). We consider a
laser exciting a donor at rate lex ¼ 10 ms� 1. Next, we suppose that the molecule switches between system states s1 and s2 at rates
ls1/s2 ¼ 2:0 ms� 1 and ls2/s1 ¼ 1 ms� 1.

Furthermore, assuming typical lifetimes of 3.6 and 3.5 ns for the donor and acceptor dyes (17), their relaxation rates are, respectively,
ld ¼ 1=3:6 ns�1 and la ¼ 1=3:5 ns�1. We also assume that there is no direct excitation of the acceptor and thus ldirect ¼ 0. Next, we choose
FRET efficiencies of 0.2 and 0.9 for the two system states resulting in lFRETs1

¼ ld=4 ¼ 0:06 ns�1 and lFRETs2
¼ 9ld ¼ 2:43 ns�1.

Finally, these values lead to the following generator matrix (in ms� 1 units)

G ¼

2
6666664

� 12 10:0 0 2:0 0:0 0:0
277000 � 347002 70000 0:0 2:0 0:0
285000 0:0 � 285002 0:0 0:0 2:0
1:0 0:0 0:0 � 11 10:0 0
0:0 1:0 0:0 277000 � 2777001 2500000
0:0 0:0 1:0 285000 0:0 � 285001

3
7777775
:

After describing the generator matrix and deriving the
solution to the master equation, we continue by explain-
ing how to incorporate observations into a likelihood.

In the absence of observations, any transition
among the set of superstates are unconstrained.
6 Biophysical Reports 3, 100089, March 8, 2023
However, when monitoring the system using suitable
detectors, observations rule out specific transitions
at the observation time. For example, ignoring
background for now, the detection of a photon from
a FRET label identifies a transition from an
excited photophysical state to a lower energy photo-
physical state of that label. On the other hand, no
photon detected during a time period indicates the
absence of radiative transitions or the failure of de-
tectors to register such transition. Consequently,
even periods without photon detections are informa-
tive in the presence of a detector. In other words, ob-
servations from a single-photon smFRET experiment
are continuous in that they are defined at every point
in time.



In addition, since smFRET traces report radiative
transitions of the FRET labels at photon arrival times,
uncertainty remains about the occurrences of unmoni-
tored transitions (e.g., between system states). Put
differently, smFRET traces (observations) only partially
specify superstates at any given time.

Now, to compute the likelihood for such smFRET
traces, we must sum those probabilities over all trajec-
tories across superstates (superstate trajectories)
consistent with a given set of observations. Assuming
the system ends in superstate fi at Tend , this sum over
all possible trajectories can be very generally given by
the element of the propagated vector rðTendÞ corre-
sponding to superstate fi. Therefore, a general likeli-
hood may be written as

L ¼ pðfiÞ ¼ ½rðTendÞ�i: (6)

However, as the final superstate at time Tend is usually
unknown, we must therefore marginalize (sum) over the
final superstate to obtain the following likelihood

L ¼
XMf

i ¼ 1

pðfiÞ ¼ rðTendÞ rT
norm; (7)

where all elements of the vector rnorm are set to 1 as a
means to sum the probabilities in vector rðTendÞ. In the

following sections, we describe how to obtain concrete
forms for these general likelihoods.

Absence of observations

For pedagogical reasons, it is helpful to first look at the
trivial case where a system-FRET composite evolves
but no observations are made (due to a lack, say, of
detection channels). In this case, all allowed superstate
trajectories are possible between the start time of the
experiment, Tstart , and end, Tend. This is because the su-
perstate cannot be specified or otherwise restricted at
any given time by observations previously explained.
Consequently, the probability vector rðtÞ remains
normalized throughout the experiment as no super-
state trajectory is excluded. As such, the likelihood is
given by summing over probabilities associated to
the entire set of trajectories, that is,

L ¼ pððT1; e1Þ;.; ðTK ; eKÞjGÞ
¼ rðTstartÞPðTend � TstartÞ rT

norm ¼ rðTendÞ rT
norm ¼ 1;

(8)

where fe1;.; eKg are the emission times of all emitted
photons, not recorded due to lack of detection chan-
nels and thus not appearing on the right hand side of
the expression.

Inwhat follows,wedescribe how the probability vector
rðtÞ does not remain normalized as it evolves to rðTendÞ
whendetectors partially collapse knowledge of the occu-
pied superstate during the experiment. This results in a
likelihood smaller than one. We do so for the conceptu-
ally simpler case of continuous illumination for now.

Introducing observations

To compute the likelihood when single-photon detec-
tors are present, we start by defining a measurement
model where the observation at a given time is dictated
by ongoing transitions and detector features (e.g.,
crosstalk, detector efficiency). As we will see in more
detail later, if we describe the evolution of a system
by defining its states at discrete time points and these
states are not directly observed, and thus hidden, then
this measurement model adopts the form of a HMM.
Here, Markovianity arises when a given hidden state
only depends on its immediate preceding hidden state.
In such HMMs, an observation at a given time is
directly derived from the concurrent hidden state.

As an example of an HMM, for binned smFRET
traces, an observation is often approximated to depend
only on the current hidden state. However, contrary to
such a naive HMM, an observation in a single-photon
setup in a given time period depends on the current su-
perstate and the immediate previous superstate. This
naturally enforces a second-order structure on the
HMM where each observed random variable depends
on two superstates, as we demonstrate shortly. A
similar HMM structure was noted previously to model
a fluorophore's photo-switching behavior in (58).

Now, to address this observation model, we first
divide the experiment's time duration into N windows
of equal size, e ¼ ðTend � TstartÞ=N. We will eventually
take the continuum limit e/0 to recover the original
system as described by the master equation. We also
sum over all possible transitions between superstates
within each window. These windows are marked by
the times (see Fig. 2 a)

ft0; t1; t2;.; tNg;

where the n-th window is given by ðtn� 1; tnÞ with
t0 ¼ Tstart and tN ¼ Tend. Corresponding to each time
window, we have observations

w ¼ fw1;w2;w3;.;wNg;

where wn ¼ B if no photons are detected and

wn ¼ fðTð1Þ
n ; c

ð1Þ
n Þ; ðTð2Þ

n ; c
ð2Þ
n Þ;.g otherwise, with the

j-th photon in a window being recorded by the channel

c
ðjÞ
n at time T

ðjÞ
n . Note here that observations in a time

window, being a continuous quantity, allow for multiple
photon arrivals or none at all.

As mentioned earlier, each of these observations
originate from the evolution of the superstate.
Biophysical Reports 3, 100089, March 8, 2023 7



a

b

FIGURE 2 Graphical models depicting the
random variables and parameters involved in
the generation of photon arrival data for
smFRET experiments. Circles shaded in blue
represent parameters of interest we wish to
deduce, namely transition rates and probabili-
ties. The circles shaded in gray correspond
to observations. The unshaded circles repre-
sent the superstates. The arrows reflect condi-
tional dependence among these variables and
colored dots represent photon arrivals. Going
from (a) to (b), we convert the original HMM
with a second-order structure to a naive
HMM where each observation only depends
on one state.
Therefore, we define superstates occupied at the
beginning of each window as

fa1; a2; a3;.; aN� 1; aN; aNþ 1g;
where an is the superstate at the beginning of the n-th
time window as shown in Fig. 2 a. The framework
Example II: Naive likelihood computation
Here, we calculate the likelihood for our two-state system described ear
time period spanning the first two time windows ðN ¼ 2Þ in Fig. 2 a. Wit
a1 to a3 giving rise to observations w1:2. The likelihood for such a setup i
superstates a1:3 (summing over all possible superstate trajectories)

L ¼ pðw1:2jG;rstartÞ ¼
X

¼
X
a

¼
X

8 Biophysical Reports 3, 100089, March 8, 2023
described here can be employed to compute the likeli-
hood. However, the second-order structure of the HMM
leads to complications in these calculations. In the rest
of this section, we first illustrate the mentioned compli-
cation using a simple example and then describe a so-
lution to this issue.
lier. For simplicity alone, we attempt the likelihood calculation for a
hin this period the system-FRET composite evolves from superstate
s typically obtained using a recursive strategy by marginalizing over

a1:3

pðw1:2; a1:3jG;rstartÞ

1:3

pðw2ja1:3;w1G;rstartÞpðw1; a1:3jG;rstartÞ

a1:3

pðw2ja2:3;GÞpðw1ja1:2;GÞpða1:3jG;rstartÞ:



Here, we have applied the chain rule of probabilities in each step. Moreover, in the last step, we have only retained the parameters that are
directly connected to the random variable on the left in each term, as shown by arrows in Fig. 2 a.

Now, for our two system state example, an can be any of the six superstates 41:6 ðM4 ¼ 6Þ given earlier. As such, the sum above contains
MNþ 1

4 ¼ 63 terms for such a simple example. For a large number of time windows, computing this sum becomes prohibitively expensive.
Therefore, it is common to use a recursive approach to find the likelihood, only requiring M2

4ðN þ 1Þ operations, as we describe in the
next section. However, due to our HMM's second-order structure, the two first terms (involving observations) in the above sum are condi-
tioned on a mutual superstate a2, which forbids recursive calculations.
After describing the issue in computing the likeli-
hood due to the second-order structure of our
HMM, we now describe a solution to this problem.
As such, to simplify the likelihood calculation, we
temporarily introduce superstates bn at the end of
n-th window separated from superstate anþ 1 at the
beginning of ðn þ 1Þ-th window by a short time t
as shown in Fig. 2 b during which no observations
are recorded (inactive detectors). This procedure al-
lows us to conveniently remove dependency of
consecutive observations on a mutual superstate.
That is, consecutive observations wn and wnþ 1 now
do not depend on a common superstate anþ 1, but
rather on separated ðan; bnÞ pairs; see Fig. 2 b. The
sequence of superstates now looks like (see
Fig. 2 b)

fa1; b1; a2; b2; a3; b3;.; aN� 1; bN� 1; aN; bN; aNþ 1g; (9)

which now permits a recursive strategy for likelihood

calculation as described in the next section. Further-
more, we will eventually take the t/0 limit to obtain
the likelihood of the original HMM with the second-or-
der structure.
Recursion formulas

We now have the means to compute the terminal prob-
ability vector rend ¼ rðTendÞ by evolving the initial vec-
tor rstart ¼ rðTstartÞ. This is most conveniently
achieved by recursively marginalizing (summing) over
all superstates in Eq. 9 backward in time, starting
from the last superstate aNþ 1 as follows

L ¼ pðw1:NjG;rstartÞ¼
P
aNþ1

pðw1:N; aNþ 1jG;rstartÞ

¼
X
aNþ1

ANþ 1ðaNþ 1Þ ¼ ANþ 1 r
T
norm;

(10)

whereANþ 1ðaNþ 1Þ are elements of the vectorANþ 1 of
length Mf, commonly known as a filter (59). Moving

backward in time, the filter at the beginning of the
n-th time window, Anðanþ 1Þ, is related to the filter at
the end of the n-th window, BnðbnÞ, due to Markovianity,
as follows
Anþ 1ðanþ 1Þ ¼ pðw1:n; anþ 1jG;rstartÞ
¼
X
bn

pðanþ 1jbn;GÞ BnðbnÞ; (11)

or in matrix notation as
Anþ 1 ¼ Bn ~Pn;

where pðanþ 1jbnÞ are the elements of the transition
probability matrix ~Pn described in the next section.
Again due to Markovianity, the filter at the end of the
n-th window, BnðbnÞ, is related to the filter at the begin-
ning of the same time window, AnðanÞ, as
BnðbnÞ ¼ pðw1:n� 1; bnjG;rstartÞ

¼
X
an

pðwnjan; bn;GÞ pðbnjan;GÞ AnðanÞ; (12)

or in matrix notation as

Bn ¼ AnP
ðrÞ
n ;

where the terms pðwnjan; bn;GÞ pðbnjan;GÞ populate the
transition probability matrix PðrÞ

n described in the next
section. Here, we use the superscript ðrÞ to denote
that elements of this matrix include observation proba-
bilities. We note here that the last filter in the recursion
formula, A1, is equal to starting probability vector rstart

itself.
Reduced propagators

To derive the different terms in the recursive filter for-
mulas, we first note that the transition probabilities
pðanjbn� 1;GÞ and pðbnjan;GÞ do not involve observa-
tions. As such, we can use the full propagator as follows

pðbnjan;GÞ ¼ ðPÞan/bn ¼ ðexpððe � tÞGÞÞan/bn

and

pðanjbn� 1;GÞ ¼ ð ~PÞbn� 1/an ¼ ðexpðtGÞÞbn� 1/an ;

respectively. On the other hand, the term pðwnjan; bn;GÞ
includes observations that result in modification to the
propagator by ruling out a subset of transitions. For
Biophysical Reports 3, 100089, March 8, 2023 9



instance, observation of a photon momentarily
eliminates all nonradiative transitions. The modifica-
tions now required can be structured into a matrix
Dn of the same size as the propagator with
elements ðDnÞan/bn

¼ pðwnjan; bn; GÞ. We term all
such matrices detection matrices. The product
pðwnjan; bn;GÞ pðbnjan;GÞ in Eq. 12 can now be
written as�

PðrÞ
n

�
an/bn

¼ ðPÞan/bn � ðDnÞan/bn ;

relating the modified propagator (termed reduced
propagator and distinguished by the superscript ðrÞ
hereafter) ðPðrÞ

n Þan/bn
in the presence of observations

to the full propagator (no observations). Plugging
in the matrices introduced above into the recursive fil-
ter formulas (Eqs. 11 and 12), we obtain in matrix
notation

Anþ 1 ¼ Bn
~P ¼ Bn expððe � tÞGÞ

Bn ¼ AnP
ðrÞ
n ¼ An ðexpðeGÞ1DnÞ;

(13)

where the symbol 1 represents element-by-element
product of matrices. Here, however, the detection
matrices cannot yet be computed analytically as the
observationswn allow for an arbitrary number of transi-
tions within the finite time window ðtn� 1; tnÞ. However,
they becomemanageable in the limit that the time win-
rstart P
ðrÞ
1 P

ðrÞ
2 P

ðrÞ
3 . P

ðrÞ
N� 1 P

ðrÞ
N rT

norm ¼ rðTendÞrnorm < 1: (15)
dows become vanishingly small, as we demonstrate
later.

Likelihood for the HMM with second-order structure

Now, inserting the matrix expressions for filters of Eq.
13 into the recursive formula likelihood Eq. 10, we
arrive at
L ¼
X
aNþ1

rstart P
ðrÞ
1

~P P
ðrÞ
2

~P P
ðrÞ
3

~P .

¼ rstart P
ðrÞ
1

~P P
ðrÞ
2

~P P
ðrÞ
3

~P . P
ðr
N
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where, in the second step, we added a row vector of
ones, rnorm at the end to sum over all elements. Here,
the superscript T denotes matrix transpose. As we
now see, the structure of the likelihood
above amounts to propagation of the initial probabil-
ity vector rstart to the final probability vector rðTendÞ
via multiple propagators corresponding to N time
windows.

Now, under the limit t/0, we have

~P ¼ lim
t/0

expðtGÞ ¼ I;

P ¼ lim
t/0

expððe � tÞGÞ ¼ expðeGÞ;

where I is the identity matrix. In this limit, we recover
the likelihood for the HMM with a second-order struc-
ture as

L ¼ rstart P
ðrÞ
1 P

ðrÞ
2 P

ðrÞ
3 . P

ðrÞ
N� 1 P

ðrÞ
N rT

norm: (14)

We note here that the final probability vector rðTendÞ
is not normalized to one upon propagation due to the
presence of reduced propagators corresponding to ob-
servations. More precisely, the reduced propagators
restrict the superstates evolution to only a subset of
trajectories over a time window e in agreement with
the observation over this window. This, in turn, results
in a probability vector whose elements sum to less
than one. That is,
Continuum limit

Up until now, the finite size of the time window e al-
lowed for an arbitrary number of transitions per time
window ðtn� 1; tnÞ, which hinders the computation of
an exact form for the detection matrices. Here, we
take the continuum limit, as the time windows become
P
ðrÞ
N� 1

~P P
ðrÞ
N

Þ
� 1

~P P
ðrÞ
N rT

norm ¼ rðTendÞrT
norm;



Example III: Detection matrices
For our example with two system states described earlier, the
detection matrices of Eqs. 16 and 17 take simple forms. The radi-
ative detection matrix has the same size as the generator matrix
with nonzero elements wherever there is a rate associated to a
radiative transition

Drad
d=a ¼

2
6666664

0 0 0 0 0 0
1=0 0 0 0 0 0
0=1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1=0 0 0
0 0 0 0=1 0 0

3
7777775
;

where the subscripts d and a, respectively, denote photon detection
in donor and acceptor channels. Similarly, the nonradiative detec-
tion matrix is obtained by setting all elements of the generator
matrix related to radiative transitions to zero and the remaining to
one as

Dnon ¼

2
6666664

1 1 1 1 1 1
0 1 1 1 1 1
0 1 1 1 1 1
1 1 1 1 1 1
1 1 1 0 1 1
1 1 1 0 1 1

3
7777775
:

vanishingly small (that is, e/0 as N/N). Thus, no
more than one transition is permitted per window.
This allows us to fully specify the detection
matrices Dn.

To derive the detection matrices, we first assume
ideal detectors with 100% efficiency and include de-
tector effects in the subsequent sections (see the
“detection effects” section). In such cases, the
absence of photon detections during a time window,
while detectors are active, indicates that only nonra-
diative transitions took place. Thus, only nonradiative
transitions have nonzero probabilities in the detection
matrices. As such, for evolution from superstate an to
bn, the elements of the nonradiative detection matrix,
Dnon, are given by

ðDnonÞan/bn ¼
�
1 Nonradiative transitions
0 Radiative transitions

: (16)

On the other hand, when the k-th photon is recorded
in a time window, only elements corresponding to radi-
ative transitions are nonzero in the detection matrix de-
noted by Drad

k as
�
Drad

k

�
an/bn

¼
�
0 All transitions except for the k-th photon emission
1 k-th photon emission

: (17)
Here, we note that the radiative detection matrices
have zeros along their diagonals, since self-transitions
are nonradiative.

We can now define the reduced propagators corre-
sponding to the nonradiative and radiative detection
matrices, Dnon and Drad

k , using the Taylor approximation
lime/0Pn ¼ I þ eG þ Oðe2Þ as

PðrÞnon ¼ �
I þ eG þ O�e2��1Dnon ¼ expðeGnonÞ
þ O�e2�; and

(18)

P
ðrÞrad ¼ �

I þ eG þ O�e2��1Drad ¼ eGrad þ O�e2�:
k k k

(19)

In the equations above,Gnon ¼ G1Dnon andGrad
k ¼

G1Drad
k , where the symbol 1 represents an element-

by-element product of the matrices. Furthermore, the
product between the identity matrix and Drad

k above
vanishes in the radiative propagator due to zeros along
the diagonals of Drad

k .
Final likelihood

With the asymptotic forms of the reduced propagators
in Eq. 14 now defined in the last subsection, we have all
the ingredients needed to arrive at the final form of the
likelihood.

To do so, we begin by considering the period
right after the detection of the ðk � 1Þ-th photon until
the detection of the k-th photon. For this time period,
the nonradiative propagators in Eq. 14 can now be
easily merged into a single propagator Pnon

k ¼
expððTk � Tk� 1ÞGnonÞ, as the commutative arguments
of the exponentials can be readily added. Furthermore,
at the end of this interphoton period, the radiative prop-
agator PðrÞrad

k marks the arrival of the k-th photon. The
product of these two propagators

Pnon
k P

ðrÞrad
k ¼ ePnon

k Grad
k þO�e2�

¼ e expððTk �Tk� 1ÞGnonÞGrad
k þO�e2�; (20)

now governs the stochastic evolution of the system-
FRET composite during that interphoton period.
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Inserting Eq. 20 for each interphoton period into the
likelihood for the HMM with second-order structure in
Eq. 14, we finally arrive at our desired likelihood

L ¼ eKrstartP
non
1 Grad

1 Pnon
2 Grad

2 .Pnon
K � 1G

rad
K� 1

� Pnon
K Grad

K Pnon
endr

T
norm þ O�eKþ 1

�
:

(21)
This likelihood has the same structure as shown by
Gopich and Szabo in (40).
Example IV: Propagator and likelihood
Here, we consider a simple FRET trace where two photons are detecte
respectively. To demonstrate the ideas developed so far, we calculate t

L ¼ e2rstartP
non
1 Gra

1

To do so, we first need to calculatePnon
1 using the nonradiative detect

boxes

Pnon
1 ¼ expð0:05ðG1DnonÞÞ ¼

and similarly

Pnon
2 ¼ expðð0:15 � 0:05ÞðG1DnonÞ

Next, we proceed to calculateGrad
1 andGrad

2 . Remembering that the firs

Grad
1 ¼ G1Drad

d ¼

2
6666664

0
277000

0
0
0
0

Similarly, since the second photon was detected in the acceptor cha

Grad
2 ¼ G1Drad

a ¼

2
6666664

0
0

285000
0
0
0

We also assume that the system is initially in the superstate 41 givin
find the likelihood as L ¼ 3:06e2 where e is a constant and does not co
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Effect of binning single-photon smFRET data

Whenconsidering binned FRETdata, the time period of an
experiment ðTend � TstartÞ is typically divided into a finite
number ð¼ NÞ of equally sized ð¼ eÞ time windows
(bins), and the photon counts (intensities) in each bin
are recorded in the detection channels. This is in contrast
to single-photon analysis where individual photon arrival
times are recorded. To arrive at the likelihood for such
binned data, we start with the single-photon likelihood
derived inEq. 15where e is not infinitesimally small, that is,
d at times 0.05 and 0.15 ms in the donor and acceptor channels,
he likelihood of these observations as (see Eq. 21)

dPnon
2 Grad

2 rT
norm:

ion ðDnonÞ and generator ðGÞmatrices found in the previous example

2
6666664

0:55 0 0 0:06 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0:03 0 0 0:58 0 0
0 0 0 0 0 0
0 0 0 0 0 0

3
7777775
;

Þ ¼

2
6666664

0:30 0 0 0:06 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0:03 0 0 0:33 0 0
0 0 0 0 0 0
0 0 0 0 0 0

3
7777775
:

t photon was detected in the donor channel, we have (in ms� 1 units)

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 277000 0 0
0 0 0 0 0

3
7777775
:

nnel, we can write (in ms� 1 units)

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 285000 0 0

3
7777775
:

g rstart ¼ ½1; 0; 0; 0; 0; 0�. Finally, putting everything together, we can
ntribute to parameter estimations, as we show later.



L ¼ rstartP
ðrÞ
1 P

ðrÞ
2 P

ðrÞ
3 .P

ðrÞ
N� 1P

ðrÞ
N rT

norm; (22)
where
�
PðrÞ

n

�
an/anþ1

¼ ðPÞan/anþ 1
� ðDnÞan/anþ 1

;

or in the matrix notation

PðrÞ
n ¼ P1Dn ¼ expðeGÞ1Dn; (23)
Gs 5 I ¼

2
666664

�
X
js1

ls1/sjI ls1/s2I . ls1/sMs
I

ls2/s1I �P
js2

ls2/sjI . ls2/sMs
I

« « 1 «

lsMs/s1I lsMs/s2I . � P
jsMs

lsMs/sjI

3
7777775
; (25)
where Dn is the detection matrix introduced in the
“reduced propagators” section.

Next, we must sum over all superstate trajectories
that may give rise to the recorded photon counts (ob-
servations) in each bin. However, such a sum is chal-
lenging to compute analytically and has been
attempted in (38). Here, we only show likelihood
computation under commonly applied approxima-
tions/assumptions when analyzing binned smFRET
data, which are: 1) bin size e is much smaller than
typical times spent in a system state or, in other words,
for a system transition rate lsi/sj , we have elsi/sj � 1;
and 2) excitation rate lex is much slower than dye
relaxation and FRET rates, or in other words, interpho-
P ¼ expðeðGs5I þ GjÞÞ

¼ expðeðGs5IÞÞexpðeGjÞexp
	
� e2

2
½Gs5I;Gj�



exp
�O�ε3�� (27)
ton periods are much larger than the excited state
lifetimes.

The first assumption is based on realistic situations
where system kinetics (at seconds timescale) are
many orders of magnitude slower than the photophys-
ical transitions (at nanoseconds timescale). This time-
scale separation allows us to simplify the propagator
calculation in Eq. 23. To see that, we first separate
the system transition rates from photophysical transi-
tion rates in the generator matrix as

G ¼ Gs5I þ Gj; (24)

where5 denotes a tensor product, Gs is the portion of
generator matrix G containing only system transition
rates previously defined in Eq. 3, and Gj is the portion
containing only photophysical transition rates, that is,
and

Gj ¼

2
666664
Gj

s1
0 . 0

0 Gj
s2

. 0

« « 1 «

0 0 . Gj
sMs

3
777775; (26)

where Gj
si
is the photophysical generator matrix corre-

sponding to system state si given in Eq. 4.
Now plugging Eq. 24 into the full propagator

P ¼ expðeGÞ and applying the famous Zassenhaus
formula for matrix exponentials, we get
where the square brackets represent the commutator
of the constituting matrices and the last term
represents the remaining exponentials involving
higher-order commutators. Furthermore, the commu-
tator ½Gs 5I;Gj� results in a very sparse matrix
given by
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½Gs 5 I;Gj� ¼

2
666666664

0 ls1/s2

�
Gj

s2
� Gj

s1

�
. ls1/sMs

�
Gj

sMs
� Gj

s1

�
ls2/s1

�
Gj

s1
� Gj

s2

�
0 . ls2/sMs

�
Gj

sMs
� Gj

s2

�
« « 1 «

lsMs/s1

�
Gj

s1
� Gj

sMs

�
lsMs/s2

�
Gj

s2
� Gj

sMs

�
. 0

3
777777775
; (28)
where
lsi/sj

�
Gj

sj
� Gj

si

�
¼ lsi/sj

2
664
0 0 0

0 �
�
lFRETsj

� lFRETsi

� �
lFRETsj

� lFRETsi

�
0 0 0

3
775:
Now, the propagator calculation in Eq. 27 simplifies if
the commutator e2½Gs 5 I;Gj�/0, implying that either
the bin size e is very small such that elsi/sj � 1 (our
first assumption) or that FRET rates/efficiencies are
almost indistinguishable ðeðlFRETsj

� lFRETsi
Þz0Þ. Under

such conditions, the system state can be assumed to
stay constant during a bin, with system transitions
only occurring at the ends of bin periods. Furthermore,
the full propagator P in Eq. 27 can now be approxi-
mated as
P ¼ expðeGÞz expðeðGs 5 IÞÞexpðeGjÞ ¼ ðPs 5 IÞPj; (29)
where the last equality follows from the block diagonal
form of Gs5I given in Eq. 25 and Ps ¼ expðeGsÞ is
the system transition probability matrix (propagator)
given as

Ps ¼

2
664

ps1/s1 ps1/s2 . ps1/sMs

ps2/s1 ps2/s2 . ps2/sMs

« « 1 «
psMs/s1 psMs/s2 . psMs/sMs

3
775: (30)

Moreover, Pj ¼ expðeGjÞ is the photophysical tran-
sition probability matrix (propagator) as
14 Biophysical Reports 3, 100089, March 8, 2023
Pj ¼

2
666664
Pj

s1
0 . 0

0 Pj
s2

. 0

« « 1 «

0 0 . Pj
sMs

3
777775; (31)

where the elements are given as Pj
si

¼ expðeGj
si
Þ.

Furthermore, because of the block diagonal structure
of Pj, the matrix multiplication in Eq. 29 results in
P¼

2
666664

ps1/s1P
j
s1

ps1/s2P
j
s1

. ps1/sMs
Pj

s1

ps2/s1P
j
s2

ps2/s2P
j
s2

. ps2/sMs
Pj

s2

« « 1 «

psMs/s1P
j
sMs

psMs/s2P
j
sMs

. psMs/sMs
Pj

sMs

3
777775:

(32)

After deriving the full propagator P for the time
period e (bin) under our first assumption, we now pro-
ceed to incorporate observations during this period



via detection matrices Dn to compute the reduced
propagator of Eq. 23. To do so, we now apply our sec-
ond assumption of relatively slower excitation rate lex.
This assumption implies that interphoton periods
are dominated by the time spent in the ground state
of the FRET pair and are distributed according to a sin-
gle exponential distribution, ExponentialðlexÞ. Conse-
quently, the total photon counts per bin follow a
Poisson distribution, PoissonðelexÞ, independent of
the photophysical portion of the photophysical trajec-
tory taken from superstate an to anþ 1.

Now, the first and the second assumptions imply
that the observation during the n-th bin only depends
on the system state sn (or the associated FRET rate
lFRETsn

). As such we can approximate the detection ma-
trix elements as

ðDnÞan/anþ 1
¼ pðwnjan; anþ 1ÞzpðwnjsnÞ: (33)

Using these approximations, the reduced propagator
in Eq. 23 can now be written as
PðrÞ
n ¼ P1Dn

z

2
66666664

ps1/s1pðwnjsn ¼ s1ÞPj
s1

. ps1/sMs
pðwnjsn ¼ s1ÞPj

s1

ps2/s1pðwnjsn ¼ s2ÞPj
s2

. ps2/sMs
pðwnjsn ¼ s2ÞPj

s2

« 1 «

psMs/s1pðwnjsn ¼ sMs
ÞPj

sMs
. psMs/sMs

pðwnjsn ¼ sMs
ÞPj

sMs

3
77777775
:

(34)
Next, to compute the likelihood for the n-th bin, we
need to sum over all possible superstate trajectories
within this bin as
Ln ¼ rnP
ðrÞ
n rT

norm

z
XMs

i ¼ 1

XMs

j ¼ 1

pðwnjsn ¼ siÞpsi/sj

�
rsi;nP

j
si
rT
norm

�
;

(35)
where rn is a normalized row vector populated by prob-
abilities of finding the system-FRET composite in the
possible superstates at the beginning of the n-th bin.
Furthermore, we have written portions of rn corre-
sponding to system state si as rsi;n. To be more
explicit, we have
rn ¼ �
rs1 ;n rs2 ;n . rsMs ;n

�
;

following the convention in the “likelihood” section and
using n to now represent time tn.

Moreover, since each row of Pj
si

¼ expðeGj
si
Þ sums

to one, we have Pj
si
rT
norm ¼ rT

norm, which simplifies
the bin likelihood of Eq. 35 to

Lnz
XMs

i ¼ 1

XMs

j ¼ 1

pðwnjsn ¼ siÞpsi/sj

�
rsi;nr

T
norm

�

¼
XMs

i ¼ 1

XMs

j ¼ 1

pðwnjsn ¼ siÞpsi/sjrsi;n;

(36)

where we have defined rsi;nhrsi;nr
T
norm ¼ P

jrsi;jj
as

the probability of the system to occupy system state
si. We can also write the previous equation in the ma-
trix form as
Lnzrs
n

�
Ps 1Ds

n

�
rT
norm; (37)
where rs
n is a row vector of length Ms (number of sys-

tem states) populated by rsi;n for each system state,
and Ds

n , in the same spirit as Dn, is a detection matrix
of dimensionsMs �Ms populated by observation prob-
ability pðwnjsn ¼ siÞ in each row corresponding to sys-
tem state si. Furthermore, defining Ps

nhðPs 1Ds
nÞ, we
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note here that Ps
n propagates probabilities during the

n-th bin in a similar manner as the reduced propagators
PðrÞ

n of Eq. 23.
Therefore, we can now multiply these new propaga-

tors for each bin to approximate the likelihood of Eq.
22 as

Lzrs
startP

s
1P

s
2P

s
3.Ps

Nr
T
norm; (38)

where rs
start is a row vector, similar to rs

n , populated by
probabilities of being in a given system state at the
beginning of an experiment.

To conclude, our two assumptions regarding system
kinetics and excitation rate allow us to significantly
reduce the dimensions of the propagators. This, in
turn, leads to much lowered expense for likelihood
computation. However, cheaper computation comes
at the expense of requiring a large number of photon de-
tections or excitation rates per bin to accurately deter-
mine FRET efficiencies (identify system states) since
we marginalize over photophysics in each bin. Such
high excitation rates lead to faster photobleaching
and increased phototoxicity, and thereby much shorter
experiment durations. As we will see in the “pulsed illu-
mination” section, this problem can be mitigated by us-
ing pulsed illumination, where the likelihood takes a
similar form as Eq. 38, but FRET efficiencies can be
accurately estimated from the measured microtimes.
Detection effects

In the previous section, we assumed idealized detec-
tors to illustrate basic ideas on detection matrices.
However, realistic FRET experiments must typically ac-
count for detector nonidealities. For instance, many
emitted photons may simply go undetected when the
detection efficiency of single-photon detectors, i.e.,
the probability of an incident photon being successfully
registered, is less than one due to inherent nonlinear-
ities associated with the electronics (22) or the use
of filters in cases of polarized fluorescent emission
(60,61). In addition, donor photons may be detected
in the channel reserved for acceptor photons or vice-
versa due to emission spectrum overlap (62). This phe-
nomenon, commonly known as crosstalk, crossover, or
bleedthrough, can significantly affect the determina-
tion of quantities, such as transition rates and FRET ef-
ficiencies, as we demonstrate later in our results. Other
effects adding noise to fluorescence signals include
dark current (false signal in the absence of incident
photons), dead time (the time a detector takes to relax
back into its active mode after a photon detection), and
timing jitter or IRF (stochastic delay in the output signal
after a detector receives a photon) (22). In this section,
we describe the incorporation of all such effects into
16 Biophysical Reports 3, 100089, March 8, 2023
our model except dark current and background emis-
sions, which require more careful treatment and will
be discussed in the “background emissions” section.

Crosstalk and detection efficiency

Noise sources such as crosstalk and detection effi-
ciency necessarily result in photon detection being
treated as a stochastic process. Both crosstalk and
detection efficiency can be included into the propaga-
tors in both cases by substituting the zeros and ones,
appearing in the ideal radiative and nonradiative detec-
tion matrices (Eqs. 16 and 17), with probabilities be-
tween zero and one. In such a way, the resulting
propagators obtained from these detection matrices,
in turn, incorporate into the likelihood the effects of
crosstalk and detection efficiency into the model.

Here, in the presence of crosstalk, for clarity, we add
a superscript to the radiative detection matrix of Eq. 17
for the k-th photon, Drad� ct

k . The elements of this detec-
tion matrix for the an/bn transition, when a photon in-
tended for channel j is registered in channel i reads�

Drad� ct
k

�
an/bn

¼
�
0 Nonradiative transitions
fji Radiative transitions

where fji is the probability for this event (upon transi-
tion from superstate an to bn). Further, detector effi-
ciencies can also be accounted for in these
probabilities to represent the combined effects of
crosstalk, arising from spectral overlap, and absence
of detection channel registration. When we do so, we
recover

P
ifji % 1 (for cases where i and j can be

both the same or different), as not all emitted photons
can be accounted for by the detection channels.

This new detection matrix above results in the
following modification to the radiative propagator of
Eq. 19 for the k-th photon

P
ðrÞrad� ct
k ¼ �

I þ eG þ O�e2��1Drad� ct
k

¼ eGrad� ct
k þ O�e2�:

The second equality above follows by recognizing
that the identity matrix multiplied, element-wise, by
Drad� ct

k is zero. By definition, Grad� ct
k is the remaining

nonzero product.
On the other hand, for time periods when no photons

are detected, the nonradiative detection matrices in Eq.
16 become

ðDnÞan/bn ¼ �
Dnon� ct

�
an/bn

¼
8<
:

1 Nonradiative transitions

1 �
X

j
fij Radiative transitions

;



where the sum gives the probability of the photon in-
tended for channel i to be registered in any channel.
The nonradiative propagator of Eq. 18 for an infinites-
imal period of size e in the presence of crosstalk and
inefficient detectors is now

PðrÞnon� ct ¼ �
I þ eG þ O�e2��1Dnon� ct

¼ exp
�
eGnon� ct� þ O�e2�; (39)

where Gnon� ct ¼ G1Dnon� ct. With the propagators
incorporating crosstalk and detection efficiency now
defined, the evolution during an interphoton period be-
tween the ðk � 1Þ-th photon and the k-th photon of
size ðTk � Tk� 1Þ is now governed by the product

Pnon� ct
k P

ðrÞrad� ct
k ¼ ePnon� ct

k Grad� ct
k þ O�e2�; (40)

where the nonradiative propagators in Eq. 39 have
now been merged into a single propagator Pnon� ct

k ¼
expððTk � Tk� 1ÞGnon� ctÞ following the same procedure
as Eq. 20.

Finally, inserting Eq. 40 for each interphoton period
into the likelihood of Eq. 14, we arrive at the final
likelihood incorporating crosstalk and detection effi-
ciency as
L ¼ ε
KrstartP

non� ct
1 Grad� ct

1 Pnon� ct
2 Grad� ct

2 .Pnon� ct
K� 1 Grad� ct

K� 1

�Pnon� ct
K Grad� ct

K Pnon� ct
end rT

norm þ O�εKþ 1
�
:

After incorporating crosstalk and detector effi-
ciencies into our model, we briefly explain the calibra-
tion of the crosstalk probabilities/detection
efficiencies fij. To calibrate these parameters, two
samples, one containing only donor dyes and another
containing only acceptor dyes, are individually excited
with a laser under the same power to determine the
number of donor photons nrawdi and number of acceptor
photons nrawai detected in channel i.

From photon counts recorded for the donor-only
sample, assuming ideal detectors with 100% efficiency,
we can compute the crosstalk probabilities for donor
photons going to channel i, fdi, using the photon count
ratios as fdi ¼ nrawdi =nemd , where nemd is the absolute
number of emitted donor photons. Similarly, crosstalk
probabilities for acceptor photons going to channel i,
fai, can be estimated as fai ¼ nrawai =nema , where nema is
the absolute number of emitted acceptor photons. In
the matrix form, these crosstalk factors for a two-de-
tector setup can be written as
A ¼
�
fa1 fd1

fa2 fd2

�
: (41)

Using this matrix, for the donor-only sample, we can
now write "

nraw
d1

nraw
d2

#
¼ A

"
0

nem
d

#
¼
�
fd1

fd2

�
nemd ; (42)

and similarly for the acceptor only sample"
nraw
a1

nraw
a2

#
¼ A

"
nem
a

0

#
¼
�
fa1

fa2

�
nema : (43)

However, it is difficult to estimate the absolute
number of emitted photons nemd and nema experimentally,
and therefore the crosstalk factors in A can only
be determined up to multiplicative factors of nemd
and nema .

Since scaling the photon counts in an smFRET trace
by an overall constant does not affect the FRET effi-
ciency estimates (determined by photon count ratios)
and escape rates (determined by changes in FRET effi-
ciency), we only require crosstalk factors up to a con-
stant as in the last equation.
For this reason, one possible solution toward deter-
mining the matrix elements of A up to one multiplica-
tive constant is to first tune dye concentrations such
that the ratio nemd =nema ¼ 1, which can be accomplished
experimentally. This allows us to write the crosstalk
factors in the matrix form up to a constant as follows

A ¼
�
fa1 fd1

fa2 fd2

�
f

"
nraw
a1 nrawd1

nraw
a2 nrawd2

#
: (44)
It is common to set the multiplicative factor in Eq. 44
by the total donor photon counts

P
jn

raw
dj to give

A ¼
�
fa1 fd1

fa2 fd2

�
h

2
66664

nraw
a1X
j
nrawdj

nraw
d1X
j
nraw
dj

nraw
a2X
j
nrawdj

nraw
d2X
j
nraw
dj

3
77775: (45)
Biophysical Reports 3, 100089, March 8, 2023 17



We note that from the convention adopted here, we
have fd1 þ fd2 ¼ 1.

Furthermore, in situations where realistic detectors
affect the raw counts, the matrix elements of A as
computed above automatically incorporate the effects
of detector inefficiencies including the fact thatP

jfj % 1.
In addition, the matrix A can be further generalized to

account formore than two detectors by appropriately ex-
panding the size of the matrix dimensions to coincide
with the number of detectors. Calibration of thematrix el-
ements then follows the same procedure as above.
Example V: Detection matrices with crosstalk and d
For our example with two system states, we had earlier shown detectio
detector efficiencies into these matrices. Moreover, we assume a realis

RCMf

�
1:0
0:0

However, following the convention of Eq. 45, we scale the matrix pro
1.22, leading to effective crosstalk factors fij given as

fa1 ¼ 0:84;fa2 ¼ 0:0;fd1

As such, these values imply approximately 18% crosstalk from donor
nel without any crosstalk using the convention adopted in Eq. 45. Now,
nonzero elements with the calibrated fij values above

Drad� ct
d=a ¼

2
6666664

0 0 0 0 0 0
fd2=fd1 0 0 0 0 0
fa2=fa1 0 0 0 0 0

0 0 0 0 0 0
0 0 0 fd2=fd1 0 0
0 0 0 fa2=fa1 0 0

3
7777775

Similarly, we modify the ideal nonradiative detection matrix by replacin
0 as follows

Dnon� ct ¼

2
6666664

1 1
0 1

0:16 1
1 1
1 1
1 1
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Now, in performing single-photon FRET analysis,
we will use directly the elements of A in constructing
our measurement matrix. However, it is also com-
mon, to compute the matrix elements of A from
what is termed the route correction matrix (RCM)
(63) typically used in binned photon analysis. The
RCM is defined as the inverse of A to obtain cor-
rected counts nemd and nema up to a proportionality con-
stant as

RCMf

�
fd2 �fd1

�fa2 fa1

�
: (46)
etector efficiencies
n matrices for ideal detectors. Here, we incorporate crosstalk and
tic RCM (64) given as

� 0:22
1:02

�
:

vided by a sum of absolute values of its first row elements, namely

¼ 0:18; and fd2 ¼ 0:82:

to acceptor channel and 84% detection efficiency for acceptor chan-
we modify the ideal radiative detection matrices by replacing their

¼

2
6666664

0 0 0 0 0 0
0:82=0:18 0 0 0 0 0
0=0:84 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0:82=0:18 0 0
0 0 0 0=0:84 0 0

3
7777775
:

g the zero elements by 1 � fa1 � fa2 ¼ 0:16 and 1� fd2 � fd1 ¼

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 0 1 1
1 0:16 1 1

3
7777775
:



Effects of detector dead time

Typically, a detection channel i becomes inactive
(dead) after the detection of a photon for a period di
as specified by the manufacturer. Consequently, radia-
tive transitions associated with that channel cannot be
monitored during that period.

To incorporate this detector dead period into our like-
lihood model, we break an interphoton period between
the ðk � 1Þ-th and k-th photon into two intervals: the
first interval with an inactive detector and the second
one when the detector is active. Assuming that the
ðk � 1Þ-th photon is detected in the i-th channel, the
first interval is thus dik long. As such, we can define
the detection matrix for this interval as
�
Dik � dead

�
an/bn

¼
�
1 All transitions not intended for channel ik
0 All transitions intended for channel ik

:

Next, corresponding to this detection matrix, we have
the propagator

P
ik � dead
k ¼ exp

�
dik

�
G1Dik � dead

��
¼ exp

�
dikG

ik � dead
�
;

that evolves the superstate during the detector dead
time. This propagator can now be used to incorporate
the detector dead time into Eq. 20 to represent the evo-
lution during the period between the ðk � 1Þ-th and k-th
photons as

P
ik�1 � dead
k� 1 Pnon

k P
ðrÞrad
k ¼ eP

ik� 1 � dead
k� 1 Pnon

k Grad
k þ O�e2�;

(47)

where Pnon
k P

ðrÞrad
k describes the evolution when the de-

tector is active.
Finally, inserting Eq. 47 for each interphoton

period into the likelihood for the HMM with a second-
order structure in Eq. 14, we arrive at the following
likelihood that includes detector dead time
LfrstartP
non
1 Grad

1 P
i1 � dead
1 Pnon

2 Grad
2 P

i2 � dead
2 .Pnon

K Grad
K P

iK � dead
K Pnon

endr
T
norm: (48)
To provide an explicit example on the effect of the
detector dead time on the likelihood, we take a detour
for pedagogical reasons. In this context, we consider
a very simple case of one detection channel (dead
time d) observing a fluorophore with two photophysical
states, ground ðj1Þ and excited ðj2Þ, illuminated by a
laser. The data in this case contains only photon arrival
times

fT1;T2;T3;.;TKg:
The generator matrix containing the photophysical
transition rates for this setup is

G ¼
� � lj1/j2

lj2/j1
�

�
¼
� � lex
ld �

�
;

where the � along the diagonal represents the negative
row-sum of the remaining elements, lex is the excitation
rate, and ld is the donor relaxation rate.

Here, all transitions are possible during detector
dead times as there are no observations. As such, the
dead time propagators in the likelihood (Eq. 48) are
simply expressed as exponentials of the full generator
matrix, that is,Pik � dead

k ¼ expðdGÞ, leaving the normal-
ization of the propagated probability vector r un-
changed, e.g., just as we had seen in Eq. 8.

As we will see, these dead times, similar to detector
inefficiencies, simply increase our uncertainty over pa-
rameters we wish to learn, such as kinetics, by virtue of
providing less information. By contrast, background
emissions and crosstalk provide false information.
However, the net effect is the same: all noise sources
increasing uncertainty.
Adding the detection IRF

Due to various sources of noise impacting the detec-
tion timing electronics (also known as jitter), the time
elapsed between photon arrival and detection is itself
a hidden (latent) random variable (22). Under contin-
uous illumination, we say that this stochastic delay in
time is sampled from a probability density, f ðtÞ, termed
Biophysical Reports 3, 100089, March 8, 2023 19



the detection IRF. To incorporate the detection IRF into
the likelihood of Eq. 48, we convolute the propagators
with f ðtÞ as follows
Lfrstart

�Z tIRF

0
dt1Pnon

1 ðDT1 � t1ÞGrad
1 P

i1 � dead
1 ðt1Þfðt1Þ




�
�Z tIRF

0
dt2Pnon

2 ðDT2 � t2ÞGrad
2 P

i2 � dead
2 ðt2Þfðt2Þ



«

�
	Z tIRF

0
dtKPnon

K ðDTK � tKÞGrad
K P

iK � dead
K ðtKÞfðtKÞ



Pnon

endr
T
norm;

(50)
where we have used dead time propagators P
ik � dead
k

to incorporate detector inactivity during the
period between photon reception and detector
reactivation. Moreover, we have Pnon

k ðDTk � tkÞ ¼
expððDTk � tkÞGnonÞ as described in Eq. 18.

To facilitate the computation of this likelihood, we
use the fact that typical acquisition devices record at
discrete (but very small) time intervals. For instance,
a setup with the smallest acquisition time of 16 ps
and a detection IRF distribution that is approximately
100 ps wide will have the detection IRF spread over,
roughly, six acquisition periods. This allows each
convolution integral to be discretized over the six
acquisition intervals and computed in parallel, thereby
avoiding extra real computational time associated to
this convolution other than the overhead associated
with parallelization.
Illumination features

After discussing detector effects, we continue here by
further considering different illumination features. For
simplicity alone, our likelihood computation until now
assumed continuous illumination with a uniform inten-
sity. More precisely, the element lex of the generator
matrix in Eq. 4 was assumed to be time independent.
Here, we generalize our formulation and show how
other illumination setups (such as pulsed illumination
and alternating laser excitation, ALEX (65)) can be
incorporated into the likelihood by simply assigning a
time dependence to the excitation rate lexðtÞ.

Pulsed illumination

Here, we consider an smFRET experiment where the
FRET pair is illuminated using a laser for a very short
period of time (a pulse), dpulse, at regular intervals of
20 Biophysical Reports 3, 100089, March 8, 2023
size t; see Fig. 3 a. Now, as in the case of continuous
illumination with constant intensity, the likelihood for
a set of observations acquired using pulsed illumina-
tion takes a similar form to Eq. 21 involving products
of matrices as follows

LfrstartQ1Q2Q3.QN� 1QNr
T
norm; (51)

where Qn, with n ¼ 1;.; N, denotes the propagator
evolving the superstate during the n-th interpulse
period between the ðn � 1Þ-th and the n-th pulse.

To derive the structure of Qn during the n-th inter-
pulse period, we break it into two portions: 1) pulse
with nonzero laser intensity where the evolution of
the FRET pair is described by the propagator Ppulse

n

introduced shortly; 2) dark period with zero illumina-
tion intensity where the evolution of the FRET pair is
described by the propagator Pdark

n introduced
shortly. Furthermore, depending on whether a
photon is detected or not over the n-th interpulse
period the propagators Ppulse

n and Pdark
n assume

different forms.
First, when no photons are detected, we have

Ppulse
n ¼ exp

	Z dpulse

0
dd GnonðdÞ



; and (52)

dark
�� � dark

�

Pn ¼ exp t � dpulse G ; (53)

where the integration over the pulse period now
involves a time-dependent Gnon due to temporal
variations in lexðtÞ. The integral in Eq. 52 is some-
times termed the excitation IRF, although we
will not use this convention here. For this reason,
when we say IRF, we imply detection IRF alone. In
addition, Gdark is the same as Gnon except for the
excitation rate that is now set to zero due to lack
of illumination. Finally, the propagator for an



a

b

FIGURE 3 Events over a pulsed illumination experiment pulse win-
dow. Here, the beginning of the n-th interpulse window of size t is
marked by time tn. The FRET labels originally in the state GG (donor
and acceptor, respectively, in ground states) are excited by a high-in-
tensity burst (shown by the green) to the state EG (only donor excited)
for a very short time dpulse. If FRET occurs, the donor transfers its en-
ergy to the acceptor and resides in the ground state leaving the FRET
labels in the GE state (only acceptor excited). The acceptor then
emits a photon to be registered by the detector at microtime mn.
When using ideal detectors, the microtime is the same as the photon
emission time as shown in (a). However, when the timing hardware
has jitter (shown in red), a small delay en is added to the microtime
as shown in (b).
interpulse period with no photon detection can now
be written as

Qn ¼ Ppulse
n Pdark

n ¼ exp

	Z dpulse

0
ddGnonðdÞ




� exp
��

t � dpulse
�
Gdark

�
:

(54)
On the other hand, if a photon is detected sometime
after a pulse (as in Fig. 3 a), the pulse propagator re-
mains as in Eq. 52. However, the propagator Pdark

n

must now be modified to include a radiative generator
matrix Grad

n similar to Eq. 20
Pdark
n ¼ exp

��
mn � dpulse

�
Gdark

�
Grad

n

� exp
�
ðt � mnÞGdark

�
;

(55)

where mn is the photon arrival time measured with
respect to the n-th pulse (also termed microtime) as
shown in Fig. 3 a. Here, the two exponential terms
describe the evolution of the superstate before and af-
ter the photon detection during the dark period.

Moreover, we can construct the propagator for situa-
tions where a photon is detected during a pulse itself in
a similar fashion. Here, the propagator Pdark

n remains
the same as in Eq. 53 but Ppulse

n must now be modified
to include the radiative generator matrix Grad

n as

Ppulse
n ¼ exp

	Z mn

0
ddGnonðdÞ



Grad

n

� exp

	Z dpulse

mn

ddGnonðdÞ


:

(56)

The propagators derived so far in this section
assumed ideal detectors. We now describe a proced-
ure to incorporate the IRF into this formulation. This
is especially significant in accurate estimation of fluo-
rophores' lifetimes, which is commonly done in pulse
illumination smFRET experiments. To incorporate the
IRF, we follow the same procedure as in the “adding
the detection IRF” section and introduce convolution
between the IRF function f ðeÞ and propagators above
involving photon detections. That is, when there is a
photon detected during the dark period, we modify
the propagator Pdark

n as

Pdark
n ¼

Z dIRF

0
denexp

��
mn � dpulse � en

�
Gdark

�
Grad

n

� exp
�
ðt � mn þ enÞGdark

�
fðenÞ;

(57)

while the Ppulse
n stays the same as in Eq. 52. Here, en is

the stochastic delay in photon detection resulting from
the IRF as shown in Fig. 3 b.

Moreover, when there is a photon detected during a
pulse, the propagator Ppulse

n of Eq. 56 can be modified
in a similar fashion to accommodate the IRF, while
the propagator Pdark

n remains the same as in Eq. 53.
The propagators Qn presented in this section involve

integrals over large generator matrices that are analyt-
ically intractable and computationally expensive when
considering large pulse numbers. Therefore, we follow
a strategy similar to the one used in the “effect of
binning single-photon smFRET data” sectionfor binned
likelihood to approximate these propagators.
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To reduce the complexity of the calculations, we
start by making realistic approximations. Given the
timescale separation between the interpulse period
(typically tens of nanoseconds) and the system ki-
netics (typically of seconds timescale) in a pulsed
illumination experiment, it is possible to approximate
the system state trajectory as being constant during
an interpulse period. In essence, rather than treating
the system state trajectory as a continuous time pro-
cess, we discretize the trajectory such that system
transitions only occur at the beginning of each inter-
pulse period. This allows us to separate the photo-
physical part of the generator matrix Gj in Eq. 4
from the portion describing the evolution of the sys-
tem under study Gs given in Eq. 3. Here, by contrast
to the likelihood shown in the “pulsed illumination”
section, we can now independently compute photo-
physical and system likelihood portions, as described
below.

To derive the likelihood, we begin by writing the sys-
tem state propagator during an interpulse period as

Ps ¼ expðtGsÞ: (58)

Furthermore, we must incorporate observations into
these propagators by multiplying each system transi-
tion probability in Ps, psi/sj , with the observation prob-
ability if that transition had occurred. We organize
these observation probabilities using our newly defined
detection matrices Ds

n similar to the “continuum limit”
section and write the modified propagators as

Ps
n ¼ Ps1Ds

n; (59)

where 1 again represents the element-by-element
product. Here, the elements of Ds

n depend on the photo-
physical portion of the generator matrix Gj and their
detailed derivations are shown in the third companion
article (54). We note here that propagator matrix di-
mensions are nowMs �Ms making them computation-
ally less expensive than in the continuous illumination
case. Finally, the likelihood for the pulsed illuminated
smFRET data with these new propagators reads

L ¼ pðwjrstart;Ps;GjÞfrstartP
s
1P

s
2.Ps

Nr
T
norm; (60)

which, similar to the case of binned likelihood under
continuous illumination (see the “effect of binning sin-
gle-photon smFRET data” section), sums over all
possible system state trajectories.

We will later use this likelihood to put forward an in-
verse model to learn transition probabilities (elements
of Ps) and photophysical transition rates appearing
in Gj.
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Background emissions

Here, we consider background photons registered by
detectors from sources other than the labeled system
under study (2). The majority of background photons
comprise ambient photons, photons from the illumina-
tion laser entering the detectors, and dark current (false
photons registered by detectors) (22).

Due to the uniform laser intensity in the continuous
illumination case, considered in this section, we may
model all background photons using a single distribu-
tion from which waiting times are drawn. Often, such
distributions are assumed (or verified) to be exponential
with fixed rates for each detection channel (66,67).
Here, we model the waiting time distribution for back-
ground photons arising from both origins as a single
exponential as is often the most common case. Howev-
er, in the pulsed illumination case, laser source and the
two other sources of background require different treat-
ments due to nonuniform laser intensity. That is, the
ambient photons and dark current are still modeled by
an Exponential distribution, although it is often further
approximated as a Uniform distribution given that inter-
pulse period if much shorter than the average back-
ground waiting time. The full formulation describing
all background sources under pulsed illumination is pro-
vided in the third companion article (54).

We now proceed to incorporate background into the
likelihood under continuous illumination. We do so, as
mentioned earlier, by assuming an Exponential distribu-
tion for the background, which effectively introduces
new photophysical transitions into the model. As
such, these transitions may be incorporated by expand-
ing the full generator matrix G (described in the “likeli-
hood” section) appearing in the likelihood, thereby
leaving the structure of the likelihood itself intact, cf.,
Eq. 21.

To be clear, in constructing the new generator matrix,
we treat background in each detection channel as if
originating from fictitious independent emitters with
constant emission rates (exponential waiting time).
Furthermore, we assume that an emitter corresponding
to channel i is a two-state system with photophysical
states denoted by n

j
bg
i;1;j

bg
i;2

o
:

Here, each transition to the other state coincides with a
photon emission with rate lbgi . As such, the correspond-
ing background generator matrix for channel i can now
be written as

Gbg
i ¼

2
4 � l

j
bg
i;1/j

bg
i;2

l
j
bg
i;2
/j

bg
i;1

�

3
5 ¼

2
4 � l

bg
i

l
bg
i �

3
5:



expððTk � Tk� 1Þ GÞ ¼ exp
�ðTk � Tk� 1Þ Gno� bg

�
5 exp

�
ðTk � Tk� 1Þ Gbg

1

�
5exp

�
ðTk � Tk� 1Þ Gbg

2

�
5.5 exp

�
ðTk � Tk� 1Þ Gbg

C

�
;

Since the background emitters for each channel are
independent of each other, the expanded generator ma-
trixG for the combined setup (system-FRET composite
plus background) can now be computed. This can be
achieved by combining the system-FRET composite
state space and the background state spaces for all
of the total C detection channels using Kronecker
sums (68) as

G ¼ Gno� bg4Gbg
1 4Gbg

2 4.4Gbg
C ;

where the symbol 4 denotes the matrix Kronecker
sum, and Gno� b represents previously shown gener-
Example VI: Background
To provide a concrete example for background, we again return to our FRET pair with two system states. The background free full generator
matrix for this system-FRET composite was provided in the example box in the “likelihood” section as (in units of ms� 1)

Gno� bg ¼

2
6666664

� 12 10:0 0 2:0 0:0 0:0
277000 � 347002 70000 0:0 2:0 0:0
285000 0:0 � 285002 0:0 0:0 2:0
1:0 0:0 0:0 � 11 10:0 0
0:0 1:0 0:0 277000 � 2777001 2500000
0:0 0:0 1:0 285000 0:0 � 285001

3
7777775
:

Here, we expand the above generator matrix to incorporate background photons entering two channels ði ¼ 1; 2Þ at rates of lbg1 ¼ 1ms�1

and l
bg
2 ¼ 0:5 ms�1. We do so by performing a Kronecker sum of Gno� bg with the following generator matrix for the background

Gbg ¼ Gbg
1 4Gbg

2 ¼
�� 1 1

1 � 1

�
4

�� 0:5 0:5
0:5 0:5

�
¼

2
664
� 1:5 0:5 1 0
0:5 � 1:5 0 1
1 0 � 1:5 0:5
0 1 0:5 � 1:5

3
775;

resulting in

G ¼ Gno� bg4Gbg:

Here, G is a 24 � 24 matrix and we do not include its explicit from.
ator matrices without any background transition
rates.

The propagators needed to compute the likelihood
can now be obtained by exponentiating the expanded
generator matrix above as
where the symbol 5 denotes the matrix Kronecker
product (tensor product) (68).

Furthermore, the same detection matrices defined
earlier to include only nonradiative transitions or only
radiative transitions, and their generalization with
crosstalk and detection efficiency, can be used to
obtain nonradiative and radiative propagators, as
shown in the “continuum limit” section.

Consequently, as mentioned earlier, by contrast to
incorporating the effects of dead time or IRF, addition
of background sources do not entail any changes in
the basic structure (arrangement of propagators) of
the likelihood appearing in Eq. 21.
Fluorophore characteristics: Quantum yield, blinking,
photobleaching, and direct acceptor excitation

As demonstrated for background in the previous sec-
tion, to incorporate new photophysical transitions,
such as fluorophore blinking and photobleaching, into
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the likelihood we must modify the full generator matrix
G. This can again be accomplished by adding extra
photophysical states, relaxing nonradiatively, to the flu-
orophore model. These photophysical states can have
long or short lifetimes depending on the specific photo-
physical phenomenon at hand. For example, donor pho-
tobleaching can be included by introducing a third
donor photophysical state into the matrix of Eq. 4
without any escape transitions as follows

Gj
si

¼

2
6664

� lj1/j2
0 0

lj2/j1
� lsi;j2/j3

lj2/j4

lj3/j1
0 � 0

0 0 0 �

3
7775

¼

2
66666664

� lex 0 0

ld � lFRETsi
lbleach

la 0 � 0

0 0 0 �

3
77777775
;

where j1 is the lowest energy combined photophys-
ical state for the FRET labels, j2 represents the
excited donor, j3 represents the excited acceptor,
and j4 represents a photobleached donor, respec-
tively. In addition, ld and la denote donor and
acceptor relaxation rates, respectively, lbleach repre-
sents permanent loss of emission from the donor
(photobleaching), and lFRETsi

represents FRET transi-
tions when the system is in its i-th system state.

Fluorophore blinking can be implemented simi-
larly, except with a nonzero escape rate out of the
new photophysical state, allowing the fluorophore
to resume emission after some time (52,69). Here,
assuming that the fluorophore cannot transition
into the blinking photophysical state from the donor
ground state results in the following generator
matrix

Gj
si

¼

2
6664

� lj1/j2
0 0

lj2/j1
� lsi;j2/j3

lj2/j4

lj3/j1
0 � 0

lj4/j1
0 0 �

3
7775

¼

2
66666664

� lex 0 0

ld � lFRETsi
lblink

la 0 � 0

lunblink 0 0 �

3
77777775
:

So far, we have ignored direct excitation of acceptor
dyes in the likelihood model. This effect can also be
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incorporated into the likelihood by assigning a nonzero
value to the transition rate lj1/j3

, that is,

Gj
si

¼

2
64

� lj1/j2
lj1/j3

lj2/j1
� lsi;j2/j3

lj3/j1
0 �

3
75

¼

2
6664

� lex ldirect

ld � lFRETsi

la 0 �

3
7775:

Other photophysical phenomena can also be incor-
porated into our likelihood by following the same pro-
cedure as above. Finally, just as when adding
background, the structure of the likelihood (arrange-
ment of the propagators) when treating photophysics
(including adding the effect of direct acceptor excita-
tion) stays the same as in Eq. 21.
Synthetic data generation

In the previous subsections, we described how to
compute the likelihood, which is the sum of probabili-
ties over all possible superstate trajectories that could
give rise to the observations made by a detector, as
demonstrated in the “forward model” section. Here,
we demonstrate how one such superstate trajectory
can be simulated to produce synthetic photon arrival
data using the Gillespie algorithm (70), as described
in the next section, followed by the addition of detector
artefacts. We then use the generated data to test our
BNP-FRET sampler.

Gillespie and detector artefacts

The Gillespie algorithm generates two sets of random
variables. The times at which superstates change (in-
dexed 1 through N). These times occur anywhere along
a continuous time grid. The next set of random vari-
ables are the states associated to the superstate pre-
ceding the time at which the superstate changes.

We designate the sequence of superstates

fb1; b2;.; bNg;

where bn ˛ ff1; f2;.; fMf
g. Here, unlike earlier in the

“likelihood” section, the time index n on superstates
bn is not on a regular temporal grid.

Now, to generate the superstate sequence above,
we first randomly draw the first superstate, b1, from
the set of possible superstates given their corre-
sponding probabilities. Next, we draw the second su-
perstate b2 of the sequence using the set of transition
rates out of the first state with self-transitions
excluded by construction. Now, after choosing b2,



we generate the holding time h1 (the time spent in b1)
from the Exponential distribution with rate constant
associated with transitions b1/b2. Finally, we repeat
the two previous steps to sequentially generate the
full sequence of superstates along with the corre-
sponding holding times.

More formally, we generate a trajectory, by first sam-
pling the initial superstate as

b1 � Categoricalf1:Mf
ðrstartÞ;

where rstart is the initial probability vector and the
Categorical distribution is the generalization of the
Bernoulli distribution for more than two possible
outcomes. The remaining superstates can now be
sampled as

bnþ 1

bn;G �Categoricalf1:Mf

 
lbn/f1

lbn
;
lbn/f2

lbn
;.;

lbn/fMf

lbn

!
;

where lbn ¼ P
ilbn/fi

is the escape rate for the su-
perstate bn and rates for self-transitions are
zero. The above equation reads as follows: “the su-
perstate bnþ 1 is drawn (sampled) from a Categorical
distribution given the superstate bn and the generator
matrix G.”

Once the n-th superstate bn is chosen, the holding
time hn (the time spent in bn) is sampled as follows

hnjbn;G � ExponentialðlbnÞ:

Finally, with ideal detectors, the detection channel ck
is assigned deterministically to the k-th photon emitted
at time Tem

k , which can be computed by summing all the
holding times preceding the corresponding radiative
transition.

Furthermore, in the presence of detection effects,
such as crosstalk, detection efficiency, and IRF, we
must add to the stochastic output of the Gillespie simu-
lation another layer of stochasticity originating from
the measurement model. That is, we stochastically
assign detection channel and detection times to an
emitted photon, as described below.

In the presence of crosstalk and inefficient detectors,
we choose the detection channel for the k-th photon
emitted upon a radiative transition as

ck � CategoricalfB;1;2g
�
pk
B; p

k
1; p

k
2

�
;

where pkB;p
k
1, and pk2, respectively, denote the probability

of the photon going undetected, being detected in
channels 1 and 2.
Moreover, in the presence of the IRF, we assign a
stochastic delay ek , sampled from a probability distribu-
tion f ðeÞ, to the absolute photon emission time Tem

k . This
results in the detection time, Tk ¼ Tem

k þ ek , as regis-
tered by the timing hardware.

In addition, when photophysical effects (such as
blinking and photobleaching) and background are pre-
sent, we can generate a superstate trajectory following
the same procedure as above using the generator
matrices G incorporating these effects as described
in the previous sections.

Finally, we obtain our desired smFRET trace (see
Fig. 4) consisting of photon arrival times T1:K and
detection channels c1:K as

fðT1; c1Þ; ðT2; c2Þ; ðT3; c3Þ;.; ðTK ; cKÞg:

INVERSE STRATEGY

Now, armed with the likelihood for different experi-
mental setups and a means by which to generate
synthetic data (or having experimental data at
hand), we proceed to learn the parameters of inter-
est. Assuming precalibrated detector parameters,
these include transition rates that enter the gener-
ator matrix G, and elements of rstart. However, accu-
rate estimation of the unknowns requires an inverse
strategy capable of dealing with all existing sources
of uncertainty in the problem, such as photon's sto-
chasticity and detector noise. This naturally leads
us to adopt a Bayesian inference framework where
we employ Monte Carlo methods to learn distribu-
tions over the parameters.

We begin by defining the distribution of interest over
the unknown parameters we wish to learn termed the
posterior. The posterior is proportional to the product
of the likelihood and prior distributions using Bayes'
rule as follows

pðG;rstartjwÞfLðwjG;rstartÞ pðG;rstartÞ; (62)

where the last term pðG;rstartÞ is the joint prior distribu-
tion overG and rstart defined over the same domains as
the parameters. The prior is often selected on the basis
of computational convenience. The influence of the
prior distribution on the posterior diminishes as more
data are incorporated through the likelihood. Further-
more, the constant of proportionality is the inverse of
the absolute probability of the collected data, 1=pðwÞ,
and can be safely ignored as generation of Monte Carlo
samples only involves ratios of posterior distributions
or likelihoods.

In addition, the eK factor in the likelihood first derived
in Eq. 21 can be absorbed into the proportionality
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constant as it does not depend on any of the parame-
ters of interest, resulting in the following expression
for the posterior (in the absence of detector dead
time and IRF for simplicity)
pðG;rstartjwÞfrstartP
non
1 Grad

1 Pnon
2 Grad

2 .Pnon
K� 1G

rad
K� 1P

non
K Grad

K Pnon
endr

T
end

� pðG;rstartÞ:
(63)
Next, assuming a priori that different transition rates
are independent of each other and initial probabilities,
we can simplify the prior as follows

pðG;rstartÞ ¼ pðrstartÞ
Y
i;j

p
�
lfi/fj

�
; (64)

where we select the Dirichlet prior distribution over
initial probabilities as this prior is conveniently defined
over a domain where the probability vectors, drawn

from it, sum to unity. That is,

pðrstartÞ ¼ DirichletðzÞ; (65)

where the Dirichlet distribution is amultivariate general-
ization of the Beta distribution and z is a vector of the
same size as the superstate space. Typically parame-
ters of the prior are termed hyperparameters and as
such z collects as many hyperparameters as its size.
T1 and T2 in channels 1 and 2, respectively. The first photon is detected up
upon transition b6/b7 (or 46/44). For this plot, we have used very fast sy
for demonstrative purposes only.

pðGjwÞfrstartP
non
1 Grad

1 Pnon
2 Grad

2 .
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In addition, we select Gamma prior distributions for
individual rates. That is,

p
�
lfi/fj

�
¼ Gamma

	
lfi/fj

;a;
lref

a



; (66)
guaranteeing positive values. Here, a and lref (a refer-
ence rate parameter) are hyperparameters of the
Gamma prior. For simplicity, these hyperparameters
are usually chosen (with appropriate units) such that
the prior distributions are very broad, minimizing their
influence on the posterior.

Furthermore, to reduce computational cost, the num-
ber of parameters we need to learn can be reduced by
reasonably assuming the system was at steady state
immediately preceding the time at which the experi-
ment began. That is, instead of sampling rstart from
the posterior, we compute rstart by solving the time-in-
dependent master equation,

rstartG ¼ 0:
Therefore, the posterior in Eq. 63 now reduces to
FIGURE 4 Simulated data. Here, we show a
superstate trajectory (in blue) generated using
Gillespie algorithm for a system-FRET com-
posite with two system states s1:2 and three
photophysical states. Collectively, superstates
41:3 correspond to photophysical states when
the system resides in s1 and superstates 44:6

correspond to photophysical states when the
system resides in s2. The pink vertical lines
mark the time points where transitions be-
tween the superstates occur. The variables
b1:7 and h1:7 between each set of vertical lines
represent the superstates and associated
holding times, respectively. The green and
red dots show the photon detections at times

on transition b3/b4 (or 45/44), while the second photon is detected
stem transition rates of ls1/s2 ¼ 0:001 ns�1 and ls1/s2 ¼ 0:002 ns�1

Pnon
K� 1G

rad
K� 1P

non
K Grad

K Pnon
endr

T
end

� pðGÞ:
(67)



In the following subsections, we first describe a para-
metric inverse strategy, i.e., assuming a known number
of system states, for sampling parameters from the
posterior distribution in Eq. 67 using Monte Carlo
methods. Next, we generalize this inverse strategy to
a nonparametric case where we also deduce the num-
ber of system states.
a
�
l�fi/fj

; lfi/fj

�
¼ min

8<
:1;

p
�
l�fi/fj

w;G\lfi/fj

�
q
�
lfi/fj

l�fi/fj

�
p
�
lfi/fj

w;G\lfi/fj

�
q
�
l�fi/fj

lfi/fj

�
9=
;; (70)
Parametric sampler: BNP-FRET with fixed number of
system states

Now with the posterior, Eq. 67, at hand and assuming
steady-state rstart , here we illustrate a sampling
scheme to deduce the transition rates of the generator
matrix G.

As our posterior of Eq. 67 does not assume a stan-
dard form amenable to analytical calculations, we
must iteratively draw numerical samples of the transi-
tion rates within G using Markov chain Monte Carlo
(MCMC) techniques. Specifically, we adopt a Gibbs al-
gorithm to, sequentially and separately, generate sam-
ples for individual transition rates at each MCMC
iteration. To do so, we first write the posterior of Eq.
67 using the chain rule as follows

pðGjwÞ ¼ p
�
lfi/fj

G\lfi/fj
;w
�
p
�
G\lfi/fj

w�; (68)

where the backslash after G indicates exclusion of the
following rate parameters and w denotes the set of ob-

servations as introduced in the “introducing observa-
tions” section. Here, the first term on the right-hand
side is the conditional posterior for the individual rate
lfi/fj

. The second term is considered a constant in
the corresponding Gibbs step as it does not depend
on lfi/fj

. Moreover, following the same logic, the
priors pðG\lfi/fj

Þ (see Eq. 67) for the remaining rate
parameters in the posterior on the left are also consid-
ered constant. Therefore, from Eqs. 67 and 68, we can
write the conditional posterior for lfi/fj

above as
p
�
lfi/fj

G\lfi/fj
;w
�

frstartP
non
1 G

�G
Just as with the posterior over all parameters, this
conditional posterior shown above does not take a
closed form allowing for direct sampling.

As such, we turn to the Metropolis-Hastings (MH) al-
gorithm (71) to draw samples from this conditional
posterior, where new samples are drawn from a pro-
posal distribution q and accepted with probability
where the asterisk represents the proposed rate values
from the proposal distribution q.

To construct an MCMC chain of samples, we begin
by initializing the chain for each transition rate lfi/fj

by random values drawn from the corresponding prior
distributions. We then iteratively sweep the whole set
of transition rates in each MCMC iteration by drawing
new values from the proposal distribution q.

A computationally convenient choice for the pro-
posal is a Normal distribution leading to a simpler
acceptance probability in Eq. 70. This is due to its sym-
metry resulting in qðlfi/fj

l�fi/fj
Þ ¼ qðl�fi/fj

lfi/fj
Þ.

However, a Normal proposal distribution would allow
negative transition rates naturally forbidden leading
to rejection in the MH step and thus inefficient sam-
pling. Therefore, it is convenient to propose new sam-
ples either drawn from a Gamma distribution or, as
shown below, from a Normal distribution in logarithmic
space to allow for exploration along the full real line as
follows

log
�
l�fi/fj

.
k
�log�lfi/fj

.
k
�
;

s2 � Normal
�
log
�
lfi/fj

.
k
�
; s2
�
;

where k ¼ 1 is an auxiliary parameter in the same units
as lfi/fj

introduced to obtain a dimensionless quantity
within the logarithm.
rad
1 Pnon

2 Grad
2 .Pnon

K Grad
K Pnon

endr
T
end

amma

	
lfi/fj

;a;
lref

a



:

(69)
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The variable transformation above now requires
introduction of Jacobian factors in the acceptance
probability as follows
a
�
l�fi/fj

; lfi/fj

�
¼ min

8<
:1;

p
�
l�fi/fj

w;G\lfi/fj

�
p
�
lfi/fj

w;G\lfi/fj

�
�
vlog

�
lfi/fj

.
k
�.

vlfi/fj

�
�
vlog

�
lfi/fj

.
k
�.

vlfi/fj

��
9=
;;
where the derivative terms represent the Jacobian and
the proposal distributions are canceled by virtue of us-
ing a symmetric Normal distribution.

The acceptance probability above depends on the
difference of the current and proposed values for
a given transitions rate. In other words, smaller differ-
ences between the current and proposed values
often lead to larger acceptance probabilities. This dif-
ference is determined by the covariance of the
Normal proposal distribution s2, which needs to be
tuned for each rate individually to achieve optimal
performance of the BNP-FRET sampler, or very
approximately, one-fourth acceptance rate for the
proposals (72).
This whole algorithm can now be summarized in th
# Initialize chain of samples
j ¼ 1

for i ¼ 1 : Ms � Ms

l
ðjÞ
i � Gamma

�
a;

lref
a

�
end
# Iteratively sample from the posterior using Gibbs alg
for j ¼ 2 : Draws

for i ¼ 1 : Ms � Ms

#Propose new sample

logðl�i Þ � Normalðlogðlðj� 1Þ
i Þ;s2Þ;

#Compute acceptance probability

aðl�i ;lðj� 1Þ
i Þ ¼ min

�
1;

pðl�i jw;G\liÞ
pðlðj� 1Þ

i jw;G\liÞ
ðvlogðliÞ
ðvlogðl

if aðl�i ;lðj� 1Þ
i Þ> randðÞ

#Accept proposal

l
ðjÞ
i ¼ expðl�i Þ

else
#Reject proposal

l
ðjÞ
i ¼ l

ðj� 1Þ
i

end
end

end
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Nonparametrics: Predicting the number of system
states

After describing our inverse strategy for a known num-
ber of system states (i.e., parametric inference), we
turn to more realistic scenarios where we may not
know the number of system states which, in turn, leads
to an unknown number of superstates (i.e., nonpara-
metric inference). In the following subsections, we first
describe the BNP framework for continuous illumina-
tion and then proceed to illustrate our BNP strategy un-
der pulsed illumination. Such BNP frameworks
introduced herein eventually provide us with distribu-
tions over the number of system states simultaneously,
and self-consistently, with other model parameters.

Bernoulli process for continuous illumination

The number of system states is often unknown and
cannot a priori be set by hand. Therefore, to learn the
e following pseudocode

orithm

=vliÞðj� 1Þ

iÞ=vliÞ�
�



states warranted by the data, we turn to the BNP para-
digm. That is, we first define an infinite-dimensional
version of the generator matrix in Eq. 2 and multiply
each of its elements by a Bernoulli random variable bi
(also termed loads). These loads, indexed by i, allow
us to turn on/off portions of the generator matrix asso-
ciated with transitions between specific system states
(including self-transitions). We can write the nonpara-
metric generator matrix as follows
G ¼

2
6666664

b2
1G

j
s1

�
X
js1

b1bjls1/sjI b1b2ls1/s2I .

b2b1ls2/s1I b2
2G

j
s2

�
X
js2

b2bjls2/sjI .

« « 1

3
77777775

¼

2
66666666666666666666664

� b2
1lj1/j2

b2
1lj1/j3

b1b2ls1/s2 0 0 .

b2
1lj2/j1

� b2
1l

ð1Þ
j2/j3

0 b1b2ls1/s2 0 .

b2
1lj3/j1

b2
1lj3/j2

� 0 0 b1b2ls1/s2 .

b1b2ls2/s1 0 0 � b2
2lj1/j2

b2
2lj1/j3

.

0 b1b2ls2/s1 0 b2
2lj2/j1

� b2
2l

ð2Þ
j2/j3

.

0 0 b1b2ls2/s1 b2
2lj3/j1

b2
2lj3/j2

� .

« « « « « « 1

3
77777777777777777777775

;

where a load value of 1 represents an “active” system
state, while “inactive” system states (not warranted by
the data) get a load value of 0. Here, there are two loads
associated to every transition because there is a pair of
states corresponding to each transition. Within this
formalism, the number of active loads is the number
of system states estimated by the BNP-FRET sampler.
As before, � represents negative row-sums.

The full set of loads, b ¼ fb1; b2; .; bNg, now
become quantities we wish to learn. To leverage
Bayesian inference methods to learn the loads, the pre-
viously defined posterior distribution (Eq. 67) now
reads as follows

pðb;GjwÞfLðwjb;G;rstartÞ pðGÞpðbÞ; (71)

where the prior pðbÞ is Bernoulli while the remaining

prior, pðGÞ, can be assumed to be the same as in Eq. 66.
As in the case of the parametric BNP-FRET sampler
presented in the section “parametric sampler: BNP-
FRET with fixed number of system states,” we generate
samples from this nonparametric posterior employing a
similar Gibbs algorithm. To do so, we first initialize the
MCMC chains of loads and rates by taking random
values from their priors. Next, to construct the MCMC
chains, we iteratively draw samples from the posterior
in two steps: 1) sequentially sample all rates using the
MH algorithm; then 2) load by direct sampling, one-by-
one from their corresponding conditional posteriors.
Here, step (1) is identical to the parametric case para-
metric sampler: BNP-FRET with fixed number of system
statesand we only focus on the second step in what
follows.

To sample the i-th load, the corresponding condi-
tional posterior reads (41)

pðbijb\bi;G;wÞfLðwjb;G;rstartÞ

Bernoulli

0
BB@bi;

1

1 þ Mmax
s � 1
g

1
CCA;

(72)

where the backslash after b indicates exclusion of the
following load and Mmax

s and g are hyperparameters.

Here, g sets the a priori expected number of system
states.
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A note on the interpretation of Mmax
s is in order. When

dealing with nonparametrics, we nominally must
consider an infinite set of loadsandpriors for these loads
called Bernoulli process priors (73). Samplers for such
process priors are available although inefficient (74,75).
However, for computational convenience, it is possible
to introduce a large albeit finite number of loads set to
Mmax

s . It can be shown that parameter inference are unaf-
fectedby thischoiceofcutoff (73,76,77)whensetting the

success probability to 1=
�
1 þMmax

s � 1

g

�
as in the Bernoulli

distribution of Eq. 72. This is because such a choice
forces the mean (expected number of system states)
of the full prior on loads

Q
ipðbiÞ to be finite ð¼ gÞ.

Since the conditional posterior in the equation above
must be discrete and describes probabilities of the
load being either active or inactive, it must itself follow
a Bernoulli distribution with updated parameters

pðbijb\bi;G;wÞ ¼ Bernoulliðbi; qiÞ;
where
qi ¼ Lðwjbi ¼ 1; b\bi;G;rstartÞ
Lðwjbi ¼ 1; b\bi;G;rstartÞ þ Lðwjbi ¼ 0; b\bi;G;rstartÞ

:

The Bernoulli form of this posterior allows direct
sampling of the loads.

We will apply this method for synthetic and experi-
mental data in the second companion article of this
series (55).
iHMM methods for pulsed illumination

Under pulsed illumination, the Bernoulli process prior
described earlier for continuous illumination can in
principle be used as is to estimate the number of sys-
tem states and the transition rates. However, in this
section, we describe a computationally cheaper infer-
ence strategy applicable to the simplified likelihood of
Eq. 60 assuming system state transitions occurring
only at the beginning of each pulse. The reduction in
computational expense is achieved by directly learning
the elements of the propagator Ps of Eq. 58, identical
for all interpulse periods. In doing so, we learn transi-
tion probabilities for the system states instead of
learning rates, although we will continue learning rates
for photophysical states. This avoids expensive matrix
exponentials for potentially large system state
numbers required for computing the propagators under
continuous illumination.
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Now, to infer the transition probabilities inPs, the di-
mensions of which are unknown owing to an unknown
number of system states, as well as transition rates
among the photophysical states (elements of Gj in
Eq. 4), and initial probabilities, we must place suitable
priors on these parameters yielding the following
posterior

pðrstart;Ps;GjjwÞfpðwjrstart;Ps;GjÞpðrstartÞpðGjÞpðPsÞ;
(73)

where we have immediately written the joint prior as a
product prior over rstart , Gj, and Ps. Next, for rstart and
Gj we use the same priors as in Eqs. 65 and 66. How-
ever, as the number of system states is unknown, Ps

requires special treatment. To learnPs, it is convenient
to adopt the infinite HMM (iHMM) (41,48) due to the
discrete nature of system state transitions over time.

As the name suggests, the iHMM leverages infinite
systemstate spaces (Ms/N in Eq. 3) similar to theBer-
noulli process prior described in the “Bernoulli process
for continuous illumination” section. However, unlike
the Bernoulli process, all system states remain perma-
nently active. The primary goal of an iHMM is then to
infer transition probabilities between system states,
some of which, not warranted by the data, remain very
small and set by the (nonparametric) prior that we turn
to shortly. Thus the effective number of system states
can be enumerated from the most frequently visited
system states over the course of a learned trajectory.

Within this iHMM framework, we place an infinite
dimensional version of the Dirichlet prior, termed the
Dirichlet process prior (41,48,78), as priors over each
row of the propagator Ps. That is,

pm � DirichletProcessðabÞ;m ¼ 1; 2;.; (74)
where pm is the m-th row of Ps. Here, the hyperpara-
meters of the Dirichlet process prior include the con-
centration parameter a that determines the sparsity
of the pm and the hyper parameter b, which is a proba-
bility vector, also known as base distribution. Together
ab are related to the z introduced earlier for the (finite)
Dirichlet distribution of Eq. 65.

Next, as the base distribution itself is unknown and
all transitions out of each state should be likely to



revisit the same set of states, we must place the same
base distribution on all Dirichlet process priors placed
on the rows of the propagator. To sample this unique
base, we again choose a Dirichlet process prior
(41,79–81), that is,

b � DirichletProcessðxgÞ;

where wemay set x ¼ 1 and g is a vector of hyperpara-
meters of size Ms.

Now, to deduce the unknown parameters, we need to
draw samples from the posterior in Eq. 73. However,
due to the nonanalytical form of the posterior we
cannot jointly sample our posterior. Thus, as before,
we adopt a Gibbs sampling strategy to sequentially
and separately draw samples for each parameter.
Here, we only illustrate our Gibbs sampling step for
the transition probabilities pm. Our Gibbs steps for
the remaining parameters are similar to the ones in
the “parametric sampler: BNP-FRET with fixed number
Lf
�
rstartr

T
norm

��
r1Q1r

T
norm

��
r2Q2r

T
norm

�
.
�
rK� 1QK� 1r

T
norm

��
rKQKr

T
norm

�
;

of system states” section. The complete procedure is
described in the third companion article (54).

Similar to the Bernoulli process prior, there are
two common approaches to draw samples within
the iHMM framework: slice sampling using the
exact Dirichlet process prior and finite truncation
(41,48,82,83). Just as before for the case of continuous
illumination, we truncate the Dirichlet process prior to a
finite Dirichlet distribution and fix its dimensionality to a
logðLÞ ¼ log
�
rstart rT

end

� þ log
�
r1 Q1 rT

norm

� þ log
�
r2 Q2 rT

norm

� þ log
�
r3 Q3 rT

norm

� þ .

log
�
rK� 1 QK � 1 rT

norm

� þ log
�
rK QK rT

norm

� þ const;

r ¼ rstart
p ¼ sumðrÞ ¼ 1

logðLÞ ¼ logðpÞ ¼ 0
finite (albeit large) number which we set to Mmax
s to

improve the sampling. It can then be shown that, for
large enough Mmax

s ; the number of system states
visited becomes independent of Mmax

s (41).
As before, to numerically sample the transition prob-

abilities pm from our full posterior in Eq. 73 through
MCMC, we choose our initial samples from the priors

b � DirichletðxgÞ;
pm � DirichletðabÞ;m ¼ 1; 2;.;Mmax

s

where we chose elements of g to be 1=Mmax
s to ascribe

similar weights across the state space a priori.
Likelihood computation in practice

As shown in the “pulsed illumination” section, the likeli-
hood typically takes the following generic form

LfrstartQ1Q2Q3.QK� 1QKr
T
norm; (75)

where Qi are matrices whose exact form depends on
which effects we incorporate into our likelihood.
Computing this last expression would typically lead to
underflow as likelihood values quickly drop below
floating-point precision.

For this reason, it is convenient to introduce the log-
arithm of this likelihood. To derive the logarithm of the
likelihood of Eq. 75, we rewrite the likelihood as a prod-
uct of multiple terms as follows
where ri are the normalized probability vectors given
by the following recursive formula

r1 ¼ rstart; and

ri ¼
ri� 1 Qi� 1�

ri� 1 Qi� 1 rT
norm

� :
Now, using the recursion relation above, the log-likeli-

hood can be written as
where const is a constant.
Note that rstart rT

norm ¼ 1. The pseudocode to
compute the log-likelihood is as follows
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for i ¼ 1 : K

Q ¼ .
r ¼ rQ
p ¼ sumðrÞ

logðLÞ ¼ logðLÞ þ logðpÞ
r ¼ r=p

end

return logðLÞ

FIGURE 5 Learned bivariate posterior for the system state escape
rates lesc and FRET efficiencies eFRET given synthetic data. To pro-
duce this plot, we analyzed synthetic data generated using an excita-
tion rate of lex ¼ 10ms�1, and escape rates lesc ¼ 1 and 2ms�1 and
FRET efficiencies of 0.09 and 0.29 for the two system states,
respectively. The ground truth is shown with red dots. The FRET effi-
ciencies estimated by our sampler are 0:288þ0:007

� 0:006 and 0:092þ0:003
� 0:003.

Furthermore, predicted escape rates are 2:03þ0:16
� 0:17 ms�1 and

0:98þ0:10
� 0:07 ms�1. The small bias away from the ground truth is due

to the finiteness of data. We have smoothed the distributions, for
illustrative purposes only, using kernel density estimation (KDE) avail-
able through the Julia Plots package.
RESULTS

In this section, we present results using our BNP-FRET
sampler described above. Specifically, here we bench-
mark the parametric (i.e., fixed number of system
states) version of our sampler using synthetic data,
while the two subsequent manuscripts (54,55) focus
on the nonparametric (i.e., unknown number of system
states) analysis of experimental data.

For simplicity alone, we begin by analyzing data from
an idealized system with two system states using
different photon budgets and excitation rates. Next,
we consider more realistic examples incorporating
the following one at a time: 1) crosstalk and detection
efficiency; 2) background emission; 3) IRF; and then 4)
end with a brief discussion on the unknown number of
system states. We demonstrate when these features
become relevant, as well as the overall robustness
and generality of the BNP-FRET sampler.

For now, we assume continuous illumination for all
parametric examples and use the following priors for
the analyses. The prior used for the FRET rates are

lFRETsi
� Gamma

�
1; 1ns� 1

�
;

and use the following prior over the system transition
rates

lsi/sj � Gamma
�
1; 10� 6ns� 1

�
:

As discussed earlier in the section “parametric
sampler: BNP-FRET with fixed number of system
states,” it is more convenient to work within logarithmic
space where we use the following proposal distribu-
tions to update the parameter values
log
�
l�ex
�logðlexÞ; sex � N

log
�
lFRETsi

��log�lFRETsi

�
; sFRET � N

log
�
l�si/sj

�log�lsi/sj

�
; ssys �
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where � denotes proposed rates and where it is
understood that all rates appearing in the logarithm
have been divided through by a unit constant in
order for the argument of the logarithm to remain
dimensionless.

For efficient exploration of the parameter space by
the BNP-FRET sampler and upon extensive experi-
mentation with acceptance ratios, we found it pru-
dent to alternate between two sets of variances,
{s2ex ¼ 10� 5, s2FRET ¼ 0:01, sigma2sys ¼ 0:1} and
{s2ex ¼ 10� 5, s2FRET ¼ 0:5, s2sys ¼ 5:0} to generate
an MCMC chain. This ensures that we propose sam-
ples of different orders of magnitude. As an intuitive
guide, the more data we have, the sharper we expect
our posterior over our rates to be and, thus, the
smaller both variances should be in our proposal
distributions.
ormal
�
logðlexÞ; s2

ex

�
;

ormal
�
log
�
lFRETsi

�
; s2

FRET

�
; and

Normal
�
log
�
lsi/sj

�
; s2

sys

�
;



In the examples presented in the next few subsec-
tions, for computational simplicity, we fix the escape
rates for the donor and acceptor excited photophysical
states as well as the background rates for each detec-
tion channel in our simulations, as they can be precali-
brated from experiments.
Parametric examples

Photon budget and excitation rate

Here, we perform Bayesian analysis on synthetically
generated data (as described in the “synthetic data gen-
eration”section) for thesimplest casewhere thenumber
of system states is an input to the BNP-FRET sampler.
To generate data, we use the following generator matrix
G ¼

2
6666664

� 10:0 0 2:0 0:0 0:0
2:77 � 105 � 1:11 � 105 0:0 2:0 0:0
2:85 � 105 0:0 � 0:0 0:0 2:0

1:0 0:0 0:0 � 10:0 0
0:0 1:0 0:0 2:77 � 105 � 0:91 � 105

0:0 0:0 1:0 2:85 � 105 0:0 �

3
7777775
ms� 1;
where the elements are motivated from real experi-
ments (84). Using this generator matrix, we generated
a superstate trajectory as described in the “synthetic
data generation” section. We analyzed 430,000 photons
from the generated data using our BNP-FRET sampler.
The resulting posterior distribution for transitions be-
tween system states and FRET efficiencies (computed
as eFRETsi

¼ lFRETsi
=ðld þ lFRETsi

Þ for the i-th system state)
is shown in Fig. 5. As we will see for all examples, the
finiteness of data always leads to some error as evident
from the slight offset of the peaks of the distribution
from the ground truth.

The effects of a limited photon budget become sig-
nificant especially when system kinetics occur across
multiple timescales with the most photon-starved state
characterized by the largest escape rate. In this case, it
is useful to quantify how many photons are typically
required to assess any escape rate (with the fastest
setting the lower photon count bound needed) to obtain
below 15% error in parameter estimates.

To quantify the number of photons, ignoring back-
ground and detector effects, we define a dimension-
less quantity that we call the “photon budget index”
predicting the photon budget needed to accurately es-
timate the transition rates in the model as

s ¼ Klex
lprobeMs

; (76)
where K is the total number of photons in a single-
photon smFRET trace (photon budget), lex is the
excitation rate, lprobe represents the escape rate
(timescale) that we want to probe, and Ms is the num-
ber of system states. The parameters in the numer-
ator control the amount of data available and the
temporal resolution. On the other hand, the parame-
ters in the denominator are the properties of the sys-
tem under investigation and represent the required
resolution.

From experimentation, we have found a photon
budget index of approximately 106 to be a safe lower
threshold for keeping errors below 15% (this error cut-
off is a user choice) in parameter estimates. In the sim-
ple parametric example above, we have K ¼ 4:3� 105,
lex ¼ 10 ms�1, and the fastest transition that we want
to probe is lprobe ¼ 2 ms�1, and Ms ¼ 2, which corre-
sponds to a photon budget index of 1:08� 107. In Fig. 6,
we also demonstrate the reduction in errors (confi-
dence interval size) for parameters of the same system
as the photon budget is increased from 12,500 to
400,000 photons. For each of those cases, we used
9000 MCMC samples to compute statistical metrics
such as quantiles.

We further investigate the effect of another quantity
that appears in the photon budget index, that is,
excitation rate on the parameter estimates. To do
so, we generate three new synthetic data sets,
each containing z670; 000 photons, using the same
excitation rate of 10 ms�1, and FRET efficiencies of
0.28 and 0.09 for the two system states, respectively,
as before. However, the kinetics differ across these
data sets so that they have system state transition
rates well below, equal to, and well above the excita-
tion rate. As such, for the first data set, we probe
slower kinetics compared with the excitation rate
with system state transition rates set at 0.1 ms�1. In
the next two data sets, the molecule changes system
states at a much faster rates of 10 and 1000 ms�1,
respectively.

The results obtained for these FRET traces using our
Bayesian methods are shown in Fig. 7. The bias in the
posterior away from the ground truth increases as
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FIGURE 6 System and FRET transition rates as functions of the number of photons used for analysis. To produce these plots using the same
kinetic parameters as in Fig. 5. Next, we analyzed the data considering only the first 12,500 photons and then increased the photon budget by a
factor of two for each subsequent analysis. Furthermore, we generated 9000MCMC samples for each analysis to compute statistical quantities.
In (a), we show two plots corresponding to the two system transition rates ðlescÞ. The blue dots represent the median values (50% quantile), and
the ends of the attached confidence intervals represent 5 and 95% quantiles. The ground truths are shown with red horizontal lines. We show
similar plots for FRET transition rates ðlFRETÞ in (b). In all of the plots, we see that, as the photon budget is increased, the confidence intervals
shrink (the posterior gets narrower/sharper). With a budget of 400,000 photons, the confidence intervals represent less than 10% error in the
estimates and contain the ground truths in all of the plots.
faster kinetics are probed in Fig. 7, from left to right.
The results for the case with the fastest transition rates
of 1000ms�1 in Fig. 7 c show amarked deterioration of
the predictions, as the information content is not suffi-
cient to separate the two FRET efficiencies resulting in
estimated values close to the average of the ground
truth values ðz0:185Þ. This lack of information is also
reflected in the uncertainties corresponding to each
escape rate as shown in Fig. 7. Moreover, the predicted
transition rates are of the same order as the excitation
rate itself due to lack of temporal resolution available
to probe such fast kinetics.

To conclude, the excitation rate used to collect
smFRET data and the total number of photons avail-
able determine the amount of information needed to
resolve transitions among system states. As such,
the ability of Bayesian methods to naturally propagate
error from finiteness of information into parameter es-
timates make them indispensable tools for quantita-
tive smFRET data analysis. This is by contrast to
maximum likelihood-based methods, which provide
only inaccurate point estimates on account of limited
data.
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An example with crosstalk

Here, we demonstrate how our method handles cases
when significant crosstalk is present. To show this, we
use the samedynamical parameters and photon budget
as in the previous subsection for generating synthetic
data but allow 5% of the donor photons to be stochasti-
cally detected by the acceptor channel. We then analyze
the datawith two versions of ourmethod, one that incor-
porates crosstalk and one that ignores it altogether. Our
results show that neglecting crosstalk necessarily leads
to artefactually higher FRET efficiency estimates. This
is clearly seen in Fig. 8 a. As expected, incorporation
of crosstalk into the likelihood, as shown in the “cross
talk and detection efficiency” section, results in a
smaller bias. In this case, both ground truths fall within
the range of posteriors for the corrected model; see
Fig. 8 b. Furthermore, as shown in Fig. 9, top panels,
we note that donor crosstalk again results in overesti-
mation in FRET efficiencies. However, when we correct
for crosstalk, our BNP-FRET sampler starts learning
FRET efficiencies with ground truths falling within the
range of 95% confidence intervals (Fig. 9, bottom
panels). As expected, our simulations in Fig. 9 also



FIGURE 7 Learned bivariate posterior for the system state escape rates lesc (log-scale in (c)) and FRET efficiencies eFRET from synthetic data.
For all synthetic smFRET traces, we use an excitation rate of 10 ms�1 and FRET efficiences of 0.29 and 0.09 for the two system states, respec-
tively. The three panels correspond to different timescales being probed with transitions rates: (a) 0.1 ms�1; (b) 10ms�1; and (c) 1000ms�1. The
ground truth values are shown with red dots. The bias in the parameter estimates increases as faster kinetics are probed, demonstrating dete-
rioration of the information content of the collected data resulting in expectedly poor estimation assuming a fixed photon budget of 670,000.
This can also be seen quantitatively by calculating the confidence intervals reported below for each case. The FRET efficiencies estimated by our
sampler for the slowest case in (a) are 0:286þ0:002

� 0:002 and 0:091þ0:001
� 0:001 ms�1, and the corresponding escape rates are 0:101þ0:004

� 0:005 and 0:096þ0:004
� 0:004 ms�1.

For the intermediate case in (b), FRET efficiencies estimated by our sampler are 0:200þ0:117
� 0:110 and 0:102þ0:022

� 0:014 , and predicted escape rates are
8:47þ2:42

� 3:17 ms�1 and 7:67þ1:32
� 2:66 ms�1. For the fastest case in (c), FRET efficiencies estimated by our sampler are 0:189þ0:025

� 0:027 and 0:189þ0:016
� 0:029 ,

and predicted escape rates are 5:00þ26:9
� 3:63 ms�1 and 3:49þ27:21

� 2:49 ms�1. Poorer confidence intervals for larger escape rates reflect larger uncertainty
due to lack of information.
show that uncertainty increases with increasing cross-
talk and parameter estimation fails for crosstalk values
beyond 60%.

An example with background emissions

In the “background emissions” section, we had shown a
way to include background emissions in the forward
model. For the current example, we again choose the
same kinetic parameters for the system and the FRET
pair as in Fig. 5, but now some of the photons come
from background sources with rates l

bg
i ¼ lex= 10 ¼

1ms�1 for the i-th channel. Addition of a uniform back-
ground would again lead to higher FRET efficiency esti-
mates due to excess photons detected in each channel,
if left uncorrected in themodel, as can be seen in Fig. 10
a and Fig. 11, top panels. By comparison with the uncor-
rected method, our results migrate toward the ground
truth when analyzed with the full method (see Figs. 10
b and 11, bottom panels). Furthermore, as shown in
Fig. 11, when background photons account for more
than approximately 40% of detected photons, relative
uncertainties in estimated transition rates become
larger than 25% indicating unreliable results.

An example with IRF

To demonstrate the effect of the IRF as described in the
“adding the detection IRF” section, we generated new
synthetic data for a single fluorophore (with no FRET
FIGURE 8 Learned bivariate posterior for the
system state escape rates lesc and FRET effi-
ciencies eFRET for synthetic data with cross-
talk. The ground truth is shown with red
dots. In (a), we show the learned posterior us-
ing the model that does not correct for cross-
talk consistently shows deviation from the
ground truth with higher FRET efficiency esti-
mates on account of more donor photons be-
ing detected as acceptor photons. The FRET
efficiencies estimated by our sampler for this
case are 0:314þ0:007

� 0:009 and 0:135þ0:002
� 0:005 , and the

predicted escape rates are 1:90þ0:17
� 0:11 ms�1

and 1:05þ0:10
� 0:18 ms�1. For the corrected case

shown in (b), FRET efficiencies estimated by
our sampler are 0:276þ0:006

� 0:010 and 0:088þ0:004
� 0:006.

Furthermore, predicted escape rates are
1:85þ0:15

� 0:14 ms�1 and 1:06þ0:12
� 0:10 ms�1. The cor-

rected model mitigates this bias as demon-
strated by the posterior in (b).
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FIGURE 9 System transition rates lesc and FRET efficiencies eFRET as functions of increasing donor crosstalk probability 4d1. To produce these
plots, we generated synthetic data with excitation and escape rates as in Fig. 5. In each plot, the blue dots represent the median values (50%
quantile), and the ends of the attached confidence intervals represent the 5 and 95% quantiles. Furthermore, the ground truths are shown with
red horizontal lines. In (a), our two plots show system transition rates estimated by the BNP-FRET sampler when corrected and uncorrected for
crosstalk. We show similar plots for FRET efficiencies in (b). In all plots, we see that, as donor crosstalk is increased, the confidence intervals
grow (the posterior gets wider) and the estimates become unreliable after 4d1 > 0:6. In addition, as expected, if uncorrected for, the FRET effi-
ciencies start to merge with increasing crosstalk due to most photons being detected in acceptor channel (labeled 1).
for simplicity alone)with an escape rate of ld ¼ 2:0 ns�1

(similar to that of Cy3dye (85)) being excited by a contin-
uous-wave laser at a high excitation rate lex ¼
0:01 ns�1. For simplicity, we approximate the IRF with
a truncated Gaussian distribution about 96 ps wide
with mean at 48 ps. We again analyze the data with
two versions of our method, both incorporating and ne-
glecting the IRF.The resultsaredepicted inFig. 12,where
the posterior is narrower when incorporating the IRF.
This is especially helpfulwhen accurate lifetimedetermi-
nation is important in discriminating between different
system states. By contrast, accurate determination of
lifetimes (which span nanoseconds timescales) do not
impact the determination of much slower system ki-
netics from one system state to the next.
A nonparametric example

Here, we demonstrate our method in learning the num-
ber of system states by analyzing approximately
600 ms (z 120,000 photons) of synthetic smFRET
time trace data with three system states under pulsed
illumination with 25 ns interpulse window (see Fig. 13).
This example utilizes the iHMM method described in
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the “iHMM methods for pulsed illumination” section
earlier and discussed in greater depth in the third com-
panion article (54). Using realistic values from the third
companion article (54), we set the excitation probability
per pulse to be 0.005. Furthermore, kinetics are set at
1.2 ms escape rates for the highest and lowest FRET
system states, and an escape rate of 2.4 ms for an in-
termediate system state. Our BNP method simulta-
neously recovered the correct system state transition
probabilities and thereby the number of system states
along with other parameters, including donor and
acceptor relaxation rates and the per-pulse excitation
probability. By comparison, a parametric version of
the same method must assume a fixed number of sys-
tem states a priori. Assuming, say, two system states
results in both higher-FRET system states being com-
bined together into one system state with a FRET effi-
ciency of 0.63 and a lifetime of about 0.6 ms (see
Fig. 13 c).
DISCUSSION

In this paper, we have presented a complete framework
to analyze single-photon smFRET data, which includes



FIGURE 10 Learned bivariate posterior for the
system state escape rates lesc and FRET effi-
ciencies eFRET given synthetic data with back-
ground emissions. The ground truth is shown
with red dots. The learned posterior distribution
using the model that does not correct for back-
ground emissions (a) consistently shows bias
away from the ground truth with higher esti-
mates for FRET efficiencies on account of extra
background photons. The FRET efficiencies
estimated by our sampler for this uncorrected
case are 0:322þ0:007

� 0:008 and 0:161þ0:003
� 0:004 , and the pre-

dicted escape rates are 1:93þ0:17
� 0:14 ms�1 and

0:95þ0:10
� 0:10 ms�1. The corrected model mitigates

this bias as demonstrated by the posterior in
(b) as demonstrated by learned FRET effi-
ciencies of 0:293þ0:014

� 0:012 and 0:096þ0:003
� 0:004. Further-

more, predicted escape rates are 1:99þ0:25
� 0:25

ms�1 and 0:87þ0:08
� 0:05 ms�1.
a photon-by-photon likelihood, detector effects,
fluorophore characteristics, and different illumination
methods. We demonstrated how modern Bayesian
methods can be used to obtain full distributions over
the parameters, and discussed limitations posed by
the photon budget and excitation rate. In addition, we
FIGURE 11 System transition rates lesc and FRET efficiencies eFRET a
lbg=lex . To produce these plots, we generated synthetic data with an
2 ms�1 for the two system states, respectively, same as Fig. 5, while in
from 0 to 50% ðlbg =lex ¼ 1Þ. In each plot, the blue dots represent the
dence intervals represent the 5 and 95% quantiles. Furthermore, ground
showing system transition rates estimated by the BNP-FRET sampler w
for FRET efficiencies in (b). In all plots, we see that as background is
wider) and the estimates become unreliable after lbg=lex > 0:6. In additio
with increasing background as photons originating from FRET events
have shown how to implement a nonparametric inverse
strategy to learn an unknown number of system states.

Our method readily accommodates details relevant to
specialized smFRET applications. For instance, we can
analyze spatial and temporal dependence of excitation
by simple modification of generator matrices included
s functions of increasing donor and acceptor background fraction
excitation rate of lex ¼ 10 ms�1, and escape rates lesc ¼ 1 and
creasing the fraction of background photons (donor and acceptor)
median values (50% quantile), and the ends of the attached confi-
truths are shown with red horizontal lines. In (a), we show two plots
hen corrected and uncorrected for crosstalk. We show similar plots
increased, the confidence intervals get bigger (the posterior gets
n, as expected, if unaccounted for, FRET efficiencies start to merge
significantly reduce.
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FIGURE 12 Effects of IRF. Both histograms show the fluorophore's
inverse lifetime with ground truth shown by a red line. The bias in the
peaks away from the ground truth arises from the limited amounts of
data being used to learn the posterior shown. The corrected model
(orange) reduces the histogram's breadth compared with the uncor-
rectedmodel (blue). We conclude from the small effects of correcting
for the IRF that, predictably, the IRF may be less important under
continuous illumination. By contrast, under pulsed illumination to
be explored in the third companion article (54), the IRF will play a
more significant role.
in Eq. 21. This is useful in experiments employing pulsed
illumination (see the “illumination features” section), as
well as alternating-laser excitation (ALEX). In particular,
ALEX is used to directly excite the acceptor label, either
as a way to gain qualitative information about the sam-
a

cb
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ple (65,86), to reduce photobleaching (65,86), or to study
intermolecular interactions (16). Similarly, the generator
matrix in Eq. 21 can easily be expanded to include any
number of labels, extending our method beyond two
colors. Three color smFRET experiments have revealed
simultaneous interactions between three proteins (87),
monitored conformational subpopulations of molecules
(88), and improved our understanding of protein folding
and interactions (2,16,89–91).

As the likelihood (Eq. 21) involves as many matrix ex-
ponentials as detected photons, the computational cost
of our method scales approximately linearly with the
number of photons and quadratically with the number
of system states. For instance, it took about 5 hours
to analyze the data used to generate Fig. 5 on a regular
desktop computer. Additions to our model that increase
computational cost include: 1) IRF; 2) pulsed illumina-
tion; and 3) BNPs. The computational cost associated
to the IRF is attributed to the integral required (see the
“adding the detection IRF” section). The cost of the like-
lihood computation in the pulsed illumination case de-
pends linearly with pulse number, rather than with
photon number (see Eq. 51). This greatly increases
the computational cost in cases where photon detec-
tions are infrequent. Finally, BNPs necessarily expand
the dimensions of the generator matrix whose exponen-
tiation is required (Eq. 21) resulting in longer burn-in
time for our MCMC chains.

As a result, we have optimized the computational
cost with respect to the physical conditions of the
FIGURE 13 Demonstration of nonparametric
analysis on synthetic pulsed data. In (a) we
show simulated data for a pulsed illumination
experiment. It illustrates a trajectory with three
system states labeled sn in blue and the corre-
sponding photon arrivals with the vertical
length of the red or green line denoting the life-
time observed in nanoseconds. Here (b) and
(c) show the bivariate posterior for the escape
rates lesc and FRET efficiencies eFRET . The
ground truth is again shown with red dots.
The learned posterior using the two system
state parametric model (c) combines high
FRET states into one averaged system state
with a long lifetime. The nonparametric model
correctly infers three system states, as shown
in (b).



system being studied. First, inclusion of the IRF can be
parallelized, potentially reducing the time-cost to a
calculation over a single data acquisition period. In
our third companion article (54), dealing with pulsed
illumination, we improve computational cost by making
the assumption that fluorophore relaxation occurs
within the window between consecutive pulses,
thereby reducing our second-order structure herein
to a first-order HMM, and allowing for faster computa-
tion of the likelihood in pulses where no photon is de-
tected. Furthermore, in (54), we also mitigate the
computational cost by assuming physically motivated
timescale separation.

As it stands, our framework applies to smFRET ex-
periments on immobilized molecules. However, it is
often the case that molecules labeled with FRET pairs
are allowed to diffuse freely through a confocal vol-
ume, such as in the study of binding and unbinding
events (17), protein-protein interactions (17,65), and un-
hindered conformational dynamics of freely diffusing
proteins (65,92). Photon-by-photon analysis of such
data is often based on correlation methods which suf-
fer from bulk averaging (40,42,43). We believe our
framework has the potential to extend (50,73,93) to
learn both the kinetics and diffusion coefficients of sin-
gle molecules.

In addition, our current framework is restricted
to models with discrete system states. However,
smFRET can also be used to study systems that are
better modeled as continuous, such as intrinsically
disordered proteins, which include continuous
changes not always well approximated by discrete
system states (17,94). Adopting an adaptation of
(56) should allow us to generalize this framework
and instead infer energy landscapes, perhaps relevant
to protein folding (95,96), continuum ratchets as
applied to motor protein kinetics (97), and the stress
modified potential landscapes of mechano-sensitive
molecules (98).

To conclude, we have presented a general frame-
work and demonstrated the importance of incorpo-
rating various features into the likelihood while
learning full distributions over all unknowns including
system states. In the following two companion articles
(54,55), we specialize our method, and computational
scheme, to continuous and pulsed illumination. We
then apply our method to interactions of the intrinsi-
cally disordered proteins NCBD and ACTR (55) under
continuous illumination, and the kinetics of the Holliday
junction under pulsed illumination (54).
CODE AVAILABILITY

The BNP-FRET software package is available on Github
at https://github.com/LabPresse/BNP-FRET.
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