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INTRODUCTION
Yttrium- 90 (90Y)- based Transarterial radioembolization 
(TARE) has been established to be an effective treatment 
of primary and secondary liver cancers.1,2 TARE requires 
two procedures per treatment. The first session is a mapping 
angiography to characterize the tumor and its blood vessels, 
followed by intraarterial delivery of 99m- Technetium 
macroaggregated albumin (99mTc- MAA).1–3 This radio-
tracer serves as a 90Y microsphere surrogate and is used 
to predict particle deposition within the perfused volume 
and calculate the lung shunt fraction (LSF). This informa-
tion is utilized to confirm candidacy for TARE and calcu-
late treatment parameters, such as the desired tumor dose. 
The importance of dose distributions has been emphasized 
over the past several years in several landmark papers.4 
While dosimetry has rightly become an area of focus of late, 
accurately predicting the lung shunt fraction (LSF) calcula-
tion has not necessarily been emphasized. 99mTc- MAA is 
not a perfect surrogate, as there are differences in particle 
shape and density. Furthermore, both 99mTc- MAA and 90Y 
microsphere distribution are influenced by catheter location 
during delivery, vessel vasospasm, and tumor vascularity.5,6 
These factors can ultimately lead to over or underestima-
tion of the LSF and discrepancies between the expected and 
delivered lung dose (LD) by the mapping exam.

Pre- procedural LSF and lung dosimetry determination can 
have significant treatment implications as the threat of lung 
toxicity is at times a limiting factor for 90Y dosing, which 
in turn can affect outcomes. Moreover, inaccurate LSF esti-
mation can result in procedure cancellations in patients 
who would otherwise benefit from 90Y. There are varying 
methods to determine LSF and lung dosimetry. The present 
narrative review serves to outline these methods, reflect on 
key studies which aim to compare them and explore the 
clinical significance of the differences.

PATHOPHYSIOLOGY OF LUNG SHUNT 
FRACTION
Recent advances in dosimetry and promising study 
outcomes have paved the way for the safe use of higher 
prescribed tumor doses, thus expanding the role of TARE 
from palliative and neoadjuvant to curative therapy. The 
lungs are considered a critical organ of risk during TARE 
treatment planning. Therefore, the efficacy of radioemboli-
zation may be compromised in patients for whom the LSF 
and estimated mean lung dose (MLD) derived via currently 
available methods inaccurately limits the desired adminis-
tered activity to the liver. The aim is to deliver a tumoricidal 
dose to the tumor while preserving safe limits of radiation to 
normal liver parenchyma and the lungs.
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ABSTRACT

In some patients undergoing radioembolization, lung toxicity is a limiting factor when calculating their dose. At the 
same time, it is known that the lung shunt fraction (LSF) is overestimated by the mapping exam. Furthermore, there 
are multiple methods to measure LSF. Planar measurement is both the most commonly utilized and easiest to perform, 
however new dosimetry software provides the ability to use more advanced 3D techniques. This paper reviews the 
different LSF calculation methods and elucidates the available data comparing the techniques, clinical relevance, and 
dose calculation.
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Lung shunt is the representation of microparticles movement 
to the normal lung parenchyma secondary to hepatopulmonary 
shunt within the tumor vasculature. The microspheres are trans-
ferred from the arterial to the venous circulation through these 
shunts, become trapped in the lung alveoli, resulting in radiation 
deposition within lung tissue. High levels of radiation dose to the 
lung parenchyma can then induce radiation pneumonitis, a life- 
threatening and irreversible complication. The most commonly 
utilized MLD limits are 30 Gy for a single treatment and 50 Gy as 
a lifetime cumulative dose.7

LUNG DOSIMETRY
There are two major methods to determine the LSF and in turn 
lung dosimetry. In both, the patient proceeds to nuclear medicine 
after the mapping procedure and 99mTc- MAA delivery. While in 
nuclear medicine, they have 2D planar scintigraphy and/or 3D 
single- photon emission computed tomography (SPECT) to visu-
alize particle deposition within the liver, extrahepatic abdominal 
deposition and recording of lung activity. Most patients will have 
a SPECT/CT to determine intrahepatic distribution as well as 
assess the presence of extrahepatic intraabdominal deposition, 
but not necessarily to calculate LSF. Planar scintigraphy is both 
the most commonly utilized and easiest method of calculating an 
LSF. However, advanced dosimetry software and capable scan-
ners provide the ability to utilize 3D SPECT/CT images and there 
associated higher resolution to calculate LSF. Once the nuclear 
images of choice are obtained, the tracer counts in both liver and 
lung are determined by drawing regions of interest (ROI). The 
LSF is then calculated using the following formula:

LSF = (Total lung count) / (Total lung count+Total liver count)

The determined LSF value can then be multiplied with the 
planned quantity of 90Y activity(A) in GBq and a conversion 
factor that 50 Gy of dose is generated in 1 kg of lung tissue 
per 1 GBq, to determine expected MLD (where total lung 
mass(LMTOT) is arbitrarily assumed to be 1 kg)8 :

Mean lung dose

(MLD) = (LSF x A(GBq) x 50 (Gy*kg/ GBq))/ LMTOT (kg)

Planar calculation results in two major inaccuracies. First, the 
determined tracer geometric count hinges on the established 
margins for the ROI for each organ, a task prone to difficulty and 
interoperator variability considering the lack of definite land-
marks on planar imaging.9,10 Additionally, there are differing 
Information for Use (IFU) recommendations between the resin 
Sir- Spheres and glass Theraspheres generally used for 90Y radio-
therapy. The former references utilizing the mean count values 
of ROIs drawn in anterior and posterior images of both lung and 
liver. The latter only advocates for delineating the lung ROI and 
utilizing the total tracer count in the field- of- view as a surrogate 
for the sum of lung and liver tracer count.9 This issue of ROI 
variability is compounded by the poor spatial resolution of γ 
scintigraphy, which is affected by scatter and respiratory motion 

leading to misregistration of liver tracer count within the lung 
ROI at the right lung base. The general outcome of these issues is 
overestimation of LSF.9 Planar techniques have also been shown 
to be affected by location of the liver lesion, for instance lesions 
located in the dome of the liver result in greater LSF overesti-
mation.9,11 Secondly, the arbitrary assumed 1 kg weight for lung 
tissue is likely excessive as recent studies have demonstrated that 
CT- based calculation of lung masses among patients is on average 
800 g.12 A prior study demonstrated that on average the extent of 
overestimated LSF outweighs the extent of overestimated lung 
mass and thus results in a culmination of overestimated MLD.12

The alternative SPECT/CT method theoretically addresses the 
above outlined inaccuracies of planar determination. The SPECT/
CT method utilizes the same formula for LSF determination as 
the planar method however with the benefit that count values 
are based on 3D data/images as opposed to 2D. Utilization of CT 
correlation with SPECT tracer distribution allows for improved 
ease of anatomical segmentation of ROIs between liver and lungs 
as well as improved scatter and attenuation correction resulting 
in generally reduced misattribution of liver tracer count to the 
lungs and more accurate count magnitudes. The available CT 
images also allow for patient- specific determination of lung mass 
toward calculating the absorbed LD. However, SPECT/CT is not 
without potential inaccuracies. One stems from the discrepancy 
between instantaneous acquisition of CT images and prolonged 
SPECT acquisition which can result in misregistration of tracer 
count between organs due to respiration and motion. Similar to 
planar imaging, SPECT/CT is also prone to liver tracer signal at 
the dome leaking into lung base signal however to a lesser degree.

The primary reason for limited utilization of SPECT/CT to 
calculate LSF in most centers is that processing of the 3D data is 
more complex, time- consuming and software platforms are not 
widely available to calculate LSF from SPECT/CT. Also, since the 
initial safety data establishing lung limits were based on planar 
LSF calculation, there is not consensus on if a 30 Gy limit is valid 
for SPECT/CT calculation of LSF.13

A REVIEW OF AVAILABLE EVIDENCE
There has been a longstanding discussion on the topic as planar 
imaging clearly overestimates LSF. This is particularly problem-
atic for cases which require dose reduction or cancelation due to 
high lung doses. The numbers depend on exact ROI demarca-
tions which is operator- dependent so ROIs are prone to a higher 
level of scrutinization in these cases were the clinical impact is 
obvious. Overall, several studies, albeit with the use of phantom 
or retrospectively reviewed data, have demonstrated that LSF 
is overestimated to a greater degree in planar determination 
compared to SPECT/CT.5,10,14–16

A retrospective study from Elsayed et al evaluated LSF using 
planar and SPECT/CT in 293 consecutive patients. Although 
this study did not assess the number of patients who would have 
been eligible for standard dose TARE if SPECT/CT LSF calcu-
lations were used, results showed that mean planar LSF (8.27%) 
was significantly greater than mean SPECT/CT LSF (3.27%).16 
Similar results were found in a prospective study by Dittman et al 
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where 50 patients underwent planar and PET/CT measurements 
for LSF estimation prior to TARE.10 Median LSF obtained using 
planar imaging was 6.8% (range 3.4–32.3%), whereas the mean 
using SPECT/CT was significantly lower (median 1.9%, range 
0.8–15.7; ρ < 0.0001), resulting in planar imaging estimations of 
LSF to be 3.6 times higher than SEPCT/CT estimations. These 
above studies are limited, by the lack of comparison of planar 
LSF and SPECT/CT 99mTc- MAA LSF to the realized LSF as 
measured by post 90Y delivery imaging.

There are many predictive factors for the magnitude of discrep-
ancy between planar LSF to SPECT/CT LSF. Elsayad et al found 
that the absolute discrepancy was greater in patients with tumor 
size≥5 cm, those with a worse Child- Pugh score (B/C), and a 
planar LSF≥20%.16 Additionally, a retrospective study by Struy-
cken et al found SPECT LSF determination to result in signifi-
cantly reduced mean LSF compared to planar when evaluating 
36 patients with planar LSF greater than 15% (25.1%±11.6 vs 
16.0±9.3% (ρ < 0.001)).15 Higher values were also obtained for 
MLD and mean perfused liver dose using planar LSF when 
compared with SPECT/CT LSF. BMI ≥ 26, tumor size of <9 
cm, and left hepatic arterial injection were identified as factors 
resulting in a greater discrepancy between planar LSF and 
SPECT/CT LSF.

When comparing LSF using planar and SPECT/CT imaging to 
the gold standard of post- delivery 90Y LSF, several phantom and 
retrospective studies have demonstrated that LSF using SPECT/
CT imaging is more accurate than planar determination. In a 
phantom study designed by Kunnen et al., investigators used 
90Y chloride to achieve an LSF of 15% and calculated LSF using 
PET/CT, SPECT/CT and planar imaging.17 Planar scintigraphy 
overestimated LSF by up to 23%. PET was found to be accurate 
only when the total activity was >200 MBq and widely overesti-
mated LSF (up to 25%) with lower activities of 90Y. Bremsstrah-
lung SPECT overestimated LSF by up to 13% at low as well as 
high activities; SPECT using Monte Carlo (MC)- based recon-
struction method accurately estimated LSF up to 1.3% even at 
low 90Y activities.17 These results are similar to another phantom 
study by Allred et al. In this phantom study, a 99mTc- filled liver/
lung phantom utilized to obtain three different shunt values 
was evaluated using planar and SPECT/CT imaging. SPECT/
CT resulted in a more accurate LSF estimation within 13% of 
true value, whereas planar scintigraphy resulted in up to 44% 
overestimation.5

Two retrospective patient studies have also investigated the 
accuracy of planar LSF and SPECT/CT LSF to the realized post 
90Y delivery LSF. In addition to the phantom study, Allred et al 
compared planar and SPECT/CT LSF values among 40 patients, 
demonstrating significant overestimation with planar imaging.5 
Delay in scanning did not result in significant change in LSF 
values, but the likelihood of extra hepatic uptake increased in 
patients with a longer delay. In a subset of 28 patients, LSF values 
were compared using 90Y PET/CT- based measurements. The 90Y 
PET/CT LSF values (mean 1%, range 0.3–2.8) were similar to 
SPECT/CT (mean 1%, range 0.4–1.6; ρ = 0.968) measurements 
with AC (Attenuation Correction) and SC (Scatter Correction), 

but were significantly lower compared to those obtained by 
planar imaging (mean 4.1%, range 1.2–15.0, ρ = 0.0002).5

In addition to LSF, planar imaging also has been found to over-
estimate MLD and lung mass. Lopez et al compared planar LSF 
(which presumes lung mass of 1 kg) with LSF measured using 
SPECT/CT and patient specific lung mass calculated via chest 
CT in 52 consecutive patients.12 The authors found the calcu-
lated lung mass, LSF and MLD were significantly lower when 
compared to measurements using planar imaging, with rela-
tive mean (±SD) differences of 20% (±16%) for lung mass, 63% 
(±15%) for LSF and 53% (±23%) for MLD. The estimated 1- sigma 
uncertainties (measurement errors) for lung mass, LSF and LMD 
were 9%, 10%, and 13%, respectively.12 This new model of using 
SPECT/CT imaging proposed by Lopez et al for calculating LSF 
and MLD holds clinical significance in treatment planning for 
90Y radioembolization procedures.

Other studies have also shown that planar LSF overestimation 
has clinical impact by resulting in unnecessary dose reductions 
and cancelation of 90Y radioembolization due to high lung doses. 
In the 36 patients retrospectively evaluated by Struycken et al, 14 
had >20% planar LSF. Among these 14 patients, five patients had 
<20% SPECT/CT LSF and would have been eligible for upfront 
TARE. Similarly, seven (7/29, 24.1%) patients underwent dose 
reductions based on planar LSF; six of these could have received 
standard radioembolization dose if SPECT/CT LSF were utilized 
to guide management.15 The study is limited, although, by the 
fact that comparison to the gold standard, post- delivery 90Y 
LSF and the definition of cancelation at>20% LSF or reduction 
at >10% LSF, is not consistent with modern practice. Similarly, 
in the prospective study by Dittman et al, 10 patients (10/50, 
20%) had planar LSF estimates of ≥10% with 2 of the 10 (20%) 
patients showing planar LSF >20%, however, only the 2 patients 
with planar LSF >20% were found to have SPECT/CT LSF >10%. 
Dose reduction or contraindication to TARE would have been 
required in 20% patients (10/50) on the basis of planar imaging, 
but only in 4% (2/50) of patients if SPECT/CT LSF was consid-
ered.10 The use of 20 or 10% instead of 30 Gy per treatment again 
limits this study, however.

It is important to note that timing of administration of the 
99mTc- MAA relative to the imaging acquisition can impact LSF 
determination in both planar and SPECT/CT methods. It has 
been demonstrated that prolonged duration between the latter 
and former may lead to marked degradation of tracer univer-
sally and with an overall effect of overestimation of LSF.18 An 
additional disadvantage common to MLD determination stems 
from the difference in size range between the 99mTc- MAA parti-
cles and the radioactive 90Y microspheres, as the 99mTc- MAA 
are smaller, thus resulting in a potentially altered biodistribu-
tion.19This discrepancy was studied by Elschot et al who demon-
strated lower and more accurate MLD values obtained during 
planning with institutionally developed Ho microspheres, more 
closely resembling 90Y microsphere size, relative to MAA MLD 
determination when evaluated against post- treatment Ho- mi-
crosphere dose.19 Of course, pre- planning treatment MLD deter-
mination with 90Y particle would be ideal considering it is the 
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particle widely used for radiotherapy delivery. However currently 
90Y bremsstrahlung SPECT and PET at doses considered safe for 
planning are of poor image quality and low positron emission 
activity, respectively, contributing to potential inaccuracies of the 
calculated LD with these methods.19

CLINICAL SIGNIFICANCE
Evidence demonstrates that tumor necrosis following 90Y TARE 
is contingent on sufficient tumor dose delivery20,21; Vouche et 
al first demonstrated a significantly increased rate of complete 
pathological necrosis at tumor doses exceeding 190 Gy20,22 
potentially improving tumor control, survival benefits and 
successful bridging to transplant. With the advent of improved 
liver dosimetry methods which allow for the confident delivery 
of greater treatment dosages, the impact of inaccurate/overes-
timated LSF becomes more relevant as it may be the limiting 
factor in overall dosage ultimately delivered.23,24 The current 

recommendations warn against exceeding LSF of 20%, single 
MLD of 30 Gy and cumulative MLD of 50 Gy for the prevention 
of radiation pneumonitis.25 Although this recommendation 
incorrectly assumes uniform dose distribution to the lung and 
is brought into question by evidence in the literature, such as 
a study of 58 patients who exceeded an MLD of 30 Gy and did 
not develop radiation pneumonitis,26,27 clinicians are undoubt-
edly influenced by the proposed current limit. Thus, an overes-
timated LSF can negatively influence dose delivery to a patient 
per session and limit the number of overall sessions, with poten-
tially far- reaching consequences in terms of survival. Thus due 
to the relatively improved accuracy of SPECT/CT over Planar 
determination of LSF, it becomes advisable to utilize the former 
method in high LSF cases to optimize radiotherapy delivery. 
Future prospective studies are needed to investigate the effect 
of LSF determination method on radiation dose delivery and 
survival outcomes.
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