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Radiomics in bone pathology of the jaws
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Objective:  To define which are and how the radiomics features of jawbone pathologies are 
extracted for diagnosis, predicting prognosis and therapeutic response.
Methods:  A comprehensive literature search was conducted using eight databases and gray 
literature. Two independent observers rated these articles according to exclusion and inclusion 
criteria. 23 papers were included to assess the radiomics features related to jawbone patholo-
gies. Included studies were evaluated by using JBI Critical Appraisal Checklist for Analytical 
Cross-Sectional Studies.
Results:  Agnostic features were mined from periapical, dental panoramic radiographs, cone 
beam CT, CT and MRI images of six different jawbone alterations. The most frequent features 
mined were texture-, shape- and intensity-based features. Only 13 studies described the 
machine learning step, and the best results were obtained with Support Vector Machine and 
random forest classifier. For osteoporosis diagnosis and classification, filtering, shape-based 
and Tamura texture features showed the best performance. For temporomandibular joint 
pathology, gray-level co-occurrence matrix (GLCM), gray level run length matrix (GLRLM), 
Gray Level Size Zone Matrix (GLSZM), first-order statistics analysis and shape-based anal-
ysis showed the best results. Considering odontogenic and non-odontogenic cysts and tumors, 
contourlet and SPHARM features, first-order statistical features, GLRLM, GLCM had better 
indexes. For odontogenic cysts and granulomas, first-order statistical analysis showed better 
classification results.
Conclusions:  GLCM was the most frequent feature, followed by first-order statistics, and 
GLRLM features. No study reported predicting response, prognosis or therapeutic response, 
but instead diseases diagnosis or classification. Although the lack of standardization in the 
radiomics workflow of the included studies, texture analysis showed potential to contribute to 
radiologists’ reports, decreasing the subjectivity and leading to personalized healthcare.
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Introduction

Radiomics is the process of extracting quantitative 
information from radiological images, and is designed to 
develop decision-support tools, taking a central role in 

the context of personalized precision medicine. Mining 
data from digital images and combine them with other 
patient characteristics promises to increase precision in 
diagnosis, assessment of prognosis, and prediction of 
therapy response1–5.

Radiomic analysis begins with the choice of a high-
quality imaging protocol. Such imaging methods include 
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X-ray, CT, MRI, Nuclear Medicine, Positron Emis-
sion Tomography and Ultrasound3. After a prediction 
target is well stablished, regions that may contain value 
information, the region of interest (ROI) or volume of 
interest (VOI), are identified from these images. Then, 
they are segmented manually or computer-aided, and 
quantitative features based on texture, shape and gray 
level statistics within images are extracted to generate 
a report, which can be combined with demographic, 
clinical or genomic information from a database. These 
data are then mined to develop diagnostic, predictive or 
prognostic models to outcomes of interest1,3,5.

The main part of radiomics is the process of 
analyzing texture, also known as feature extraction6, and 
it is classified in two types: semantic features, which are 
commonly used in radiologic evaluation, and agnostic 
or non-semantic features, which comprise quantita-
tive descriptors that are mathematically extracted from 
radiologic images, grounded on shape, intensity, texture, 
and filtering information1,3,4,7. This stage produces a large 
number of radiomics features and only the “highly” 
informative ones are selected based on the user defined 
criteria, developing the so-called radiomics signature2,3.

The concept of radiomics has most broadly been 
applied in the field of oncology7, since digitally encrypted 
medical images hold information related to tumor 
pathophysiology, which can be transformed into mine-
able quantitative high-dimensional data5. Its potentials 
include the differential diagnosis between neoplasms, 
correlation with molecular biology and genomics, the 
prediction of survival and the evaluation of the response 
to treatment8. Many other medical specialties are bene-
fiting from radiomics studies, such as neuroimaging, 
cardiac imaging, and gastroenterology2. Although the 
literature is still scarce in dentistry field, the possibilities 
and perspectives of the use of radiomics-based inves-
tigations combined with the oral radiologists' analyses 
are growing through the years. A review of the state-of-
the-art of using radiomics and machine learning (ML) 
for imaging in oral healthcare was recently described, 
which showed image segmentation and optimization 
applications, and pathology detection, classification and 
diagnosis implementations4.

Regarding jawbone alterations, it is challenging to 
differentiate imaging lesions within the maxilla and 
mandible due to the appearance similarity among 
a wide variety of  pathologies, mainly lesions from 
odontogenic and osseous sources. The response of  the 
cancellous and cortical bone to pathologic stimulus 
can be expressed by osteolytic or osteoblastic behavior. 
Thus, most lesions within the jaws are possibly classi-
fied as lytic, sclerotic, or a mixture of  both9–11. Due to 
this large scenario of  the dentomaxillofacial imaging, 
the goal of  this study is to define which are the radio-
mics features of  bone pathologic alterations of  the jaws 
and how they are extracted for diagnosis, predicting 
prognosis and therapeutic response. In this systematic 
review, radiomic workflow with emphasis in feature 

analysis was investigated related to bone changes of  the 
jaws.

Methods

Study design
A systematic review that analyzed radiomic features 
was performed to answer the question: “In dentomax-
illofacial imaging, which are the radiomics features of 
bone pathologic changes of the jaws and how are they 
extracted for diagnosis, predicting prognosis and thera-
peutic response?”

Eligibility criteria
The PFO (Participants, Factors and Outcomes) acronym 
was used to define inclusion and exclusion criteria. As 
inclusion criteria, dentomaxillofacial imaging of bone 
alterations of the jaws (P) and radiomic analysis (F) 
were evaluated. Lastly, the outcomes measured (O) were 
feature extraction and their usefulness in detecting or 
classifying bone alterations of the jaws (sensitivity, spec-
ificity, ROC, AUC)..

Inclusion criteria:  All published studies using radio-
mics in bone pathologic alterations of the jaws, that 
reported partially or completely the radiomics work-
flow, including feature extraction parameters.

Exclusion criteria:  The following exclusion criteria 
were applied:
(1)	 Reviews, editorials, letters, personal opinions, book 

chapters and conference abstracts;
(2)	 Ultrasound imaging and elastography applied to the 

maxillofacial region;
(3)	 Scanned images;
(4)	 Non-human studies;
(5)	 Maxillofacial trauma, peripheric lesions with bone 

destruction, anatomic variations, metastatic lesions 
and abnormalities;

(6)	 Testing cases not based in imaging exams;
(7)	 Studies that merely differentiated healthy from 

pathological areas.

Information sources and search strategy
Individual search strategies for each of the following 
bibliographic databases were developed: Embase, IEEE 
Xplore, Lilacs, Livivo, PubMed, Science Direct, Scopus 
and Web of Science. The following terms: (“Intra-
oral radiography” OR “Extraoral radiography” OR 
“Dental panoramic radiographs” OR “Cone Beam 
Computed Tomography” OR “Magnetic Resonance 
Image” OR “PET-CT Scan” OR “Multislice Computed 
Tomography”) AND (“osseous pathology” OR “bone 
pathology”) AND (Jaws OR “Mandibular bones” OR 
“Maxillary Bones” OR “Alveolar bone”) AND (Radio-
mics OR “Texture Analysis” OR “feature extraction”) 
and their synonyms were used to develop the search 
strategies. A gray literature search was taken using 
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Google Scholar, JSTOR and ProQuest (Supplemen-
tary Material 1). The end search date was January 12, 
2022 across all databases. Manual searches of reference 
lists were performed on relevant articles, theses and 
dissertations.

All references were managed by the software 
Mendeley®, Elsevier and duplicate records were 
removed.

Study selection
The study selection was completed in two phases. 
In Phase I, two reviewers (GNMS and HECS) inde-
pendently reviewed the titles and abstracts of all identi-
fied electronic database records. Those not meeting the 
inclusion criteria were discarded. In Phase II, the same 
reviewers applied the inclusion criteria to the full text 
of the articles. Both phases were completed using the 
Rayyan QCRI online application (https://rayyan.qcri.​
org). The references lists of selected studies were criti-
cally assessed by both examiners (GNMS and HECS). 
Any disagreement in first or second phase was solved by 
discussion until consensus between the two authors was 
attained. When a consensus was not reached, a third 
reviewer (FELO) was involved to make a final decision.

Data collection process and data items
One author (GNMS) collected the required data from 
the selected articles and a second author (HECS) cross-
checked the collected information. Any disagreement 
was resolved by consensus or the third reviewer's deci-
sion (FELO). For each of the included studies, the 
following items were recorded: authors, year of publi-
cation, country, sample size, objective of the study, 
imaging modality and protocol, reference exam, image 
processing techniques, segmentation method, software 
used, extracted features, machine learning classifica-
tion method, statistical results and main conclusions. In 
case of incomplete required data, attempts were made 
to contact the authors to retrieve any pertinent missing 
information.

The included studies were also evaluated using the 
Radiomics Quality Score (RQS), proposed by Lambin 
et al.5, which consists of a homogeneous evaluation 
criteria and reporting guidelines for assessment of 
radiomic studies. It is composed by five main sections, 
namely Data selection, Medical imaging, Feature 
extraction, Exploratory analysis, and Modeling, which 
include 16 criteria that carry different weights, such that 
a maximum of 36 points can be achieved. Full and clear 
reporting of information is required on all these aspects 
to minimize bias and enhance the usefulness of predic-
tion models.

Methodological quality assessment of included studies
The Joanna Briggs Institute (JBI) Critical Appraisal 
Checklist for Analytical Cross-Sectional Studies12 was 
applied as the methodological quality assessment. 
Regarding JBI quality appraisal, two reviewers (GNMS 

and HECS) scored the items as Yes, No, Unclear and 
Not Applicable for the included articles. Any disagree-
ment was resolved by consensus or a third author's deci-
sion (PTSF).

Outcomes of interest
Included manuscripts were synthesized in a qualitative 
and quantitative description focused on the following 
radiomics data: main objective, ROI/ VOI segmenta-
tion, software used, feature extraction, machine learning 
modeling/ classifier and their result rates.

Synthesis of results
A meta-analysis was planned since the data from 
the included studies were considered relatively 
homogeneous.

Results

Study selection
In Phase I, 508 studies were retrieved from the 8 elec-
tronic databases. Afterwards, duplicate articles were 
removed, resulting in 445 remaining studies. After a 
comprehensive evaluation of titles and abstracts, 389 
articles records were excluded. Therefore, 56 manu-
scripts were elected to conduct a full-text reading. Later, 
35 studies were excluded, resulting in 21 studies at the 
end of Phase I from databases. From the reference lists 
of these 21 included studies, seven articles were selected 
to a full-text reading. Regarding the gray literature, 40 
studies were retrieved from Google Scholar and one 
from ProQuest. No additional study was found across 
JSTOR.

After cautious evaluation of the 48 abstracts obtained 
from gray literature and the addition of the reference list 
results to them, 38 studies were discarded and 10 were 
assessed for full-text reading. Then, two studies were 
included. All the excluded articles and reasons for exclu-
sion are described in Supplementary Material 2. Finally, 
23 studies were selected for inclusion per study parame-
ters (Figure 1).

Studies’ characteristics
The 23 included studies were published in seven different 
types of journals: biomedical computer science13–16, 
biomedical physics and engineering17–19, radiology20–27, 
general engineering/ computer science/ physics28–32, 
biomedical research33, oral and maxillofacial surgery34 
and periodontology35. Such studies were conducted in 12 
different countries: Belgium33, Brazil29,35, China23, Indo-
nesia15,31, Iran13,17, Japan21,22,26,27, Jordan14,30, Korea20,24, 
Poland32, Turkey16, the United Kingdom19, and the 
United States of America18,25,28,34. All studies were 
published in english. Sample size ranged from 1929 to 
66319 imaging exams. According to the exam modality, 
10 studies used Cone Beam CT (CBCT)13,16–18,23,28–30,34,35, 
five adopted Helicoidal CT21,22,25,26, Dental Panoramic 
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Radiograph was applied in five studies14,19,20,24,31, Peri-
apical Images in one study32 and two elected MRI27,33. 
One study used both Dental Panoramic Radiograph 
and Periapical Images15. Seven authors studied oste-
oporosis14,15,19,20,24,25,30, four assessed temporoman-
dibular joint (TMJ) pathology17,28,33,34, one reported 
diabetes22, three studies analyzed radicular cysts and 
granulomas18,29,32, five authors studied odontogenic 
and non-odontogenic cysts and tumors13,16,23,26,31 and 
three reported osseous inflammation/ infection21,27,35. A 
summary of the studies’ descriptive characteristics can 
be found in Table 1.

Methodological quality assessment of included studies
All 23 studies were evaluated by using JBI Critical 
Appraisal Checklist for Analytical Cross-Sectional 
Studies12. The overall methodological assessment 
ranged from low quality: one to three “Yes” answers; 
moderate quality: four to six “Yes” answers; or high 
quality: seven or eight “Yes” answers. Eight13–15,18,24,30–32 
studies presented moderate methodological quality 
while 1319–21,23,25–29,33–35 studies showed high methodolog-
ical quality. Two studies showed low methodological 
quality16,17.

All studies measured the outcomes in a valid and reli-
able way and presented an appropriate statistical analysis. 
However, many selected studies presented methodolog-
ical problems related to inclusion and exclusion selec-
tion criteria13–19,24,30–32, subjects description13,14,16–18,30,31,35 
and standardized criteria used for measurement of the 
condition13,14,16,17,24,31. In three studies16,17,31, the exposure 

was not measured in a valid and reliable way. More 
information about methodological assessment may be 
found in Supplementary Material 3 .

Radiomics results
To answer the main question of this systematic review, 
the following characteristics were considered: main 
objective, image modality, segmentation, software used, 
features extracted, machine learning classifier and their 
result rates. The Radiomics Quality Score (RQS)5 was 
assessed and the general result is showed in Figure  2. 
More detailed radiomics workflow of the included 
studies is presented in Table 2.

The main objectives of the included works were: 
(a) recognize a specific disease or a pathologic patter
n15,17,19–25,27,28,30,34,35 or (b) classify two or more similar 
diseases or pathologic patterns13,14,16,21,24,26,29,31–33. Most 
included studies used CBCT as imaging modality 
(43.4%), followed by the Dental Panoramic Radiog-
raphy (26%). Also, the most tested diseases were osteo-
porosis (30.4%) and odontogenic and non-odontogenic 
cysts and tumors (21.7%). Manual and semi-automatic 
segmentations were reported in 86.3% of the studies, 
and automatic segmentation was also described.

Gray Level Co-occurrence Matrix (GLCM) was the 
most frequent statistical feature, described in 15 studies, 
followed by first-order statistics, described in 12 studies 
(histogram features in seven of them). Gray Level Run 
Length Matrix (GLRLM) were reported in seven stud-
ies,whereas 14 studies mined shape-based features.

Figure 1  PRISMA 2020 flow diagram for new systemic reviews which included searches of databases, registers and other sources. PRISMA, 
Preferred Reporting Items for Systematic Reviews and Meta-Analyses.
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Table 1  Description of the studies' characteristics

Author,year, local Reference exam Objective Imaging modality n Main conclusions

13 Abdolali et al., 2016 
Iran

Histology Radicular cyst, 
dentigerous cyst 
and keratocyst 
classification

CBCT 125 Using orthogonalized 
SPHARM (a combination 
of contourlet and SPHARM 
features) leads to better 
results for discriminating 
between three groups of 
diseases. SDA performance 
is superior to SVM in terms 
of classification accuracy

14Alzubaidi & Otoom, 
2020 Jordan

DXA Osteoporosis 
classification

DPR 575 The proposed SOM/LVQ 
method outperformed the 
SVM method across the 13 
feature extractors in terms 
of the accuracy, sensitivity 
and specificity performance 
measures.

28 Bianchi et al., 2020 
(1), USA

Clinical parameters 
following the DC/TMD 
for TMJ

TMJ Osteoarthritis 
diagnosis

CBCT: 3D Accuitomo (J. 
Morita MFG. CORP Tokyo, 
Japan), FOV 40 × 40 mm; 
90kVp, 5mAs, scanning time 
of 30.8 s and 0.08 mm3 voxel 
size

92 Entropy, Energy, HarCor 
features were most 
accurate to differentiate 
between control and TMJ 
Osteoarthritis patients. A 
decreased value of Energy 
and increased values for 
HarCor and Entropy 
were associated with bone 
sclerosis/ loss.

34 Bianchi et al., 2020 
(2), USA

Clinical parameters 
following the DC/TMD 
for TMJ

TMJ Osteoarthritis 
diagnosis

CBCT: 3D Accuitomo scanner 
(J. Morita Mfg. Corp., Tokyo, 
Japan). FOV of 40 × 40 mm, 
90 kVp, 5 mAs, scanning time 
of 30.8 s, and 0.08 mm3 voxel 
size

84 13 bone imaging biomarkers 
presented acceptable 
diagnostic performance 
for the diagnosis of 
TMJ Osteoarthritis, 
indicating that the 
texture and geometry of 
the subchondral bone 
microarchitecture may 
be useful for quantitative 
grading of the disease.

29 De Rosa et al., 2020 
Brazil

Histology Periapical granuloma 
and radicular cyst 
classification

CBCT: Promax 3D scanner 
(Planmeca Oy, Helsinki, 
Finland), 96kVp, 12mA, FOV 
of 6 cm, voxel size of 200 µm 
and acquisition time of 12 s

19 Texture analysis showed 
potential for differentiating 
between radicular cysts and 
periapical granulomas as 
there was an association 
between the five texture 
parameters in the 
characterization of the 
lesions.

35 Gonçalves et al., 2020 
Brazil

Oral Radiologist 
diagnosis

Grade C periodontitis 
diagnosis

CBCT: i-CAT 3D Imaging 
System (Imaging Sciences 
International, Hatfield, PA), 
37.07 mA, 120 kVp, voxel size 
of 0.20 mm, exposure time 
of 26.9 s and FOV of 8.0 × 
8.0 mm

34 There were significant 
statistical differences 
regarding the textural 
parameters between groups. 
This may bring valuable 
meaning to the identification 
of regions already affected 
by inflammatory processes 
that could be unnoticed.

17 Haghnegahdar et al., 
2016 Iran

- TMJ disorders 
diagnosis

CBCT 264 k-NN classifier achieved 
a very good accuracy and 
showed desirable sensitivity 
and specificity results. The 
proposed method could help 
automatically diagnose TMJ 
disorders at their initial 
stages.

(Continued)
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Author,year, local Reference exam Objective Imaging modality n Main conclusions

20Hwang et al., 2017 
Korea

DXA Osteoporosis 
diagnosis

DPR: Cranex 3 + Ceph 
panoramic apparatus (Soredex 
Co, Helsinki, Finland), 67–71 
kV at 10 mA (exposure time, 
19.5 s). Images were read using 
a FCR XG5000 cassette reader 
(Fuji film Co, Tokyo, Japan) 
at 170 dpi

454 Endosteal margin area 
was an effective ROI 
that showed statistically 
significant differences in FD, 
GLCM and strut variables 
between osteoporotic and 
non-osteoporotic patients, 
whereas the medullary 
portions of DPR showed 
few distinguishing features. 
It was also found that the 
strut variables showed the 
highest sensitivity, specificity 
and accuracy using the 
decision tree and SVM.

21 Ito et al., 2021 (1), 
Japan

MRI alterations + 
no CT and no clinical 
alterations

 � MRONJ diagnosis CT: 64-multidetector row 
CT scanner (Aquilion 64; 
Toshiba Medical Systems, 
Tokyo, Japan) using the 
craniomaxillofacial protocol; 
tube voltage, 120 kV; tube 
current, 100 mA; FOV 240 
× 240 mm; and helical pitch, 
41. The protocol consisted 
of axial (0.50 mm) and 
multiplanar (3.00 mm) images

25 CT was able to 
quantitatively assess 
texture features of normal 
mandibular bone marrow 
and that with MRONJ. 
Texture analysis may be 
useful as a new method for 
detecting stage 0 MRONJ 
using CT.

22 Ito et al., 2021 (2), 
Japan

Blood examination Diabetes mellitus 
Type two diagnosis

CT: 64-multidetector row 
CT system (Aquilion 64; 
Toshiba Medical Systems, 
Tokyo, Japan). Protocol 
for craniomaxillofacial: 
tube voltage, 120 kV; tube 
current, 100 mA; FOV 240 × 
240 mm; and helical pitch, 41. 
The imaging included axial 
(0.50 mm) and multiplanar 
(3.00 mm) images.

32 The value of entropy and 
difference entropy were 
significantly higher in 
diabetes mellitus patients 
than in non- diabetes 
mellitus patients. From 
the histogram, GLCM, 
and GLRLM results, 
mandibular condylar 
bone marrow of diabetes 
mellitus patients was 
overall non-uniform, but 
uniform locally, and had 
high brightness values. 
These results suggested the 
presence of osteosclerosis 
in the mandibular condyle 
of these patients. There 
was a correlation between 
all texture parameters and 
HbA1c. From this result, 
it is considered that the 
changes in the mandibular 
condyle bone marrow 
become more prominent 
in severe diabetes mellitus 
patients. CT texture analysis 
may have the potential to 
detect diabetes from the 
mandibular condyle bone 
marrow.

Table 1  (Continued)

(Continued)
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23Jiang et al., 2021 ChinaSurgical exploration Jaw simple bone cyst 
diagnosis

CBCT: DCTPRO, VATECH 
(Yongin-Si, Republic of 
Korea); FOV of 16 × 7 cm 
and a voxel size of 0.16 mm; 
90.0 kV and 9 mA and 24 s 
scanning time

38 GLCM contrast, NGTDM 
contrast, and GLCM 
variance may be the 
characteristic imaging 
features of simple bone 
cysts of the jaw. The two 
non-texture features (volume 
and size) were significantly 
different between the groups.

24Kavitha et al., 2014
Korea

DXA Osteoporosis 
diagnostic and 
classification

DPR: OP-100D, Imaging 
Instrumentarium, Tusuula, 
Finland

141 The combination of textural 
features (FD and GLCM) 
and MCW using three 
classifiers showed better 
discriminatory values to 
identify osteoporosis or 
low BMD than using only 
MCW. The overall accuracy 
of the classification for all 
feature sets using the SVM 
classifier was slightly higher 
than those using the naïve 
Bayes or k-NN classifiers.

25Kawashima et al., 2019
USA

DXA Osteoporosis 
diagnosis

CT Non-contrast head scans 
axially acquired on 64-detector 
row CT scanners (Lightspeed 
VCT; GE Healthcare, 
Milwaukee, WI), 120 kV, 225 
mA, 1 s/rotation

58 Results demonstrated 
the ability of a texture 
analysis to distinguish 
between osteoporosis 
and normal bone mineral 
density, despite potential 
osteoarthritic changes.

30Marar et al., 2020
Jordan

DXA Osteoporosis 
diagnosis

CBCT: CS8100 3D machine, 
75kvp and 4mAs (Carestream 
Dental LLC, Atlanta, GA)

120 Applying the ANN to 
distinguish between healthy 
and osteoporotic persons 
resulted to almost 98% 
successful classification 
rate of the testing set. With 
the help of the proposed 
scheme, dentists could be 
able to predict osteoporosis 
accurately and efficiently.

27Muraoka et al., 2022
Japan

Clinical symptoms and 
image findings

Acute osteomyelitis 
diagnosis

MRI: 1.5 T superconducting 
unit (InteraAchieva® 1.5T 
Nova; Philips Medical 
Systems, Best, Netherlands) 
and a 5-channel phased array 
coil. The STIR images were 
obtained using a spin echo 
sequence with the following 
parameters: TR/TE/ TI 
= 2500/60/180 ms; other 
conditions were: 6.0 mm 
section thickness, 320 × 256 
matrix, 230 × 195.5 mm FOV

38 The histogram and 
texture features of the 
bone marrow in the 
mandible were significantly 
different in those with 
acute osteomyelitis than 
in those without it. The 
90th percentile was higher 
in patients with acute 
osteomyelitis, suggesting 
that they exhibit regions 
with higher brightness 
values in the bone marrow. 
The sum averages were 
higher in acute osteomyelitis 
patients, suggesting that 
they have a region with 
a heterogeneity of tissue 
density in the bone marrow. 
Heterogeneity is higher in 
the bone marrow of acute 
osteomyelitis group than in 
that of the control group.

Table 1  (Continued)

(Continued)
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31Nurtanio et al., 2013 
Indonesia

- Cyst and Tumor 
Lesions classification

DPR: Cranex 2.5 + Soredex 
dental panoramic X-ray 
Machine model PT-12SA, 
Tusuula, Finland

133 The highest performance 
achieved as the result of 
the combination of FO and 
GLRLM. GLCM did not 
achieve good accuracy.

26Oda et al., 2019 USA Histology Dentigerous cyst, 
keratocyst and 
ameloblastoma 
classification

CT: Non-contrast 64- detector 
row CT scanner (Lightspeed 
VCT; GE Healthcare, 
Milwaukee, WI) with 120 kV, 
225 mA and 1 s/rotation, and 
1.25 mm thick images were 
reconstructed using soft tissue 
and bone algorithms. Axial 
1.25 mm images in soft tissue 
algorithm reconstruction were 
used

98 GLCM, GLRL, GLGM, 
Laws features and Chi-
square features showed 
significant differences when 
comparing dentigerous 
cysts and odontogenic 
keratocysts. Dentigerous 
cysts contain fluid with 
or without inflammatory 
cells, cholesterol or hyaline 
bodies, and may not have a 
great impact on CT texture 
features. Odontogenic 
keratocysts are comprised 
of keratin debris and fluid 
which may correspond to a 
highly complicated pattern 
of design on CT. Differences 
between histogram features 
reflected the high density 
component in odontogenic 
keratocysts.

18Okada et al., 2015
USA

Endodontic diagnosis 
and histology

Periapical cysts 
and granulomas 
classification

CBCT: NewTom 3G scanner, 
QR Srl, Verona, Italy. 360 
images at 1◦ intervals in 36 s, 
with reconstructed image 
resolution of 512 × 512 pixels 
and 12 bits per pixel (4096 
grayscale). The pixel size was 
0.25 × 0.25 mm. The axial slice 
thickness was 0.2 mm

45 Experimental results of the 
authors showed that CBCT 
diagnosis can be as accurate 
as histopathology for 
differentiating the periapical 
lesions.

33Orhan et al., 2021
Belgium

Clinical parameters 
following the DC/TMD 
for TMJ

TMJ pathologies 
classification

MRI: 1.5 T imaging unit 
(Signa Horizon, GE Electric, 
Milwaukee; Gyroscan Intera, 
Philips Medical Systems, 
Washington; Magnetom SP 
4000, Siemens, Erlangen, 
Germany) with the help of 
dual-surface coils (3-inch 
and 6 × 8 cm surface coils). 
Acquisitions of axial, sagittal, 
and coronal planes using 
fast spin-echo sequences. 
The images were taken in the 
closed, partially opened, and 
maximally opened mouth 
positions to detect disc 
displacements.

214 For disc displacement, the 
RF classifier was the best 
method in the validation set 
on diagnostic performance 
by four indicators. k-NN 
and RF were found to be the 
best methods for identifying 
the mandibular condyle 
changes, whereas the RF 
classifier was the best 
machine learning approach 
for quantifying TMJ disc 
placements on MRI.

Table 1  (Continued)
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Only 13 (56.5%) authors described the machine 
learning classifier step. Most studies developed the 
machine learning classifier based on supervised learning 

Support Vector Machine (SVM) (61.5%) and random 
forest classifier (38.5%). For osteoporosis diagnosis 
and classification, filtering, shape-based and Tamura 

Author,year, local Reference exam Objective Imaging modality n Main conclusions

32Pociask et al., 2021
Poland

Histology Periapical cysts 
and granulomas 
classification

Periapical radiographs: 
Gendex Kavo 765 DC 
Intraoral X-ray System, 
Biberach, Deutschland; 
65kV and 7mA; exposure 
time of 0.1 s and recorded 
on phosphor plates with 
a secondary readout of 
five detectors (CS 7600, 
Carestream Dentak LLC, 
Atlanta, GA) connected to a 
Kamsoft computer system. 
Resolution from 490 × 649 to 
1528 × 2024 pixels

62 The differentiation between 
periapical cysts and 
granulomas was possible, 
but a definite distinction 
was not feasible. The most 
important information 
about the differentiation 
of lesions was found in 
the border of the lesion. 
Granulomas create a fibrous 
capsule, while radicular cysts 
are lined with epithelium. 
This feature influences 
textural analysis of the 
given lesions. High cross-
correlation within the group 
of texture features obtained 
from the run length matrix, 
indicating that the structure 
was isotropic.

19Roberts et al., 2013
United Kingdom

DXA Osteoporosis 
diagnosis

DPR: Planmeca PM2002CC 
(Planmeca Oy, Helsinki, 
Finland), Cranex 3DC 
(Soredex, Tuusula, Finland) 
70 kV (constant potential) 
at 8 mA for 15 s. In Leuven, 
ADC Solo (Afga, Mortsel, 
Belgium) was used as the 
photostimulable phosphor 
plate system, but other centers 
used analog images.

663 Texture classifiers based 
on co-occurrence statistics 
perform much better than 
those based on FD that 
have been investigated 
previously. The combined 
classifier using cortical 
texture and width results 
showed a significantly 
stronger association with 
osteoporosis at the femoral 
neck than width-only 
methods, but at other 
skeletal sites there is little if  
any improvement.

15Sela & Widyaningrum, 
2015
Indonesia

DXA Osteoporosis 
diagnosis

DPR: Panoura deluxe dental 
X-ray unit with 70–80 kVp, 
12mA, and 12 s exposure 
(Yoshida Dental Mfg. Co., 
Ltd., Japan). Periapical 
radiograph: DBSWin 4.5, 
Durr Dental (Bietigheim-
Bissingen, Deutschland)

69 The proposed model could 
perform for osteoporosis 
detection using the selected 
porous trabecular bone 
features.

16Yilmaz et al. 2017
Turkey

Clinical, radiographic, 
and histopathological 
features

Periapical cyst 
and keratocyst 
classification

CBCT: KODAK K9500 
Trophy device (Carestream 
Health, Rochester, NY)

50 The use of features 
extracted from datasets 
for classification of dental 
lesions as periapical cysts 
or keratocystic odontogenic 
tumor was determined to 
be appropriate. The best 
performance results were 
achieved using the SVM 
classifier.

ANN, Artificial Neural Networks; BMD, Bone mineral density; CBCT, Cone Beam Computed Tomography; DC/TMD, Diagnostic Criteria 
for Temporomandibular Disorders; DPR, Dental Panoramic Radiograph; DXA, Dual-energy X-ray Absorptiometry; FD, Fractal Dimension; 
FO, First-order statistics texture; FOV, Field of View; GLCM, Gray-Level Co-occurrence Matrix; GLRL, Gray Level Run-Length; GLRLM, 
Gray Level Run Length Matrix; HarCor, Haralick Correlation; MCD, Mandibular Cortical Degree; MCW, Mandibular Cortical Width; MRI, 
Magnetic Resonance Imaging; MRONJ, Medication-related Osteonecrosis of the Jaw; NGTDM, Neighboring Gray Tone Difference Matrix; RF, 
Random Forest; ROI, Region of Interest; SDA, Sparse Discriminant Analysis; SOM-LVQ, Self-Organizing Map - Learning vector quantization; 
SPHARM, Spherical Harmonics; SVM, Support Vector Machine; TMJ, Temporomandibular Joints; k-NN, k-Nearest Neighbors.
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texture features showed the best performance. For TMJ 
pathology, GLCM, GLRLM, Gray Level Size Zone 
Matrix (GLSZM) first-order statistics and shape-based 
analyses showed the best results. Considering odonto-
genic and non-odontogenic cysts and tumors, contourlet 
and Spherical Harmonics (SPHARM), first-order statis-
tical, GLRLM, GLCM features had better indexes. For 
odontogenic cysts and granulomas, first-order statistical 
analysis showed better classification results.

Osteoporosis:  All the seven14,15,19,20,24,25,30 included 
studies that explored osteoporosis used the Dual 
energy X-ray Absorptiometry (DXA) as the reference 
bone density exam. Four authors14,19,20,24 chose Dental 
Panoramic Radiographs, one Dental Panoramic Radio-
graphs with Periapical Radiographs15 , one non-contrast 
head CT25 and one mandibular CBCT30 to extract 
features. Manual or semi-automatic segmentation was 
applied in five studies, while automatic segmentation 
was performed in two studies15,19. The extracted features 
included histograms14,25, filtering24, GLCM19,20,24,25, 
Gray-Level RunLength (GLRL)25, Gray-Level Gradient 
Matrix (GLGM) 25, Law features25 and Tamura features 
for 3D images30. Other morphological/ structure or 
shape features mined were the Mandibular Cortical 
Width (MCW)19,24, Strut analysis20, Fractal Dimension 
(FD)19,20,24, thickness and roughness24, shape-based 
porous trabecular 14,15 and trabecular features30.
The machine learning algorithms used were Learning 
Vector Quantization (LQV)14, Decision Tree15,20, 
SVM20,24, Naïve Bayes24,k-Nearest Neighbors (k-NN)24, 
Back Propagation Artificial Neural Networks 
(BPANN)30, and Random Forest Classifier19. One 
author25 did not developed a model classifier.

The most expressive results were observed in oste-
oporosis level and osteoporosis diagnosis. Regarding 

osteoporosis level, accuracy 92.6% was obtained using 
Gabor-based filter algorithm in SOM/ LVQ (Self-
Organizing Map/ Learning Vector Quantization) 
method14.For osteoporosis diagnosis, it was observed: 
accuracy 96.25% using Strut variables in the endos-
teal margin area in Decision Tree and 96.9% in SVM 
methods20; accuracy of 96.8% using FD plus MCW in 
SVM classifier method24; accuracy of 97.917% using 
Tamura texture features in BPANN method30 and accu-
racy of 73.33% using porosity feature in Decision Tree 
method15. Area Under the Curve (AUC) value for iden-
tifying osteoporosis at femoral neck was 0.872 using 
combined MCW and GLCM in random forest classifier 
method19. Moreover, an author25 evaluated the texture 
features without machine learning classifier method, 
which demonstrated that 31 features had significant 
differences between normal Bone Mineral Density 
(BMD) and osteoporosis in the left condyle and that 22 
features had a statistically significant difference in both 
sides of the condyle, being six histogram, three GLCM, 
nine GLRL, two GLGM and two Law features

TMJ pathology:  Four studies intended to evaluate 
the diagnostic performance of  radiomic features for 
TMJ, being two for osteoarthritis28,34, and two for 
TMJ disorders17,33.Three28,33,34 of  them used the clin-
ical parameters following the Diagnostic Criteria 
for Temporomandibular Disorders (DC/TMD) as 
the reference exam. CBCT was the imaging exam 
used in three studies17,28,34 and MRI in one33. Manual 
segmentation was done in three studies28,33,34, while 
one study did not mention how the segmentation 
was applied17. The radiomic features include first-
order/histogram of  oriented gradients17,33, shape33, 
GLCM28,33,34, GLRLM28,33,34 and GLSZM33. Also, 
semantic features including biomolecular (proteins 

Figure 2  Radiomics Quality Score (RQS).
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Table 2  Radiomics worflow

Osteoporosis

Author, year Software Imaging processing Segmentation Features extracted Classifier Validation Results RQS
14Alzubaidi et al., 
2020

- Histogram 
Equalization

Manual Agnostic features: 
shaped-based, first-
order and filtering

Supervised 
learning: SOM/
LQV

Internal Gabor-based algorithm 
achieved an accuracy of 
92.6%, a sensitivity of 
97.1%, and a specificity 
of 86.4% in SOM/LVQ 
classification method

13

20Hwang et al., 
2017

In house developed 
software (MATLAB 
and ImageJ)

Black and white 
normalization; 
Upsampling; 
gaussian blur; 
Density correction; 
Binarization; 
Skeletonization

Manual Agnostic features: 
shaped-based and 
GLCM

Supervised 
learning: Decision 
tree and SVM

Internal Strut variables in the 
endosteal margin 
area were sensitivity, 
specificity, and accuracy 
of the 97.1%, 95.7 and 
96.25 using the decision 
tree and 97.2%, 97.1 
and 96.9% using SVM

12

24Kavitha et al., 
2014

In house developed 
software

Histogram 
equalization; 
Clustering 
thresholding; High-
pass filtering

Manual Agnostic features: 
shaped-based and 
GLCM

Supervised 
learning: Naïve 
Bayes, k-NN and 
SVM

Internal The combinations of 
FD plus MCW (95.3%, 
92.1%, 96.8%) and 
GLCM plus MCW 
(93.7%, 89.5%, 94.2%) 
for femoral neck BMD 
showed the highest 
diagnostic accuracy 
using the naïve Bayes, 
k-NN and SVM 
classifiers, respectively.

9

25Kawashima et 
al., 2019

In house developed 
software

Kernels 
reconstructions

Manual Agnostic features: 
first- order, GLCM, 
GLRLM, GLGM, 
Law features

- - 22 features including 
six histogram, 3 
GLCM, 9 GLRLM, 
2 GLGM and 2 Law’s 
features demonstrated 
a statistically significant 
difference in both sides 
of the condyle.

8

30Marar et al., 
2020

MATLAB Gray Scale Image 
Conversion; 
Illumination filtering 
based on Retinex 
method; Canny 
edge detection; Otsu 
segmentation

Semi-automatic Agnostic features: 
shaped-based and 
Tamura texture 
features for 3D 
images

Supervised 
learning: BPANN

Internal The performance of the 
suggested feed forward 
BPANN classifier was 
measured by precision, 
recall, and accuracy 
which were 0.96, 1, and 
97.917%, respectively.

7

19Roberts et al., 
2013

- Square-rooted 
German-McClure 
kernel function 
normalization

Automatic Agnostic features: 
Shaped-based and 
GLCM

Supervised 
learning: Random 
Forest Classifier

External AUC values for 
identifying osteoporosis 
at femoral neck 
were 0.830, 0.824, 
and 0.872 using, 
respectively, cortical 
width alone, cortical 
texture (GLCM) 
alone and combined 
width with texture. At 
80% sensitivity, these 
classifiers produced 
specificity values of 
74.4%, 73.6%, and 
80.0%, respectively.

22

15Sela et al., 2015 Custom computer 
program

Tophat and 
bothat filtering 
and histogram 
equalization

Automatic Agnostic features: 
Shaped-based 
analysis (porosity)

Supervised 
learning: Decision 
tree

Internal From 54 training 
data, 49 data can be 
detected correctly. The 
results of performance 
detection obtained 
accuracy, sensitivity, 
specificity were 73.33%, 
72.23%, and 72.23%, 
respectively.

14

TMJ Pathology

(Continued)
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Osteoporosis

28Bianchi et al., 
2020 (1)

‘BoneTexture’ module 
in 3D Slicer; Ibex; 
ITK-Snap

Optimization using 
i-Dixel (J. Morita 
MFG. CORP Tokyo, 
Japan) filter: G_103 
+ H_009

Manual Semantic features: 
biomolecular 
(saliva and blood), 
and clinical 
variables Agnostic 
features: GLCM, 
GLRLM and 
shaped-based (bone 
morphometry)

Supervised 
learning: Logistic 
Regression, 
Random Forest, 
LightGBM and 
XGBoost

Internal XG-Boost + 
LightGBM with the 
interaction features 
(radiomics, clinical and 
protein information) 
achieved the best 
average accuracy of 
0.823, AUC 0,870, 
and F1-score 0,823 
to determine disease 
status.

22

34Bianchi et al., 
2020 (2)

‘BoneTexture’ module 
in 3D Slicer; ITK-Snap

Mirroring to the 
right side-and 
creation of a spatial 
orientation matrix

Manual Agnostic features: 
Shaped-based (bone 
morphometry); 
GLCM, GLRLM

- - Osteoarthritis with 
AUC values were 
between 0.620 and 
0.710. Good diagnostic 
performance, especially 
for energy and entropy, 
with AUC of ≥ 0.70

12

17Haghnegahdar 
et al., 2016

- Gray level and LBP not mentioned Agnostic feature: 
first-order

Supervised 
learning: k-NN, 
SVM, Naïve Bayes 
and Random 
Forest Classifier

Internal k-NN was the best 
classifier, by 92.42% 
accuracy, 94.70% 
sensitivity and 90.15% 
specificity.

12

33Orhan et al., 
2021

Huiying Radiomic 
platform and 
Radcloud platform

- Manual Agnostic features: 
shaped-based, 
first-order, GLCM, 
GLRLM and 
GLSZM analysis

Unsupervised 
and supervised 
learning: k-means 
clustering learning; 
Logistic regression, 
random forest, 
decision tree, k-
NN, XGBoost and 
SVM

Internal AUC of k-NN and 
random forest were 
high, with a range 
of 0.89 and 0.77 
for the training set 
and validation set, 
respectively.

17

Odontogenic and non- odontogenic cysts and tumors
13Abdolali et al., 
2016

MATLAB Active contour 
method based on 
symmetry analysis

Automatic Agnostic features: 
shaped-based 
and contourlet 
alone, contourlet 
+ conventional 
SPHARM, and 
contourlet + 
orthogonalized 
SPHARM analysis

Supervised 
learning: SVM, 
SDA

Internal A combination 
of contourlet and 
SPHARM features 
leads to better results. 
The classification 
accuracy of 94.29 and 
96.48% is achieved 
using SVM and SDA 
classifier

16

23Jiang et al., 
2021

ITK-Snap Active contour 
methods

Manual Semantic features: 
volume, size, 
solidity, eccentricity 
Agnostic features: 
first-order, GLCM, 
GLRLM, GLSZM, 
and NGTDM

- - The absolute value of 
correlation coefficient 
was 0.487–0.775. 
GLCM contrast, 
NGTDM contrast, 
and GLCM variance 
were the features with 
the highest correlation 
coefficients.

10

31Nurtanio et al. 
2013

MATLAB Black and white 
normalization; 
gaussian filter

Manual Agnostic features: 
first-order, GLCM, 
and GLRLM

Supervised 
learning: SVM

Internal It was obtained up to 
84.62% accuracy using 
first-order statistical 
features, 87.18% using 
the combination of 
first-order statistical 
features and GLRLM, 
and 87.18% using 
the combination of 
first-order statistical 
features, GLCM and 
GLRLM.

12
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Osteoporosis

26Oda et al., 2019 OsiriX (Pixmeo 
SARL, Bernex, 
Switzerland) and 
in-house-developed 
MATLAB

- Manual Semantic features: 
region, tooth within 
the lesion, volume, 
septum Agnostic 
features: first-order, 
GLCM, GLRLM, 
GLGM, Laws 
features and Chi-
square features

- - Kruskal-Wallis analysis: 
nine histogram features, 
1 GLCM feature, 3 
GLRLM features, 4 
GLGM features, 2 Laws 
features, and 2 Chi-
square features showed 
significant differences 
among the different 
types of lesions. 
Mann-Whitney’s U 
test analysis: nine 
histogram features, 
1 GLCM feature, 3 
GLRLM features, 4 
GLGM features, 2 Laws 
features, and 2 Chi-
square features showed 
significant differences 
between DC and 
OKC; four histogram 
features and 1 Chi-
square feature showed 
significant differences 
between OKC and AM. 
two histogram features 
showed significant 
differences between DC 
and AM.

10

16Yilmaz et al., 
2017

In-house-developed 
MATLAB and Rapid 
Miner data mining 
software

- Manual Agnostic features: 
first-order and 
GLCM

Supervised 
learning: k-NN, 
Naïve Bayes, 
decision trees, 
random forest, 
neural network, 
and SVM

Internal SVM achieved the 
best performance with 
the vector consisting 
of the single selected 
feature obtained from 
3D GLCM, with a 
sub feature vector 
consisting of two 
values obtained from 
3D GLCM, and with 
a sub feature vector 
consisting of single 
value obtained from 3D 
GLCM, respectively. 
The SVM classifier 
achieved the best 
performance of 100% 
accuracy after feature 
reduction.

15

Odontogenic Cysts and Granulomas
29De Rosa et al. 
(2020)

Mazda Images were 
converted into 
bitmap format with 
loss resolution.

Manual Semantic features: 
age, gender, 
lesion diameter 
and volume, 
tooth Agnostic 
feature:GLCM

- - The five parameters 
(angular second 
moment, sum of 
squares, sum of 
average and contrast, 
and correlations in all 
directions) were selected 
for ROC curve as they 
achieved the AUC of 
81.2% in the other half  
validation set.

7

18Okada et al. 
2015

MATLAB Binarization Semi-automatic Agnostic feature: 
first-order

Supervised 
learning: LDA-
AdaBoost method

External Accuracy of LDA-
AdaBoost method 
using median and 
minimum intensity was 
94.1% for endodontic 
diagnosis and 78.9% for 
histopathology as gold 
standard.

11
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of  serum and saliva)28, clinical parameters (age, 
gender, signs and symptoms)28,34, and imaging char-
acteristics (bone morphometry)28,34 were correlated 
to radiomic analysis in two studies. The machine 

learning algorithms used were Logistic Regression28,33, 
random forest classifier17,28,33, Light Gradient Boosting 
Machine (LightGBM)28, Extreme Gradient Boosting 
(XGBoost)28,33, k-NN17,33, SVM17,33, Naïve Bayes17, 

Osteoporosis

32Pociask et al. 
2021

MaZda Images were 
converted into 
JPG format, with 
loss resolution 
and without scale 
preservation.

Manual Agnostic features: 
First-order 
(histogram-based 
method), second 
-order analysis (14 
Haralick features), 
GRLM, GTDM 
and LBP

Unsupervised 
and supervised 
learning: Logistic 
regression; 2D and 
3D t-SNE models

Internal five parameters (angular 
second moment, sum 
of squares, sum of 
average and contrast) 
were selected given their 
potential to differentiate 
periapical cysts from 
granulomas as they 
achieved the AUC 
of 81.2%. The best 
predictor variable was 
YS6GlcmZ4Entropy 
texture in logistic 
regression method.

15

Bone inflammation/ infection
35Gonçalves et 
al., 2020

MaZda Images were 
converted into 
bitmap format with 
loss resolution

Manual Agnostic feature: 
GLCM

- - Comparisons between 
groups showed 
statistically significant 
differences for all 
parameters. In the 
inter group analysis, 
there were statistically 
significant differences 
in inverse difference 
moment, angular 
second moment, 
entropy, sum of average, 
sum of variance, sum of 
entropy, difference of 
variance and difference 
of entropy parameters.

8

21Ito et al., 2021 
(1)

Open-access LIFEx 
software

- Manual Semantic 
features: age, sex, 
MRONJ stage, 
bisphosphonates, 
medical history 
Agnostic features: 
GLRLM and 
GLZLM

- - Among 37 texture 
features, the bone 
marrow of the mandible 
with stage 0 MRONJ 
and the contralateral 
normal mandibular 
bone marrow revealed 
significant differences in 
6 GLRLM features and 
4 GLZLM features

7

27Muraoka et al., 
2022

MaZda Intensity 
normalization using 
MaZda default

Manual Agnostic features: 
first-order, GLCM, 
GLRLM

- - These radiomics 
features in the acute 
osteomyelitis group 
were significantly 
higher than in the non-
osteomyelitis group (p 
< 0.001)

9

Diabetes Mellitus
22Ito et al., 2021 
(2)

MaZda Intensity 
normalization using 
MaZda default

Manual Agnostic features: 
first-order, 
GLRLM, GLCM 
and wavelets

- - One histogram feature, 
15 GLCM features, and 
4 GLRLM features 
showed significant 
differences between the 
diabetes and control 
patients cohort

10

AM, Ameloblastoma; AUC, Area Under the Curve; BMD, Bone Mineral Density; BPANN, Back Propagation Artificial Neural Networks; DC, Dentigerous Cyst; FD, Fractal 
Dimension; GLCM, Gray-Level Co-occurance Matrix; GLGM, Gray-Level Gradient Matrix; GLRLM, Gray-Level Run-Length Matrix; GLSZM, Gray-Level Size Zone; 
GLZLM, Gray-Level Zone Length Matrix; GTDM, Game Theory Based Decision Making; LBP, Local Binary Patterns; LDA, Linear Discriminant Analysis; LVQ, Learning 
Vector Quantization; LightGBM, Light Gradient Boosting Machine; MCW, Mandibular Cortical Width; MRONJ, Medication-Related Osteonecrosis of the Jaw; NGTDM, 
Neighborhood Gray Tone Difference Matrix; OKC, Odontogenic Keratocyst; RQS, Radiomics Quality Score; SDA, Sparse Discriminant Analysis; SOM, Self-Organizing 
Map; SPHARM, Spherical Harmonics; SVM, Support Vector Machine; XGBoost, Extreme Gradient Boosting; k-NN, k-Nearest Neighbors; t-SNE, t-Distributed Stochastic 
Neighbor Embedding.
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Decision Tree33, k-means clustering33. One author34 
did not developed any model classifier.
The best classifiers’ results were: accuracy of 82.3% 
using clinical, protein information and radiomics 
features (GLCM, GLRLM and bone morphometry) in 
XG-Boost+LightGBM method,28 accuracy of 92.42% 
using first-order statistics analysis in k-NN classi-
fier method17 and AUC of 89% using shaped-based, 
first-order, GLCM, GLRLM and GLSZM analysis 
in k-NN method33. Without the classifier method, an 
author described a AUC ≥ 0.70 for energy and entropy 
features34.

Odontogenic and non-odontogenic cysts and 
tumors:  Five studies aimed to diagnose cysts23,classify 
cysts13,16 or differentiate cysts from tumor lesions26,31. 
There were two standard comparators, histological 
exams13,16,26 and surgical exploration23. One author31 
did not mention a reference exam. CBCT13,16,23, Dental 
Panoramic Radiography31, and non-contrast CT26 were 
the imaging exams explored. Manual segmentation was 
done in four studies16,23,26,31, while automatic segmenta-
tion was performed in one study13. The mined radio-
mics features were edge- and region-based analysis 
(shape)13, first order16,23,26,31, GLCM16,23,26,31, GLRLM23,31, 
GLSZM23, Neighboring Gray Tone Difference Matrix 
(NGTDM)23, GLRL26, GLGM26, Law features26, χ2 
features26 and coutourlet13. Semantic features, such as 
volume, size, solidity and eccentricity23 and region, tooth 
within the lesion, volume, septum26, were also described. 
Only three authors13,16,31 developed the machine learning 
model, with the algorithms SVM13,16,31, k-NN16, Naïve 
Bayes16, decision trees16, random forest classifier16 and 
neural network16.
The most expressive results were: accuracy of  96.48% 
in classifying radicular cyst, dentigerous cyst and 
keratocysts, using a combination of  contourlet and 
SPHARM features in Sparse Discriminant Analysis 
(SDA) classifier13; accuracy of  87.18% in differen-
tiating cysts from tumors, using the combination 
of  first-order statistical features and GLRLM; and 
accuracy of  87.18%, using the combination of  first-
order statistical features, GLCM and GLRLM, with 
SVM classifier31. The SVM classifier achieved the 
best classification performance in differentiating 
periapical cysts from keratocysts, with 100% accu-
racy after feature reduction based on first-order 
and GLCM features16. Analyzing features without 
the classifier model, one author23 found that two 
semantic features (volume and size) were signifi-
cantly different between the keratocyst and simple 
bone cyst groups. Among the texture features, 
GLCM contrast, NGTDM contrast, and GLCM 
variance had the highest correlation coefficients23. 
Another author26 reported that significant differ-
ences were obtained between dentigerous cyst and 
keratocyst by using Mann–Whitney’s U test analysis, 
nine histogram features, one GLCM, three GLRL, 
four GLGM, two Law features, and two χ2 features. 

; Furthermore, four histogram and one χ2 features 
showed significant differences between keratocyst 
and ameloblastoma, and two histogram features 
showed significant differences between dentigerous 
cyst and ameloblastoma26.

Odontogenic cysts and granulomas:  Three 
authors18,29,32 proposed the differentiation between 
radicular cysts and granulomas. Two of  them used 
CBCT images18,29 and one Periapical Radiographs32, 
which were compared to histology and clinical 
endodontics findings. Manual segmentation was 
applied in two studies29,32, while semi-automatic 
segmentation was performed in one study18. The 
radiomics features were GLCM29, histogram-based 
method18,32, second-order features (14 Haralick 
features)32, Run-length Matrices (RLM)32, Gray-
tone Difference Matrices (GTDM)32, Local Binary 
Patterns (LBP)32. One author used as semantic 
features age, gender, diameter, volume and tooth 
involved29.
Two authors developed the machine learning models, 
in which the learning methods were Linear Discrim-
inant Analysis (LDA)-AdaBoost method18, logistic 
regression32, and 2D and 3D t-Distributed Stochastic 
Neighbor Embedding (t-SNE) models32.

The best results were: accuracy of  94.1% in 
classifying radicular periapical cysts and gran-
ulomas, using first-order statistical analysis in 
LDA-AdaBoost classifier18; and the best predictor 
variable was YS6GlcmZ4Entropy texture in logistic 
regression method32. Without machine learning 
classifier model, one author described five parame-
ters (angular second moment, sum of  squares, sum 
of  average, correlation and contrast) which were 
selected due to their potential to differentiate peri-
apical cysts from granulomas based on their sensi-
tivity and specificity, as they achieved the AUC of 
81.2% in the validation set29.

Bone inflammation/ infection:  One author proposed 
to detect patients with grade C periodontitis using 
CBCT35, one to detect stage 0 Medication-related 
Osteonecrosis of  the Jaw (MRONJ) using CT21 and 
another to early diagnose suppurative osteomyelitis 
using MRI27. All of  them applied manual segmenta-
tion and no machine learning model was developed. 
The radiomics features were GLCM27,35, GLRLM21, 
GLZLM21, and histogram feature27.
Comparisons between periodontal disease groups 
showed statistically significant differences for all param-
eters. In the intergroup of periodontitis level anal-
ysis, there were statistically significant differences in 
the following parameters: inverse difference moment, 
angular second moment, entropy, sum of average, sum 
of variance, sum of entropy, difference of variance and 
difference of entropy35.

Among 37 texture features, the bone marrow of the 
mandible with stage 0 MRONJ and the contralateral 
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normal mandibular bone marrow revealed significant 
differences in six GLRLM and four GLZLM features. 
Moreover, these texture features exhibited a moderate 
diagnostic performance21.

Finally, the histogram and the eight GLCM 
features in the acute osteomyelitis group were signifi-
cantly higher than in the non-osteomyelitis group27.

Diabetes mellitus:  One author22 proposed the 
assessment of  the mandibular condylar bone marrow 
in diabetes mellitus using CT. The reference exam 
was defined as HbA1c ≥ 6.5% on blood test. Manual 
segmentation was performed and the radiomics 
features selected were histogram feature, GLRLM, 
GLCM, and wavelets. No machine learning model 
was developed. One histogram, 15 GLCM, and 4 
GLRLM features showed significant differences 
between the diabetes and control patients.

Quantitative synthesis and evidence certainty
The selected studies were all descriptive and used similar 
methods, which reduced the possibility of misinterpre-
tation. Results were considered homogeneous enough, 
but did not have compatible quantitative data to run a 
meta-analysis.

Due to the qualitative nature of included studies, an 
analysis of the certainty of evidence was not performed.

Discussion

This is the first systematic review that discussed which 
are the texture features of bone pathologic changes 
of the jaws and how they are extracted for diagnosis, 
predicting prognosis and therapeutic response in dento-
maxillofacial imaging. According to the obtained results, 
agnostic features based on shape, intensity, texture 
and filtering information were mined from Periapical, 
Dental Panoramic Radiographs, CBCT, Helicoidal 
CT and MRI images. Six different jawbone alterations 
were studied: osteoporosis, TMJ pathology, diabetes, 
radicular cysts and granulomas, odontogenic and non-
odontogenic cysts and tumors, and osseous inflamma-
tion/infection. No study reported predicting response, 
prognosis or therapeutic response, but instead diagnosis 
or classification of the aforementioned diseases. The 
small number of included articles and their main objec-
tive are in agreement with a previous meta-analysis8, 
which highlighted that 91% of radiomics studies 
concern oncological applications, and 81% of them are 
for diagnostic purposes. This systematic review revealed 
the potentials and also the limitations of the previous 
published studies, including the variability of imaging 
techniques and protocols.

The literature recognizes the importance of  using 
standardized imaging protocols to eliminate unnec-
essary confounding variability when dealing with 
radiomics, including scanner manufacturer, model 
and calibrations. Different results may arise when 

diverse filters and thresholding are used1,36. From 
the different imaging modalities employed in the 
included studies, a wide range of  protocols settings 
were applied. Some studies have not reported the 
acquisition protocol. Software variability may 
also lead to different results even when a feature 
is measured from the same ROI/VOI obtained 
from identicalscans36. From the included studies, 
six authors15,16,20,24–26 used in-house developed soft-
ware, without providing further details, and three 
authors14,17,19 did not even cited which software was 
used. In addition, JPEG and BMP images formats 
were used instead of  DICOM in two included 
studies29,32. To facilitate interoperability of  radiomic 
features and make standardization available, differ-
ences in algorithms and software implementations 
should be elucidated by using open-source software 
or releasing source code publicly5,36.

Another crucial step related to radiomics is the 
segmentation of the analyzed structures. The majority 
of the included studies employed manual or semi-
automatic segmentation. A previous work reported that 
manual outlining by experts is considered the ground 
truth in tumor segmentation, although its result can 
be unreliable due to inter- and intraobserver segmen-
tation variability37. On the other hand, some authors 
assured that automatic and semi-automatic segmen-
tation methods are preferred due to their robustness 
and significantly higher levels of reproducibility, with 
minimum user input38.

According to this review results, first statistical and 
the GLCM second statistical-based techniques were 
the most mined feature algorithms, which corroborates 
with previous literature3,39. In a statistical-based model, 
first-order statistics evaluate the gray-level frequency 
distribution from the pixel/ voxel intensity histogram in 
a given area of interest, while GLCM captures spatial 
relationships of pairs of pixels/ voxels with pre-defined 
gray-level intensities, in different directions (horizontal, 
vertical, or diagonal for a 2D analysis or 13 directions 
for a 3D analysis), with a predefined distance between 
them40. Regarding the machine learning model develop-
ment, SVM and random forest were the most applied 
classifiers in this review. An author highlighted that 
SVM was one of the first highly successful models, 
although required a careful feature selection41. Also, 
a previous study compared 12 supervised classifiers in 
predicting overall survival in lung cancer patients, with 
CT images and found the random forest classifier as 
the best performance method38. Since radiomics is a 
new and expanding area of research, better classifica-
tion algorithms will be developed, so that the optimal 
method is not yet clearly defined and will depend on the 
application3.

As explained, radiomics studies involve multiple 
complex subprocesses, each one affected by a wide 
range of decisions, and a sort of software and mathe-
matical approaches to segmentation, texture mining 
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and statistical analysis5,36,42. According to this review 
results, there is no consensus about the selection of 
proper texture features that could be relevant in diag-
nosis of pathological changes of the jaws. In particular, 
many textural indices show a lack of reproducibility 
and standardization, an obstacle also reported by 
other studies1,5,7,36, including a phantom experiment42. 
These aspects are specially related to the deficiency of 
imaging protocol standardization in retrospective study 
designs, poor calibration statistics and restricted source 
code and data, as observed in the included articles of 
this review, by means of the Radiomics Quality Score 
(RQS) proposed by Lambin et al.5. The cut-off  values 
were often arbitrarily chosen, a practice previously 
criticized 7, which may lead to biased validation. This 
also may increase the risk of false-positive results and 
consequently delays the translation to clinical prac-
tice43. Furthermore, radiomics studies based on retro-
spectively collected data have low level of evidence, 
because imaging protocols, including acquisition and 
reconstruction settings, are often not controlled or 
standardized, and they mainly serve as examples7. The 
solution would include imaging protocols standardiza-
tion, development of generalizable models, and larger 
samples. Multicentric efforts are required, since data-
sharing enables highly powered prospective studies and 
accelerates the development and validation of radiomic 
signatures derived from new and existing data5.

The conventional visual analysis is based only on the 
lesion's image behavior, leaving gaps in the diagnosis. 
Therefore, radiomics could be recommended as an auxil-
iary tool in the elaboration of the radiologists’ report, 
since the analysis is independent of subjective evalua-
tions29,35. Thus, the use of texture analyses in imaging is 
a striking option, potentially allowing the development 
of a novel form of disease biomarkers, when integrated 
to clinical and genomic patient data from multiple 
sources. , Therefore, the texture analysis has the poten-
tial to enhance diagnosis accuracy and delivery person-
alized healthcare, preventing the need for more invasive 
steps, such as biopsy or surgery,1,42,44–46.

To gain the trust of health professionals, recog-
nized institutions, and patients, an imaging diagnostic 
system must be transparent, interpretable, and explain-
able47. Significant progress has been made, but further 
improvements are imperative to achieve routine utiliza-
tion of radiomics due to the insufficient evidence. There 
are notable differences in terms of sample size, meth-
odology, performance metrics, and clinical utility7,48. 
Important efforts have been made to address these 
issues, including the cooperation of different insti-
tutions, such as the American College of Radiology 
Imaging Network and the Canadian Institute of Health 
Research48. Working groups that include radiologists, 
physicists, applied mathematicians, and computer scien-
tists aim to improve the field and educate people on 

radiomics use as a reliable part of a decision-support 
system in clinical assistance1,48. Another milestone in 
radiomics is the creation of a predictive tool model. It 
requires the involvement of different imaging centers 
from all over the world to provide data and a worldwide 
standardization of the radiomics process49. Although 
there are many challenges to overcome, the potential 
benefits to precision health care are enormous and may 
revolutionize radiology practice in the near future.

Limitations
In this review, neither the size of the ROI/ VOI nor the 
3D vs 2D images influences were evaluated. In addition, 
the imaging pre- and post-processing techniques were 
not deeply explored, and the segmentation phase, which 
is a crucial radiomics step, was not critically assessed. 
As a great variety of statistical approaches and different 
overlapping reduction methods were used, a carefully 
work focused on this subject is strongly suggested. 
Although the included studies reported jawbone alter-
ations, few of them were published in dentistry journals, 
which shows that there is still a lack of dentists’ engage-
ment in this area of study.

Conclusion

Feature extraction and analysis are just one part of the 
growing field of radiomics. GLCM feature was the most 
frequent statistical feature, followed by first-order statis-
tics, and GLRLM features. Shape-based features were 
also recurrently mined. No study reported predicting 
response, prognosis or therapeutic response, but instead 
disease diagnosis or classification. Due to the lack of 
standardization showed in this review, there are multiple 
software and statistical approaches, with the purpose 
of mining texture parameters, selecting their useful 
meaning, and building the machine learning models, so 
that comparison between studies and reproduction of 
the results is challenging. Aiming to uniform the reports, 
following the RQS requirements is strongly suggested. 
Although the limitations of this review, texture analysis 
showed potential to contribute to radiologists’ reports, 
decreasing the subjectivity when using mathematical 
approaches, and providing unique, objective and reliable 
disease information.. Therefore, radiomics analysis is a 
potential quantitative, non-invasive and accessible tool 
for personalized healthcare.

Protocol and registration
This systematic review was reported according to the 
Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses Checklist50. The protocol was registered 
in PROSPERO database (University of York) (http://
www.crd.york.ac.uk/PROSPERO)51 under number 
CRD42022312507.
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