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Optimal high-throughput virtual
screening pipeline for efficient selection
of redox-active organic materials

Hyun-Myung Woo,1,5 Omar Allam,2,3,5 Junhe Chen,2 Seung Soon Jang,2,* and Byung-Jun Yoon1,4,6,*

SUMMARY

As global interest in renewable energy continues to increase, there has been a
pressing need for developing novel energy storage devices based on organic
electrode materials that can overcome the shortcomings of the current lithium-
ion batteries. One critical challenge for this quest is to findmaterials whose redox
potential (RP) meets specific design targets. In this study, we propose a compu-
tational framework for addressing this challenge through the effective design
and optimal operation of a high-throughput virtual screening (HTVS) pipeline
that enables rapid screening of organic materials that satisfy the desired criteria.
Starting from a high-fidelity model for estimating the RP of a given material, we
show how a set of surrogate models with different accuracy and complexity may
be designed to construct a highly accurate and efficient HTVS pipeline. We
demonstrate that the proposed HTVS pipeline construction and operation strate-
gies substantially enhance the overall screening throughput.

INTRODUCTION

With the increasing interest in renewable energy sources, there has been a pressing need to develop novel

energy storage devices that can overcome the practical shortcomings of conventional Li-ion batteries.1–4

Especially, organic electrode material-based energy storage devices have gained increasing attention as

they possess a number of favorable characteristics. First of all, organic materials can be synthesized from

earth-abundant precursors such as C, H, O, or N.Moreover, they do not utilize toxic heavymetals that cause

serious environmental issues. Additionally, organic redox-active material-based batteries have significant

potential to substantially increase energy storage capabilities as opposed to traditional inorganic material-

based batteries.1

One fundamental challenge in developing novel energy storage devices based on organic electrode ma-

terials is to rapidly identify a subset of promising materials candidates that possess target redox potential

(RP)—computed at the desired fidelity—from a large set of candidate materials. Since there may be a huge

number of candidate organic materials to be screened and as the estimation of RP at the desired fidelity

level may require a substantial amount of computational resources per molecule, an exhaustive computa-

tional screening campaign is practically infeasible. Recently, several studies have demonstrated the utility

of machine learning (ML) models for predicting the structure-electrochemical property relationships effi-

ciently.5–8 For example, a fully connected neural network (fcNN) with two hidden layers accurately approx-

imated the RP of molecules based on ten predictive features—the number of B/C/Li/O/H, the number of

aromatic rings, highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO),

HOMO-LUMO gap, and electron affinity (EA).5 However, despite the predictive efficiency, such ML ap-

proaches have not been systematically exploited in the context of an objective-driven computational

screening campaign. Instead, their application has mainly remained in prioritizing desirable materials for

further evaluation based on the properties predicted by ML surrogates.

One practical goal-driven approach for the effective selection of promising candidates is to build a high-

throughput virtual screening (HTVS) pipeline that consists of various mathematical or surrogate models

with different fidelity and computational cost. In general, such HTVS pipelines use computationally efficient

models in earlier stages to efficiently filter out samples that are unlikely to possess the desired property.

The remaining samples are passed to the next stage for further investigation based on higher fidelity
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models that are also computationally more costly. The molecules that survive until the penultimate stage

are assessed based on the highest fidelity model at the final stage for final validation. The crux of an HTVS

pipeline is to efficiently assign computational resources across different stages to maximize the return-on-

computational-investment (ROCI). Thanks to the capability to efficiently screen a large set of candidates,

HTVS pipelines have been widely used in various fields including biology,9–14 chemistry,15–21 and materials

science.22,23

Conventionally, operational strategies for such HTVS pipelines in the past have relied on expert intuition,

often resulting in reasonable but suboptimal screening performance. Recently, a mathematical optimiza-

tion framework has been proposed to address this limitation, where the screening policy is optimized for

throughput and computational efficiency.24 The central idea is to exploit the relationship between the pre-

dictive scores computed at different stages by estimating the joint score distribution, based on which the

screening threshold values are jointly optimized tomaximize throughput and accuracy while minimizing the

computational resource requirement. It was shown that the optimized screening policy improves the

computational efficiency of the HTVS pipeline by a significant margin while effectively achieving the objec-

tive of the screening campaign. While the optimization framework provides a systematic way of designing

effective operational strategies for general HTVS pipelines, which obviates the need for and reliance on

heuristic and suboptimal screening policies, this study assumed that the HTVS pipeline is already given

and only the screening policy needs to be determined. However, when such an HTVS pipeline does not

yet exist and only a computationally costly high-fidelity property prediction model is available, how should

one construct the HTVS pipeline? In other words, assuming that the given high-fidelity model will be placed

at the end of the HTVS pipeline, how should one design lower fidelity surrogate models to be placed at

earlier stages in the pipeline such that the overall efficiency can be enhanced without deteriorating the

screening accuracy? This HTVS pipeline construction problem remains an open problem to date.

The objective of this study is 2-fold. First, we aim to fill a critical gap in the current HTVS literature by pro-

posing a principled way of constructing an efficient HTVS pipeline from the ground up to meet the

screening objective based on a high-fidelity property prediction model. Second, we apply our proposed

optimal HTVS design and operational strategies to the problem of efficient and accurate screening of

redox-active organic materials, an important materials screening problem for designing next-generation

energy storage devices. To accomplish this, we propose an effective strategy for the construction of an

HTVS pipeline, where the highest fidelity RP predictor is based on a computational model via density func-

tional theory (DFT), and ML surrogates for the DFT computational model are constructed to enable the

trade-off between efficiency and fidelity. To be specific, we decompose the high-fidelity DFT model into

four sequential ML surrogate models, each of which computes intermediate properties, such as HOMO,

LUMO, HOMO-LUMO gap, and EA, that are needed to compute RP using the high-fidelity DFT model.

The constructed sub-models form the building blocks of the HTVS pipeline. Next, we learn five surrogate

models that serve as different screening stages in the pipeline, where each model predicts the RP using a

combination of different (intermediate) properties, at various complexity and fidelity. Furthermore, we also

explore the use of ‘‘sub-surrogate’’ models that predict the next available intermediate properties based

on the features available at a given stage. The predicted properties are used as ‘‘virtual’’ features for the

surrogate models to improve the predictive accuracy. Finally, we generalize the HTVS pipeline optimiza-

tion framework24 such that the framework can be used to optimize the screening policy for identifying ma-

terials whose RP is within a target range, instead of based on a minimum (or maximum) required RP. We

rigorously evaluate the performance of our optimized HTVS pipelines under various scenarios and demon-

strate that they lead to significant improvement over the baseline in terms of efficiency, accuracy, as well as

consistency.

In the following section, we provide an overview of the proposed HTVS construction and optimization

scheme for detecting promising redox-active materials, followed by a comprehensive performance assess-

ment and analysis results. Further technical details of our proposed HTVS pipeline design and operational

strategies can be found in the STAR Methods section.

RESULTS

Figure 1 provides an overview of the proposed scheme for the design and operation of efficient com-

putational screening campaigns to detect promising organic electrode materials. Formally, the opera-

tional objective of the campaign is to find subset Y = fxjlL % f ðx ˛XÞ % lUg that consists of promising
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redox-active materials whose RP f ðxÞ computed via the given high-fidelity DFT model f is within target

screening range l = ½lL; lU�, where the set X of all candidate materials may be huge. We assume that

the target screening range l is pre-specified by domain experts. Due to the excessive computational

complexity of the high-fidelity model f for RP, it is practically impossible to screen all the materials based

solely on the high-fidelity model f 5. In order to overcome this critical limitation, we propose a two-phase

computational campaign design scheme: First, we construct an HTVS pipeline structure by decomposing

the high-fidelity model f into four sub-models f1; f2;.; f4 and learning five machine learning-based

Estimate joint score distribution.

Is there a resource constraint?No

Optimized high-throughput virtual screening
pipeline built on the high-fidelity model

Original screening problem 
based on high-fidelity model

Decompose the high-fidelity model
into              sequential sub-models.

   : Energy/Thermochemistry calculator in the neutral state 
     based on geometric optimization 
   : Electron affinity calculator 
   : Redox potential calculator based on solvation-free energies

   : C/B/O/Li/H/aromatic rings counter

Construct a high-throughput virtual screening
pipeline by placing surrogates    

between the cascased sub-models    .

Learn surrogates    ,           
based on the decomposed sub-models.

Construction of the high-throughput virtual screening 
pipeline based on the high-fidelity model. 

Optimization of the high-throughput virtual screening
pipeline via the proposed optimization framework.

Yes

Find optimal operator jointly optimizing
the throughput and comptuational resource. 

Find optimal operator maximizing the
throughput under budget constraint    .

Figure 1. An overview of the proposed strategy for the design and operation of a high-throughput virtual screening (HTVS) pipeline, whose

primary objective is to efficiently detect promising organic electrode materials whose redox potential (RP) computed via the high-fidelity DFT-

based model f is within pre-specified target range ½lL;lU �
In the first phase (left panel), we decompose the high-fidelity model f into four sequential sub-models f1;f2;.;f4, computing intermediate properties that are

needed to compute RP at high fidelity, to form a skeleton structure of the HTVS pipeline. Then, we learn the surrogate models gi , i = 1; 2;.; 5 based on a

different set of intermediate properties to build screening stages with different fidelity (left panel). In the second phase (right panel), we find the optimal

screening policy c� = ½l�1;L; l�1;U ;.; l�N� 1;U� for the constructed HTVS pipeline via the generalized optimization framework.
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surrogate models g1;g2;.;g5 that serve as screening stages in the pipeline. Second, we identify the

optimal screening policy optimal screening policy� = ½l�1;L; l�1;U ;.; l�N� 1;U� for the constructed HTVS pipe-

line. For this purpose, we generalize the optimization framework proposed in the previous study24 such

that the framework can identify the optimal screening policy based on the target screening range, not a

screening threshold as in the previous study.24

The first phase is illustrated in the left panel of Figure 1. Given a high-fidelity computational model f with

target screening range l = ½lL;lU�, the goal is to construct an HTVS pipeline that can efficiently screen all

candidate materials without degrading the accuracy. First, we decompose the high-fidelity DFT model f

into four sequential sub-models fi , i = 1; 2;.; 4, each of which computes intermediate properties (e.g.,

HOMO, LUMO, HOMO-LUMO gap, and EA) of a candidate material. Then, we cascade the sub-models

to construct the skeleton structure of the HTVS pipeline. Between sub-models fi and fi + 1, we learn up to

two surrogatemodels gj that predict the redox potential based on available intermediate properties as fea-

tures. For the second surrogate model between the sub-models fi and fi + 1, we learn sub-surrogate models

gj;l that predict intermediate properties which will be computed via the following sub-model and use the

predicted intermediate properties as features to improve the predictive accuracy of the surrogate model

gj. As shown in Figure 1 (left bottom), the resulting HTVS pipeline consists of five surrogate models, where

surrogate model gi is associated with screening stage Si with screening policy li = ½li;L;li;U�. Each stage Si
associated with surrogate model gi or sub-model fj predicts the RP of all the samples (i.e., candidate ma-

terials) passed from the previous stage Si� 1. Then, Si discards the materials whose predicted potential is

outside the screening range li = ½li;L; li;U � and passes the remaining samples to the next stage for further

evaluation. It should be noted that the use of a more complex (andmore complete) sub-model fi + 1 requires

additional DFT computation to use features that were not available to fi in the previous stages. In this

manner, we can gradually narrow down the search space while continuing to compute the intermediate fea-

tures that are essential to computing RP at a higher fidelity for the candidate redox-active materials that

passed the previous screening stages.

In the second phase, we identify the optimal screening policy which is used for making decisions in the

respective screening stages as to whether to pass a given sample to the next stage for further evaluation

or discard it to save computations. To accomplish this, we generalize the original optimization framework

proposed in the previous study.24 The original framework24 was designed to pass candidate samples

whose predicted property score exceeds a given threshold value. In this work, we generalize the framework

to identify the optimal screening policy for computational screening campaigns, where each stage has a

target screening range rather than a minimum threshold (see STAR Methods section for further details).

The proposed optimization framework takes a two-step approach as shown in the right panel of Figure 1.

First, we estimate joint distribution p1;2;.;Nðy1; y2;.; yNÞ of the RP values predicted via machine learning

surrogate models or computed through the high-fidelity model. The joint score distribution provides infor-

mation on how the screening stages are interrelated. Then, based on the joint score distribution p1;2;.;Nðy1;
y2;.; yNÞ, we formulate the objective function and find the optimal screening policy c� = ½l�1;L; l�1;U;.;

l�N� 1;U �. In that regard, we considered two practical scenarios in the current study. The first case considered

is when we want to maximize the throughput of the HTVS pipeline for a fixed computational budget

constraint C. In the second case, the objective is to jointly optimize the throughput of the HTVS pipeline

and computational efficiency. For the second scenario, we introduce weight a˛ ½0; 1� that determines

the relative importance between the relative reward rðc; lL; lUÞ and normalized cost function hðc;lL;lUÞ.

In what follows, we provide comprehensive simulation results demonstrating the efficacy of the proposed

HTVS pipeline construction strategy and the performance of the optimized HTVS pipelines under various

setups. Technical details of the optimization framework are presented in the STAR Methods section.

Correlation analysis between RP values predicted by the surrogate models and the high-

fidelity model

For preliminary evaluation of the surrogate models and the proposed HTVS pipeline construction strategy,

we computed the Pearson’s correlation between the RP value computed via the high-fidelity model f and

those predicted using the surrogate models gi, i = 1; 2;.;5. We used the kernel ridge regression (KRR)

model that effectively regresses the response in general (see Section S1 in the supplemental information

for the performance comparison of several different machine learning models). We optimized the
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hyperparameters of each surrogate via a grid search based on 5-fold cross-validation (see Section S2 in the

supplemental information for further details on the optimized hyperparameters). Note that we used all the

materials to learn the surrogate models as our main focus is demonstrating the efficacy of the proposed

HTVS pipeline construction and operation strategy rather than designing the best surrogate models.

Nevertheless, for completeness, we also provide the performance evaluation results based on a strict

5-fold cross-validation where only part of the dataset (i.e., 4 out of the 5-folds) is used for learning the sur-

rogates (see Section S5 in the supplemental information). As shown in Figure 2, the correlation between the

RP values computed by the surrogate model gi and the high-fidelity model f gradually increased as the

number of predictive features (hence also the total amount of computation required to acquire the fea-

tures) increased. For example, the correlation between the RP values predicted via the first surrogate

model g1 that uses only the primitive features to the RP values computed via the high-fidelity model f

was 0.8572. The predicted HOMO, LUMO, and HOMO-LUMO gap via the sub-surrogate models g2;1,

g2;2, and g2;3 helped improve the correlation of the second surrogate model g2 to 0.8614. Similarly, the pre-

dicted EA via the sub-surrogate model g4;1 helped improve the correlation of the surrogate model by

0.0179–0.9241. Finally, the last surrogate model that utilizes all the chemical descriptors showed the high-

est correlation with respect to the high-fidelity model f , which was 0.9933. These simulation results indicate

that the proposed HTVS construction strategy can effectively design surrogate models that correlate well

with the given high-fidelity model, where each model strikes a different balance between computational

cost and fidelity. Given an ensemble of surrogate models, where models with higher complexity may be

used to attain higher fidelity predictions, we can maximize the screening performance by building an

HTVS pipeline comprised of the surrogates and designing an optimal screening policy.24

Optimal computational campaign for selecting potential organic electrode materials with

minimum target RP

To evaluate the performance of the optimized HTVS pipeline, we first considered a realistic computational

screening scenario where the operational objective is to effectively select the organic redox-active materials

whose RP computed at high fidelity is above target threshold 2.5 V vs. Li/Li+ (i.e., l = ½2:5 V;NV�) which is ex-

hibited by many organic cathode materials under a typical voltage window of 1 � 4 V vs. Li/Li+.25 The target

threshold of 2.5 V was selected as a boundary to eliminate candidates whose RP is too low for practical appli-

cation as a cathode. While the target potential may differ in different applications, the best corresponding

screening policy can be automatically identified through optimization as we demonstrate in what follows.

Optimized HTVS pipeline maximizing the throughput under computational budget constraint

Figure 3 shows the performance evaluation results of the optimized HTVS pipeline under a computational

resource constraint in seconds (x axis) in terms of sensitivity, specificity, F1 score, and accuracy based on

Figure 2. Pearson’s correlation between the RP values computed by different models (i.e., the high-fidelity DFT

model f and the surrogate models gi , i = 1;2;.;5)

As shown, more computationally expensive surrogate models with a larger number of descriptors result in estimates that

better correlate with the RP computed by the high-fidelity DFT model. Also, note that the predicted descriptors via the

sub-surrogate model helped improve the regression performance.
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5-fold cross-validation. Sensitivity (recall) is a ratio of the detected potential candidates whose RP exceeds

or is equal to the minimum target threshold of 2.5 V to all the materials in the test dataset that satisfy the

criteria. Specificity is defined as a ratio of the true negative samples discarded by the HTVS pipeline to all

negative samples. F1 score is a harmonic mean between the positive predictive value (precision) and sensi-

tivity. Lastly, accuracy (ACC) is the ratio of materials that are correctly selected or discarded based on the

target criteria. The shaded area along each performance curve (showing the mean of the corresponding

performancemetric) depicts the SDðGsÞ of themetric based on 5-fold cross-validation. As shown, the opti-

mized HTVS pipeline effectively distributed a given computational budget over the different stages to

maximize the overall screening throughput (i.e., the number of promising redox-active materials that

meet the target criteria detected by the screening pipeline). On average, the optimized HTVS pipeline

selected all potential materials with only 84:11% of the original computational cost (6,286,056, blue vertical

line) that would be required for screening all the materials via the high-fidelity model f alone. Besides, 80%

of potential materials was detected with 58:62% of the original budget. Note that specificity was always 1

throughout all simulations as the final stage (i.e., S6) of the HTVS pipeline involved screening all potential

redox-active materials reaching this stage based on the high-fidelity model for final validation. In other

words, the HTVS pipeline is configured such that no negative sample would be included in the final

screening result, as such samples would be discarded at the final stage if they have not yet been discarded

by the lower fidelity surrogate models. We could observe a similar trend in accuracy. Specifically, the accu-

racy reached 80:17% when only 46:73% of computational resources were given. The pipeline achieved per-

fect accuracy at the cost of 5,287,453 s (84:11% of the original cost) on average.

We also evaluated the performance at each stage in the optimized HTVS pipeline in terms of sensitivity,

specificity, F1 score, and accuracy based on 5-fold cross-validation (see Figure S2 in the supplemental in-

formation). The sensitivity of the screening stages tended to increase as the computational resource

budget increased. For a given computational budget, the sensitivity of Si was always greater than or equal

to that of later stages Sj for j > i. This was due to the structure of the HTVS pipeline, where the later stages

processed only the materials delivered from the previous screening stages. On the other hand, except for

the final stage, the specificity tended to decrease as the available budget increased. In other words, as the

computational resource grew, the earlier screening stages allowed the later stages with higher accuracy to

get involvedmore actively in the screening campaign. As a result, the F1 score tended to increase sharply at

the beginning but the tendency to rise slowed down later on. The accuracy showed similar trends as the F1

Figure 3. Performance evaluation of the optimized high-throughput virtual screening (HTVS) pipeline based on

5-fold cross-validation

The shaded area along each curve represents the SD of the performance on the five cross-validation datasets. The optimal

screening policy maximized the throughput (i.e., the number of potential candidates whose RP exceeds or is equal to the

target threshold of 2.5 V) under the given computational budget constraint (x axis). The optimized HTVS pipeline

effectively allocated the computational resource across the multiple screening stages, thereby detecting all the potential

candidates at only 84:11% of the original computational cost of 6,286,056 (blue vertical line) which would be required if

solely the high-fidelity model f were used for screening.
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score due to the same reason. The accuracy of the earlier stages eventually fell since they passed too many

materials to later stages for further evaluation, resulting in higher false-positive rates. Note that while the

performance metrics of the individual stages (esp., the earlier stages) showed relatively high fluctuations as

the available computational budget grew, the overall performance of the HTVS pipeline (i.e., S6) changed

gradually without abrupt changes. This implies that the optimal screening policy may not be unique and

there may be multiple different policies that lead to similar screening performance.

Figure 4 shows the number of discardedmaterials at each stage in the optimizedHTVS pipelinewith respect to

an available computational budget (x axis). Average results are shown based on 5-fold cross-validation. For

easy comparison, every subplot shows the trends at all six different stages, while only the curve that corre-

sponds to a specific stage is shown in a colored bold line. On average, the first stage S1 (left top, green dotted

line), which predicts the RP using only primitive features (such as the numbers of various atoms and aromatic

rings), actively screened and discarded a large number of materials when the available computational budget

was limited. As the computational budget increased, the number of materials discarded in the first stage

decreased gradually, allowing subsequent stages with higher accuracy to get involved in screening more

actively. For example, the surrogate models discarded 75:09%, 4:62%, 0%, 0%, 0:21%, and 0:01% materials,

respectively, when the available computational budget was 320,452 s (only 5:1% of the original computational

cost). With a computational budget of 5,287,453 s, the screening stages eliminated 5:8%, 5:8%, 0:4%, 7:0%,

13:4%, and 3:4% materials, respectively. During the simulation, stages S1 to S6 rejected 37:72%, 6:42%,

0:13%, 2:23%, 4:13%, and 0:95% of the screened materials on average, respectively.

Joint optimization of HTVS pipeline for maximizing throughput while minimizing computational
cost

Table 1 shows the performance evaluation results of the HTVS pipeline jointly optimized to maximize

throughput while minimizing the computational cost based on a 5-fold cross-validation. Three different

values of a were considered, and the average number of detected materials, total cost (in seconds), effec-

tive cost, sensitivity, specificity, F1 score, and accuracy is shown. a˛ ½0; 1� is a weight parameter that deter-

mines the balance between the throughput and computational efficiency of the pipeline (see STAR

Methods). The column ‘‘detected materials’’ shows the number of materials in the final set Y obtained

Figure 4. The number of discarded molecules at each screening stage for different amounts of available computational budget (x axis)

The first stage S1 (left top, green dotted line) that predicts the RP based only on primitive features filtered out a significant proportion of candidates when the

computational budget was tightly constrained. As the computational budget increased, the number of molecules discarded at the first stage gradually

decreased, allowing subsequent higher accuracy stages to get more actively involved in screening.
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from screening. Total cost is the amount of time needed to screen the entire input setX, and the effective

cost is defined as the cost per detected material. As a increased from 0.25 to 0.75, the number of selected

materials whose RP value at high fidelity is greater than or equal to 2.5 V rose from 40.4 to 49.8 out of 52

promising organic electrode materials. To be specific, on average, the pipeline picked 49.8 out of 52 prom-

ising materials when a = 0:75 at an effective cost of 93,291. When a = 0:25, the optimized HTVS pipeline

detected 40.4 samples at an effective cost of 85,407. In terms of computational savings, although the total

computational cost and the effective cost grew when a increased from 0.25 to 0.75, the overall computa-

tional cost was nevertheless significantly less than that of the original computational cost of 6,286,056 and

the original effective cost of 120,886, respectively. Besides, other evaluation metrics, including accuracy,

sensitivity, and F1 score, noticeably improved when a increased. Overall, for various values of a, the opti-

mized HTVS pipeline results in good screening performance that sensibly balances the screening

throughput (i.e., in terms of the number of materials detected by the HTVS pipeline that satisfy the target

criteria) and the total computational cost.

Optimal computational campaign for selecting potential organic electrode materials whose

RP at the desired fidelity is within a target range

We next considered another practical scenario for a computational screening campaign, where the objec-

tive is to efficiently detect promising redox-active materials whose RP computed at the desired fidelity is

within a target range. Theoretically, higher RP of organic cathode materials leads to a higher output

voltage of a Li-ion cell. However, from a practical perspective, the peak voltage could be constrained as

it is closely related to the thermodynamic stability of the organic electrolyte material. Based on our previ-

ous studies,5,7,26–32 we selected 3.2 V vs. Li/Li+ as the target upper bound for the computational screening

campaign. As a result, we aimed to optimize the HTVS screening pipeline for screening materials whose RP

values belong to a target range of ½2:5 V;3:2 V�.

Optimized HTVS pipeline that maximizes the throughput under computational budget constraint

Figure 5 shows the performance evaluation results of the optimized HTVS pipeline for screening materials

whose RP belongs to a target range, where the optimal screening policy aims to maximize the screening

throughput under a given computational budget constraint. As before, the average sensitivity, specificity,

F1 score, and accuracy were obtained from a 5-fold cross-validation and are shown in the figure as a func-

tion of the budget constraint (x axis). The shaded area around each performance curve indicates the SD of

the corresponding performance metric evaluated on the five cross-validation datasets. As shown in Fig-

ure 5, the screening policy optimized by the proposed optimization framework that generalizes the original

approach24 effectively allocated the available computational budget across different stages of the HTVS

pipeline. As a result, significant computational savings were achieved while maximizing the throughput

that is attainable at a given computational budget. On average, the optimized HTVS screening reduced

the computational cost by 14:22% compared to the original computational cost of 6,286,056 (in seconds)

without using a screening pipeline. When the computational budget is further reduced, the detection per-

formance starts to degrade but the optimized screening policy re-balances the budget across different

screening stages to maximize the ROCI nevertheless. For example, the optimized pipeline selected 80%

of the promising organic electrode materials at only 65:85% of the original cost. Note that the constructed

HTVS pipeline always guarantees perfect specificity (i.e., 1) by design. This is because the same high-fidelity

model f , based on which the target RP is specified, is placed at the end of the HTVS pipeline for the final

validation of any material candidate that reaches the last stage. As a result, the F1 score displayed a similar

Table 1. Performance evaluation of the jointly optimized HTVS pipeline based on 5-fold cross-validation (target RP threshold at the last stage set to

2.5 V)

a

Detected

materials

Total cost

(seconds)

Effective cost

(seconds) Sensitivity Specificity F1 score Accuracy

0.25 40.4 3,450,440 85,407 0.7769 1 0.8714 0.8619

0.5 47.8 4,365,990 91,339 0.9192 1 0.9574 0.95

0.75 49.8 4,645,890 93,291 0.9577 1 0.9782 0.9738

As the weight parameter a, which determines the balance between the throughput and computational efficiency, increased from 0.25 to 0.75, all the throughput-

related performancemetrics tended to improve at the cost of higher computational cost (i.e., increased total cost and effective cost). Overall, the optimized HTVS

pipeline struck a good balance between throughput and computational efficiency.
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trend with respect to the computational resource constraint as the sensitivity. In terms of accuracy, the

HTVS pipeline trivially assured the accuracy of 0.5714, which is nothing but the proportion of negative sam-

ples in datasetX containing all material candidates. The accuracy of the optimized HTVS pipeline gradually

increased as the available computational budget increased, attaining perfect accuracy at the computa-

tional budget of 5,391,914 (i.e., 85:78% of the original cost).

Next, we evaluated the performance of the individual stages in the optimized HTVS pipeline designed to

detect organic electrode materials whose RP belongs to the range of ½2:5 V; 3:2 V� based on 5-fold cross-

validation. Results are shown in Figure S3 in the supplemental information. We could observe a similar

trend to the previous computational campaign scenario (shown in Figure S2). The sensitivity of the

screening stages tended to increase as the computational resource budget increased. Furthermore, for

a given computational budget, the sensitivity of Si was always greater than or equal to those of later stages

Sj (for j > i). For example, stages S1;S2;.;S6 achieved sensitivities of 0.9874, 0.8716, 0.8698, 0.8130, 0.6882,

and 0.6882, respectively, when the available computational complexity was 3,158,898 (50:25% of the orig-

inal computational cost). Again, we could observe that the specificity generally decreased (except for the

final stage) as the available budget increased. As a result, both the F1 score and the accuracy tended to

sharply increase at the beginning but eventually decreased later on.

Figure 6 shows the number of materials discarded at each stage when all candidate materials are screened

by the HTVS pipeline based on the optimized screening policy. Results shown in the figure have been ob-

tained based on 5-fold cross-validation. As can be seen in Figure 6, as the available computational budget

increased, the number of materials discarded in the first stage S1 decreased gradually. For example, the

screening stages S1;S2;.;S6 discarded 66.72, 13.23, 0, 0.08, 1.17, and 0.4 candidate materials, respec-

tively, when the available budget was only 272,294 (4:33% of the original computational cost). With a

computational budget of 5,391,914 (85:783% of the original cost), the average number of discarded candi-

date materials at stages S1;S2;.; S6 changed to 4.0, 4.2, 0.2, 3.2, 17.6, and 18.8, respectively.

Joint optimization of HTVS pipeline for maximizing throughput while minimizing computational
cost

Table 2 shows the performance evaluation results of the HTVS pipeline jointly optimized to maximize

throughput and minimize the computational cost. The optimal screening policy was predicted by our

Figure 5. Performance evaluation of the optimized HTVS pipeline based on 5-fold cross-validation

The goal is to detect promising redox-active materials whose RP is within the target range ½2:5 V;3:2 V�. The average

performance metrics are shown as a function of the total available computational budget (x axis). The shaded area along

each performance curve represents the SD of the performance on the five cross-validation datasets. The optimized HTVS

pipeline detected all promising materials that meet the target screening condition at only 85:78 % of the original

computational cost (blue vertical line) that would be required for screening all materials solely based on the high-fidelity

model f . By design, the HTVS pipeline achieved perfect specificity regardless of the available computational budget by

utilizing the high-fidelity model at the end of the pipeline for the final validation of the candidates.
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generalized optimization framework and the results are obtained via 5-fold cross-validation. Performance

trends were similar to the previous scenario where the computational campaign aimed at detecting the po-

tential materials whose RP values exceed the minimum required threshold (i.e., ½2:5 V;NV�) (see Table 1). As

a increased, the quality metrics related to the throughput of the HTVS pipeline improved at the cost of

higher computational costs (i.e., total cost and effective cost). When awas set to 0.25, the jointly optimized

pipeline operated conservatively from the perspective of resource utilization. To be specific, the optimized

pipeline with a = 0:25 consumed 2,923,471 s to detect 23.4 promising candidate materials among the 36

organic electrode materials in the test datasets whose RP belongs to the target range of 2.5–3.2 V. On

the other hand, the optimized HTVS pipeline with a = 0:75 detected, on average, 29.8 promising candi-

dates at a computational cost of 4,257,906. Overall, the HTVS pipeline operated using the jointly optimized

screening policy resulted in good screening performance that automatically balances throughput and

screening cost for a given value of a.

DISCUSSION

In this study, we designed optimal computational screening campaigns, where the operational objective is

to efficiently screen a given set of candidate materials to accurately detect promising cathodic organic

electrode materials whose RP—computed by a high-fidelity model—meets the desired condition. As the

high-fidelity model of estimating RP, we adopted the first-principles method, where we computed DFT us-

ing Schrödinger Jaguar,33 with PBE034 functional and 6 � 31+Gðd;pÞ basis set.35 Based on this, we

computed RP via the thermodynamic cycle suggested by Truhlar.36,37 Two screening scenarios were

considered: (i) detection of candidate materials whose RP exceeds a minimum threshold; and (ii) detection

of materials whose RP belongs to a target range. At the core of the proposed scheme lies the strategy for

constructing an HTVS pipeline from a single high-fidelity model f by designing ML surrogate models, each

of which provides a unique trade-off between complexity and accuracy. Once the HTVS pipeline is con-

structed, the optimal screening policy can be designed based on the optimization framework, originally

proposed in the previous study24 and generalized in the current study. As shown in Figure 1, during the first

phase of our proposed scheme, we first decomposed the high-fidelity model f into four sub-components fi ,

i = 1; 2;.;4, each of which computes an intermediate property of a given material (i.e., HOMO, LUMO,

HOMO-LUMO gap, or EA). Then, we cascaded them to construct a skeleton structure of the HTVS pipeline.

Based on the structure, we learned five ML surrogate models that predict the RP with the intermediate de-

scriptors available to them at the corresponding screening stage, where they are placed. Surrogate model

gi was associated with screening stage Si with screening policy ½li;L; li;U � in order to pass only those mate-

rials to the next stage Si+ 1 that are likely to meet the desired condition at the last stage by the high-fidelity

model f . Since passing candidate materials to the next stage requires further computation, discarding

unpromising materials that likely will not meet the target condition can lead to significant computational

savings. Besides, we introduced the concept of ‘‘sub-surrogate’’ models that predict the next available

Figure 6. The number of molecules that were discarded at each stage (left) and passed to the next stage (right) for

the case when the target RP range was set to ½2:5 V;3:2 V�
The results were obtained based on 5-fold cross-validation for different amounts of available computational budget (x

axis). As before, when the computational budget was tightly constrained, the most efficient first stage S1 (top left, green

dotted curve) filtered out a significant number of materials and passed only a relatively few candidate materials that are

expected to satisfy the target criteria. In general, the number of molecules discarded in the first stage decreased

gradually as the computational budget increased, allowing subsequent screening stages with higher accuracy to get

more actively involved in screening.
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descriptors and used the predicted descriptors as virtual features to improve the predictive accuracy of the

surrogate models. During the second phase, we optimized the screening policy for the HTVS pipeline,

where each stage is associated with a different ML surrogate model. Specifically, we identified the optimal

screening range ½l�i;L; l�i;U� for stage Si ði = 1; 2;.;5Þ, which is expected to lead to the optimal performance

of the entire HTVS pipeline. To this aim, we generalized the screening policy optimization framework in the

previous study24 to enable optimizing HTVS pipelines that screen candidate materials based on whether

the property of interest belongs to a target range and not just based on a required minimum value.

For validation, we first optimized the constructed HTVS pipeline for a screening campaign whose opera-

tional goal was to detect promising redox-active materials according to the target RP threshold set to

2.5 V. As shown in Figure 3, the optimized pipeline consumed 84:11% of the original computational re-

sources to detect all promising redox-active materials whose RP (evaluated at the desired fidelity using

the high-fidelity model f ) exceeds or is equal to the threshold 2.5 V. The HTVS pipeline consumed only

58:62% of the original computational cost to find 80% of the potential materials. Next, we also optimized

the screening policy for both throughput and computational efficiency. For different values of a that were

considered in this study, the pipeline detected 77:69% to 95:77% of the promising redox-active materials

that meet the target criterion, with an accuracy ranging between 86:19% and 97:38% and at an effective

computational cost between 85,407 and 93,291.

The proposed approach was further validated for carrying out screening campaigns that aim to efficiently

detect organic redox-active materials whose RP (computed by the high-fidelity model f ) is within the target

range ð½2:5 V;3:2 V�Þ. We utilized the same HTVS pipeline structure that was used for the first computational

screening campaign, but the screening policy was optimized by the generalized optimization framework

presented in this work. As shown in Figure 5, the optimized HTVS pipeline detected all promising organic

electrode materials that meet the target criterion by consuming only 85:78% of the original computational

cost. We also assessed the performance by optimizing the screening policy jointly for throughput and ef-

ficiency. When a was set to 0.75, the optimized HTVS pipeline detected 29.8 potential candidates (i.e.,

82:78% of all candidate materials in the test dataset whose RP is within the target range) at a computational

cost of 4,257,906. When awas set to 0.25, the optimized HTVS pipeline detected 65%of the targeted candi-

date materials at a cost of 2,923,471.

Based on the correlation analysis results shown in Figure 2, we further simplified the structure of the HTVS

pipeline by removing some of the surrogate models that are highly correlated with other surrogates in the

original pipeline structure. By assessing the optimal performance of the simplified HTVS pipeline, our goal

was to investigate the impact of reducing potential redundancies across screening stages on the overall

throughput and efficiency. Specifically, we discarded the first state S1 and the third stage S3 from the orig-

inal HTVS pipeline structure and found the optimal screening policy for the simplified pipeline ½S2;S4;S5;S6�.
Comprehensive evaluation results of this pipeline can be found in the supplemental information (see Sec-

tion S4). These results showed that discarding stages S1 and S3, which are computationally very efficient

and moderately correlated with the last stage S6, which uses the high-fidelity model f , did not significantly

impact the performance of the optimized HTVS pipeline. Figure 2 shows that the scores computed at stage

S1 are highly correlated with the scores computed at S2 and so are the scores at S3 with those at S4, which

may be why removing these redundant stages from the HTVS pipeline did not affect the overall screening

performance. However, simplifying the HTVS pipeline structure reduces the dimensionality of the joint

score distribution, which may potentially improve the quality of the probability density estimation.

Table 2. Performance evaluation of the jointly optimized HTVS pipeline based on 5-fold cross-validation, where the target RP rangewas set to ½2:5 V;

3:2 V�

a

Detected

materials

Total cost

(seconds)

Effective cost

(seconds) Sensitivity Specificity F1 Accuracy

0.25 23.4 2,923,471 124,935 0.65 1 0.7689 0.85

0.5 29.2 3,921,249 134,289 0.8111 1 0.8892 0.9190

0.75 29.8 4,257,906 142,883 0.8278 1 0.9003 0.9262

As a increased, the overall throughput of the HTVS pipeline increased with the higher consumption of the computational resources (i.e., increased total cost and

effective cost). As before, the optimized HTVS pipeline struck a good balance between throughput and computational efficiency.
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Additionally, there may be other benefits such as saving computations at ‘‘idle’’ stages, which do not

actively sift out unpromising candidates but delegate the job to other surrogate models by letting most

materials pass through, and reducing the burden of training a larger number of ML surrogates.

It is important to note that the computational screening campaign considered in this study has a fundamental

performance bound due to its setting. In the screening scenarios that we considered, it was assumed that the

high-fidelity model f will be used for final validation at the last stage of the HTVS pipeline in order to assess all

candidate materials that survive the penultimate stage. For example, suppose 80% of the candidate materials

in the initial set X meets the target criterion. If the HTVS pipeline perfectly sifts out the undesirable 20% and

passes only the 80% with the desired RP to the last stage that uses the high-fidelity model f for final validation,

the total computational cost would be at least 80% of the original computational cost that would be needed

for screening the entire set X without a screening pipeline and solely by f . In fact, the positive sample ratio in

this study was relatively high for both the first and second computational campaigns (i.e., 0.619 and 0.4286,

respectively), which affects the maximum computational savings that can be attained by taking the proposed

HTVS pipeline construction and operation strategies. However, in real-world screening campaigns (e.g., drug

screening campaigns21), the positive sample ratio tends to be very small. In such cases, our proposed HTVS

pipeline construction scheme and the optimal operation of the resulting pipeline can lead to substantial

computational savings virtually without any degradation of the screening accuracy. Screening scenarios

considered in a previous study24 demonstrate this potential. For example, we performed a strict 5-fold

cross-validation to evaluate the performance of our optimized HTVS pipeline when the target RP threshold

was increased to 4.3 V. In this case, only one out of 21 samples in the test dataset met the target criterion.

The optimizedHTVS pipeline accurately detected the desired redox-activematerial at only 18:78% of the orig-

inal computational cost (see Section S6 in the supplemental information).

While, in this study, we focused on the design and operation of an HTVS pipeline to efficiently screen an

entire set of candidate materials to identify a subset of promising organic electrode materials that possess

the desired properties, it is worth mentioning that there also exist a number of alternative methods pro-

posed for the design or discovery of novel materials.38,39 For example, Bayesian optimization (BO) was

used to efficiently search an immense compositional materials space for hybrid organic-inorganic perov-

skites.38 This study demonstrated the potential advantages of BO for discovering enhanced materials

with optimized target properties in a data-scarce setting. The problem of designing novel materials was

tackled based on multiple design objectives in the presence of substantial model uncertainty and limited

data availability.39 To efficiently explore the huge material design space, they adopted the widely popular

efficient global optimization scheme40 based on a multi-dimensional expected improvement (EI) criterion.

By taking a multi-task ANN-based EI approach, this study showed that the resulting scheme can signifi-

cantly accelerate the search for novel materials with enhanced properties.

In this study, we utilized the KRR model for building the surrogate models for predicting the RP. Theoret-

ically, one may be able to further enhance the screening performance of the HTVS pipeline by exploring

alternativeMLmodels for the regression task and selecting the best model, although it is beyond the scope

of the current study. Potential future search directions include improving the predictive power of the sur-

rogate models by employing more powerful deep learning models and incorporating additional highly

structured descriptors or features, such as Simplified molecular-input line-entry system,41 self-referencing

embedded strings,42 and various molecular fingerprints43–51 that have been shown to be effective for

various property prediction tasks.

Limitations of the study

Similar to the HTVS pipeline optimization framework originally proposed in the previous study,24 the gener-

alized optimization framework presented in this study takes a two-step approach. First, we estimate the

joint distribution of all scores computed at different screening stages, which is crucial in evaluating the

objective function. Then, based on the joint score distribution, we formally define the objective function

and find the optimal screening policy that optimizes the given objective function using a differential evo-

lution (DE) algorithm.52 However, accurate estimation of the joint score distribution can be practically chal-

lenging when the available training data are limited and the HTVS screening pipeline consists of a relatively

large number of stages, which makes the distribution high-dimensional. Any discrepancy between the true

underlying distribution and the estimated distribution may affect the overall screening performance, since

the best screening policy that optimizes the objective function may not necessarily optimize the
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performance for candidate materials whose scores may follow a different distribution. Furthermore, the

discrepancy between the true and estimated joint score distributions may lead to inaccurate estimations

of the expected screening cost. Consequently, the optimized screening policy predicted based on an inac-

curate joint score distribution may lead to the violation of the computational budget constraint or lead to a

suboptimal distribution and utilization of the available resources across screening stages. In the current

study, we tried to alleviate the problem of potentially violating the budget constraints by having each

screening stage operate as follows. By default, each stage operates based on the predicted optimal

screening policy operators. However, each screening stage can discard molecules before predicting their

RP if the computational resource allocated to the stage is less than the total computational cost for

screening all molecules passed from the previous stage. The stage drops samples based on the RP pre-

dicted in the previous stage until the expected computational cost for screening the remaining samples

is within the allocated computational resources. That is, the molecule with the lowest RP is discarded first.
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Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Byung-Jun Yoon (bjyoon@ece.tamu.edu).

Materials availability

This study did not generate any physical materials.

Data and code availability

d All original code has been deposited at GitHub and is publicly available as of the date of publication.

DOIs are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

METHOD DETAILS

Simulation environment

We evaluated the average time complexity of each surrogatemodel for RP computation of a candidate ma-

terial on a workstation equipped with Intel Xeon E5-2650 v3 and 64 GBmemory. We utilized the differential

evolution (DE) algorithm52 to optimize the screening policy for the HTVS pipelines considered in the work.

Data collection

In order to validate the proposed approach, we collected 109 organic electrode materials designed in pre-

vious studies5,7,26–32 (see Data S1). Figure S19 depicts representative organic electrode materials–such as

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Simulation source code This paper https://github.com/bjyoontamu/occ-rp

Differential evolution (DE) Storn and Price, 199752 https://doi.org/10.1023/A:1008202821328

Expectation Maximization (EM) Dempster et al., 197753 https://doi.org/10.1111/j.2517-

6161.1977.tb01600.x

Python (3.9.7) Python Software Foundation https://www.python.org

Scikit-learn (0.24.2) Pedregosa et al., 201154 https://scikit-learn.org

Other

Organic electrode materials Allam et al., 20185 https://doi.org/10.1039/C8RA07112H

Allam et al., 20207 https://doi.org/10.1016/j.

mtener.2020.100482

Park et al., 201726 https://doi.org/10.1002/cssc.201601730

Kim et al., 201627 https://doi.org/10.1021/jacs.5b13279

Liu et al., 201528 https://doi.org/10.1021/acs.

chemmater.5b00314

Kim et al., 201629 https://doi.org/10.1039/C6CP02692C

Kang et al., 201830 https://doi.org/10.1021/acs.jpcc.8b00827

Zhu et al., 201831 https://doi.org/10.1039/C8TA01671B

Liu et al., 201732 https://doi.org/10.1039/C6EE02641A
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ketones,26 quinones,27 functionalized graphene flakes,28,29 boron-doped corannulenes,30 and boron-

doped coronenes31–considered in this study.

High-fidelity model for computing the redox potential of organic electrode materials

First-principles method

We computed DFT using Schrödinger Jaguar,33 with PBE034 functional and 6 � 31+Gðd;pÞ basis set.35 Af-
ter geometry optimization using DFT, we compute the electronic features, such as HOMO, LUMO, HOMO-

LUMO gap, and EA.

Then, we used the thermodynamic cycle suggested by Truhlar36,37 as described in Figure S20 to calculate

the RP. To evaluate the reduction free energies at 298 K in the gas phase DGred
gas, the vibrational frequencies

were analyzed for both the anionic and neutral states for all the organic species. To evaluate the solvation-

free energies of the anionic and neutral states (DGsolðR �Þ and DGsolðRÞ, respectively) in the mixture of

ethylene carbonate and dimethyl carbonate, the Poisson–Boltzmann implicit solvation model was used

with a dielectric constant of 16.14. Using the thermodynamic cycle in Figure S20, the reduction free energy

in solution phase ðDGred
sol ðRÞÞ was calculated by:

DGred
sol ðRÞ = DGred

gasðRÞ + DGsolðR �Þ � DGsolðRÞ: (Equation 1)

Finally, the RP in the solution phase with respect to Li/Li+ electrode was calculated based on the free energy

change for the reduction in the solution phase using,

E0
w:r:t: Li =

 
� DGred

sol ðRÞ
nF

+ EH

!
� ELi; (Equation 2)

where n and F denote the number of electrons transferred and the Faraday constant ð96; 485 C mol� 1Þ,
respectively. EH and ELi correspond to the absolute potential of the hydrogen electrode ð4:44 VÞ, and
the potential of the Li electrode with respect to the standard hydrogen electrode ð� 3:05 VÞ55, respec-
tively. In the previous studies, we showed that this computational strategy produced RPs with staggering

accuracy, within 0:3 V vs. Li/Li+ relative to experimental results.26–32,56,57 In addition to the RP, the adiabatic

electron affinity was calculated from the difference in energy between the organic molecules in their neutral

state and in their anionic state. Additional details of the DFT calculations used to predict the RP are found in

the past studies.26–32,56,57

Estimating the time complexity of the high-fidelity model

Since our DFT dataset has been developed over multiple studies and under several different computa-

tional machines, we needed a method to estimate the computational complexity (to calculate RP, as

well as the input DFT features) for all the molecules in our dataset in a fair and consistent manner. There-

fore, for consistency, we performed the necessary calculations on a single representative case, anthraqui-

none, and recorded the computational time. Using the computational time for this case and the well-known

scaling factor for standard DFT computational complexity OðN3Þ58,59, we estimated the computational

complexity for the remaining cases accordingly. We included detailed information on the time complexity

for computing the properties of each molecule in Data S1.

Constructing the HTVS pipeline based on a high-fidelity DFT computational model

Cascading the high-fidelity computational model

As shown in Figure S21 (right panel), the high-fidelity DFT computational model computes several features

of a given molecule in neutral and anionic states to compute the redox potential. In order to construct the

skeleton structure of the HTVS pipeline, we first decompose the high-fidelity model f into four computa-

tional modules f1; f2;.; f4 and cascade them sequentially, as shown in the right panel of Figure S21. For

a given redox-active material, we first compute the primitive features such as the number of C, B, O, Li,

H, and aromatic rings via f1. Then, we perform geometric optimization and thermochemistry calculations

to compute the HOMO, LUMO, and HOMO-LUMO gap for the material in a neutral state ðf2Þ. Next, we

compute the EA of the material based on the available intermediate features and geometrically optimized

material in the neutral and anionic states via f3. Finally, we calculate the solvation-free energies of the ma-

terials in both states to obtain the RP through f4.
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Learning machine learning (ML) surrogate models that comprise the HTVS pipeline

Based on the skeleton structure of the HTVS pipeline as shown in the right panel of Figure S21, we learned

five surrogate models to build screening stages, which will be placed between the sequential computa-

tional modules f1;f2;.;f4. The five surrogate models predict the RP using a different set of descriptors avail-

able to each surrogate model based on its location in the HTVS pipeline. For example, surrogate model g1

located right after f1 predicts the RP based on only the primitive descriptors. We introduce the concept of a

‘‘sub-surrogate’’ model that predicts the next descriptors not yet available at the given stage (as they need

additional computational modules) and use the predicted descriptors as virtual features to improve the

prediction accuracy of the surrogate models. For example, the second surrogate model g2 located be-

tween g1 and f2 uses additional predicted features such as HOMO, LUMO, and HOMO-LUMO gap pre-

dicted via sub-surrogate models g2;1, g2;2, and g2;3 in order to improve the prediction accuracy. Acquiring

these virtual features through ML-based sub-surrogate models is very cheap as it does not require any DFT

calculations. Table S1 in the supplemental information shows the specification of all the (sub-)surrogate

models trained in this study. We use a KRR model that effectively regresses the response in general (see

Sections S1 and S2 in the supplemental information).

Generalized optimization framework for finding the optimal screening policy for materials

whose RP belongs to a target range

Estimating the joint distribution of the predictive scores from all screening stages constituting the
HTVS pipeline

Similar to the screening policy optimization framework originally proposed in the previous study,24 the first

step of the generalized optimization framework for identifying the screening policy that can maximize the

performance of a given HTVS pipeline is to estimate the joint distribution p of the scores computed at

different screening stages, each of which is associated with a different model (i.e., machine learning-based

surrogates gi and the high-fidelity model f ). In this study, we use parametric spectral estimation based on a

multivariate Gaussian mixture model. Specifically, we estimate the parameters of a bimodal multivariate

Gaussian distribution via the expectation maximization (EM) algorithm.53

Generalized framework for HTVS policy optimization under computational budget constraint

In this computational screening campaign scenario, we assume that the operational objective of screening

is to maximize the number of detected organic electrode materials whose RP, computed via a given high-

fidelity model f , is within a pre-specified target range ½lL; lU� under computational budget constraint C. To

this aim, we identify the optimal screening policy c� = ½l�1;L; l�1;U ;.; l�N� 1;U � of the screening stages Si, i =

1; 2;.;N � 1, where each stage is associated with a machine learning (ML) surrogate model fi. Under the

available computational budget C, the optimal screening policy should maximize the size of the output set

Y, which contains candidate materials whose RP belongs to the target range ½lL; lU � when evaluated by the

high-fidelity model f in the last stage SN of the HTVS pipeline.

Let pðy1; y2;.; yNÞ be a joint distribution of the RP values, where yN is computed via the high-fidelity DFT

model f and y1;.; yN� 1 are computed by ML surrogate models gi,. In this study, we considered a N = 6

stage HTVS pipeline with 5 ML surrogate models. Let us denote the reward function rðlÞ according to

screening ranges l1:N = ½l1;L; l1;U; l2;L;.; lU� of the screening stages Si, i = 1; 2;.;N, as follows:

rðl1:NÞ =

Z
.

Z½lN ;lN� 1;U ;.;l1;U�

½lL ;lN� 1;L ;.;l1;L�
pðy1; y2;.; yNÞ dy1dy2/dyN: (Equation 3)

Note that rðl1:NÞ is proportional to the number of the potential candidatematerials that are detected by the

HTVS pipeline by passing all screening stages.

We can find the optimal screening policy c� = ½l�1;L; l�1;U;.; l�N� 1;U� of the surrogate-based screening

stages Si, i = 1; 2;.;N � 1, maximizing jYj, by solving the constrained optimization problem as follows:

c� = argmax
c˛R2ðN� 1Þ

rð½c;l�Þ (Equation 4)
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s:t:
XN
i = 1

ci jXij%C: (Equation 5)

jXij is the number of candidate materials that passed the previous stages from S1 to Si� 1, defined as

follows:

jXij = jXj
Z

.

Z½li� 1;U ;li� 2;U ;.;l1;U�

½li� 1;L ;li� 2;L ;.;l1;L�
p1:i� 1ðy1; y2;.; yi� 1Þ dy1dy2/dyi� 1; (Equation 6)

where p1:i� 1 is a marginal score distribution of ðy1; y2;.; yi� 1Þ obtained by marginalizing p over yi ;.;yN.

Generalized framework for HTVS policy optimization for throughput and computational efficiency

In this scenario, we jointly optimize the HTVS pipeline to maximize the throughput and minimize the

computational resource consumption. The optimal screening policy is obtained by solving the optimiza-

tion problem as follows:

c� = arg min
c˛R2ðN� 1Þ

arð½c; l�Þ+ ð1 � aÞhð½c; l�Þ: (Equation 7)

The weight parameter a˛ ½0; 1� determines the relative importance between the relative reward function

rð½c; l�Þ and the normalized total cost function hð½c;l�Þ, which are defined as follows:

rð½c; l�Þ =
rð½ � N;N;.;N; l�Þ � rð½c; l�Þ

rð½ � N;N;.;N; l�Þ (Equation 8)

=

R lU

lL
pNðyNÞdyN � rð½c; l�ÞR lN;U

lN;L
pNðyNÞdyN

; (Equation 9)

hð½c; l�Þ =
1

NjXjmaxici

XN
i = 1

cijXij: (Equation 10)

Here, pN is the marginal score distribution obtained by marginalizing p over y1 to yN� 1.
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