Skip to main content
. 2022 Dec 27;17:145. doi: 10.1186/s13020-022-00699-0

Table 1.

Synthetic methods of dicoumarols using different types of catalystsgraphic file with name 13020_2022_699_Stra_HTML.jpg

Type of catalyst Catalyst Conditions Dicoumarol derivatives R (yields) Refs.
Lewis acids I2 I2 (10 mol%), H2O, 100 °C, 1 atm, 20–34 h

Ph (97%), 2-HOC6H4 (98%)

3-O2NC6H4 (94%), 4-ClC6H4 (93%)

4-O2NC6H4 (95%), 4-HOC6H4 (98%)

4-MeOC6H4 (99%), –CH–CH–C6H4 (92%)

Furan-2-yl (93%), thiophen-2-yl (91%)

Indol-3-yl (95%), 3,4-piperonyl (96%)

[45]
MnCl2 MnCl2 (10 mol%), H2O, 100 °C, 20–40 min

MeCH=CH– (95%), Ph (99%)

2-HOC6H4 (93%), 4-ClC6H4 (99%)

4-HOC6H4 (95%), 4-MeOC6H4 (97%)

4-O2NC6H4 (99%), furan-2-yl (96%) thiophen-2-yl (95%), indol-2-yl (94%)

[46]
Zn(Proline)2 Zn(Proline)2 (5 mol%), H2O, reflux, 5–9 min

Ph (92%), 2-ClC6H4 (96%)

2-HOC6H4 (92%), 3-O2NC6H4 (93%)

4-ClC6H4 (94%), 4-HOC6H4 (96%)

3-MeO-4-HOC6H3 (91%)

thiophen-2-yl (93%)

5-Me-thiophen-2-yl (92%)

pyridin-4-yl (91%)

[47]
InCl3 InCl3 (10 mol%), H2O, MW, 110 °C, 15–20 min

Ph (92%), 4-ClC6H4 (91%), 4-FC6H4 (93%) 4-HOC6H4 (90%), 4-MeC6H4 (85%)

4-MeOC6H4 (87%), 4-O2NC6H4 (96%)

4-HO-3-MeOC6H3 (89%)

3,4-(HO)2C6H3 (85%)

4-HO-3,5-(MeO)2C6H2 (86%)

[48]
Lewis and Bronsted acids Sulfated titaniaa (TiO2/SO42−) (TiO2/SO42−) (15%), H2O, 80 ºC, 12–30 min

H (95%), Et (88%), Ph (92%), Pr (90%)

iPr (90%), Me-CH=CH– (92%)

2-HOC6H4 (95%), 2-MeOC6H4 (85%)

2-O2NC6H4 (90%), 3-BrC6H4 (91%)

3-ClC6H4 (92%), 3-HOC6H4 (84%)

3-MeOC6H4 (88%), 3-O2NC6H4 (90%)

4-BrC6H4 (94%), 4-ClC6H4 (96%)

4-HOC6H4 (96%), 4-MeC6H4 (89%)

4-MeOC6H4 (92%), 4-O2NC6H4 (88%)

4-OH-3-MeOC6H3 (89%)

3-OH-4-MeOC6H3 (85%)

3,4-(MeO)2C6H3 (90%)

3,4,5-(MeO)3C6H2 (94%)

4-BnO-3-MeOC6H2 (82%)

4-CNC6H4 (96%), 4-Me2NC6H4 (89%)

Ph-CH=CH– (86%), naphthalen-1-yl (85%)

Furan-2-yl (90%)

[49]
Inorganic acid salts B(HSO4)3 B(HSO4)3 (0.3 equiv) (1:1, H2O–EtOH), 70 °C, 3–6 min

Ph (86%), 3-MeOC6H4 (81%)

3-O2NC6H4 (82%), 4-BrC6H4 (95%)

4-ClC6H4 (92%), 4-NCC6H4 (86%)

4-FC6H4 (88%), 4-MeC6H4 (87%)

4-MeOC6H4 (83%), 4-O2NC6H4 (98%)

4-Cl-3-O2NC6H3 (88%)

[50]
Transition metals salts RuCl3·nH2O RuCl3·nH2O (5 mol%), H2O, 80 °C, 25–35 min

Et (75%), Ph (84%), 4-ClC6H4 (85%)

4-NCC6H4 (95%), 4-MeOC6H4 (92%)

3-(PhO)-C6H4 (90%), 2-Cl-6-FC6H3 (92%)

3,4-(F2)C6H3 (90%)

2-HO-3-MeOC6H3 (84%)

3,4-(MeO)2C6H3 (84%), indol-3-yl (90%)

2-O2NC6H4CH=CH– (90%)

[51]
Ionic liquids [bmim]BF4

[bmim]BF4 (4 equiv)

60–70 °C, 2–3 h

Ph (84%), 3-ClC6H4 (84%)

4-BrC6H4 (87%), 4-ClC6H4 (91%)

4-MeC6H4 (83%), 4-MeOC6H4 (87%)

4-O2NC6H4 (84%), Me2CH– (77%)

Ph-CH=CH– (82%), furan-2-yl (83%) pyridin-2-yl (81%)

[52]
SO3H-functionalized ILs based on benzimidazolium cation [PSebim][OTf]b (10 mol%), 70 °C, 2–3 h

Ph (95%), 3-BrC6H4 (94%)

3-ClC6H4 (94%), 4-BrC6H4 (95%)

4-ClC6H4 (96%), 4-MeC6H4 (93%)

4-MeOC6H4 (93%), 4-O2NC6H4 (96%)

4-(H2C=CH2)C6H4 (92%)

[53]
[MIM(CH2)4SO3H][HSO4] [MIM(CH2)4SO3H] [HSO4] (15 mol%), 80 °C, 18–30 min

Ph (92%), 2-ClC6H4 (88%)

2-O2NC6H4 (86%), 3-ClC6H4 (89%)

3-O2NC6H4 (89%), 4-ClC6H4 (93%)

4-MeC6H4 (90%), 4-MeOC6H4 (89%)

4-O2NC6H4 (96%)

[54]
Tetramethyl guanidium acetate ([TMG][Ac]) [TMG][Ac] (0.75 mmol), rt, 0.5–4.5 h

Ph (96%), 2-HOC6H4 (90%)

2-O2NC6H4 (92%), 3-O2NC6H4 (87%)

4-BrC6H4 (96%), 4-ClC6H4 (88%)

4-FC6H4 (93%), 4-F3CC6H4 (91%)

4-MeC6H4 (90%), 4-MeOC6H4 (86%)

4-O2NC6H4 (99%), pyridin-4-yl (87%)

Inline graphic3-MeO-4-HOC6H3 (84%), furan-2-yl (95%)

(98%)

[55]
Choline hydroxide ChOH (40%)c, 50 °C, 1–3 h

H (quantitative), Ph (99%)

2-HOC6H4 (99%), 2-O2NC6H4 (75%)

3-O2NC6H4 (93%), 4-BrC6H4 (94%)

4-ClC6H4 (99%), 4-FC6H4 (99%)

4-F3CC6H4 (96%), 4-HOC6H4 (94%)

4-MeC6H4 (94%), 4-MeOC6H4 (95%)

4-HO-3-MeOC6H3 (93%), furan-2-yl (98%)

Inline graphic4-O2NC6H4 (89%), pyridin-4-yl (81%) (95%)

[56]
[P4VPy-BuSO3H]Cl-X(AlCl3)d IL (0.07 mmol), toluene, 90 °C, 0.5–0.9 h

Ph (95%), 2-HOC6H4 (90%)

3-ClC6H4 (96%), 3-O2NC6H4 (96%)

4-ClC6H4 (93%), 4-MeC6H4 (94%)

4-MeOC6H4 (92%), 4-HOC6H4 (90%)

4-O2NC6H4 (96%), furan-2-yl (91%)

Thiophen-2-yl (91%), pyridin-2-yl (91%) Ph–CH2–CH2 (92%), CH3CH2CH2– (92%) Ph-CH=CH– (93%)

[57]
[Dabco-H][AcO] [Dabco-H][AcO] (10 mol%), H2O, 80 °C, 2–15 min

n-Pr (99%), Ph (98%), 2-BrC6H4 (98%)

3-BrC6H4 (98%), 4-BrC6H4 (99%)

4-ClC6H4 (99%), 4-MeC6H4 (96%)

4-MeOC6H4 (98%), 4-O2NC6H4 (99%)

2,4-Cl2C6H3 (96%), naphthalen-2-yl (99%) thiophen-2-yl (98%), furan-2-yl (98%)

[58]
Hnmp/ZnCl3 (Hnmp/ZnCl3) (20 mg), 100 °C, 30–50 min

Ph (97%), 3-ClC6H4 (86%)

3-MeOC6H4 (90%), 3-O2NC6H4 (81%)

4-ClC6H4 (90%), 4-HOC6H4 (81%)

4-MeC6H4 (88%), 4-MeOC6H4 (93%)

4-O2NC6H4 (86%), 2,4-(MeO)2C6H3 (78%) pyridin-4-yl (90%)

[59]
Heteropoly acids (HPAs) Phosphotungstic acid HPA (15 mmol%), H2O, 80 °C, 14–25 min

Ph (93%), 2-ClC6H4 (95%)

2-HOC6H4 (98%), 2-O2NC6H4 (96%)

3-O2NC6H4 (94%), 4-ClC6H4 (93%)

4-FC6H5 (98%), 4-HOC6H4 (98%)

4-MeOC6H4 (99%), 4-O2NC6H4 (95%)

2,4-Cl2C6H3 (92%), 2,6-Cl2C6H3 (98%)

–CH=CH–C6H4 (98%), 3,4-piperonyl (96%)

Indol-3-yl (95%), thiophen-2-yl (91%)

Furan-2-yl (93%), 4-F3CC6H4 (98%)

4-Me2C6H3 (90%), 3,4-(MeO)2C6H3 (90%)

[60]
Phase transfer catalysts and surfactants Tetrabutyl ammonium bromide (TBAB)e,f TBAB (10 mol%), H2O, 100 °C

Ph (92%), 3-ClC6H4 (87%)

4-BrC6H4 (88%), 4-ClC6H4 (95%)

4-MeC6H4 (92%), 4-MeOC6H4 (84%)

4-O2NC6H4 (91%), Ph–CH=CH– (82%)

3,4-(MeO)2C6H3 (87%), Me2CH– (82%)

3,4,5-(MeO)3C6H2 (84%), piperonyl (88%) furan-2-yl (88%), pyridin-2-yl (90%)

4-(Me)2CHC6H4 (91%)

[61]
Sodium dodecyl sulfate (SDS) SDS (20 mol%), H2O, 60 °C, 2.30–3.0 h

Ph (90%), 2-MeC6H4 (84%)

3-ClC6H4 (92%), 3-O2NC6H4 (95%)

4-BrC6H4 (91%), 4-ClC6H4 (93%)

4-FC6H4 (94%), 4-MeC6H4 (97%)

4-(Me)2NC6H4 (94%), 4-MeOC6H4 (97%) 4-O2NC6H4 (98%), 3,4-(MeO)2C6H3 (98%)

[62]
Modified glycerols Propane-1,2,3-triyl tris(hydrogen sulfate) (PTTH) PTTH (0.03 mol%), 80 °C, H2O, 7–10 ming or solvent-free, 5–8 min

H (80%), Ph (90%), 2-ClC6H4 (85%)

3-O2NC6H4 (95%), 4-ClC6H4 (90%)

4-HOC6H4 (85%), 4-MeC6H4 (90%)

4-MeOC6H4 (85%), 4-O2NC6H4 (95%)

3,4-(MeO)2C6H3 (85%), Ph-CH=CH– (85%) furan-2-yl (80%)

[63]

aThe catalyst possesses as many Lewis acid sites as Bronsted acid sites. The superacidity is due to the Bronsted acidic hydroxy groups attached to Ti atom, being generated by interaction with water. The acidity is enhanced by the generation of Lewis acid sites due to—I effect exerted by attached SO42− ions to Ti atoms. These factors promote the overall reaction by activating the aldehydes and the Michael acceptor

b[PSebim][OTf]=1-ethyl-3-(3-sulfopropyl)-benzimidazolium trifluoromethanesulfonate

cAmount of catalyst is 1.5 equiv. relative to the aldehyde

d[P4VPy-BuSO3H]Cl-X(AlCl3) is poly(4-vinylpyridine-co-1-sulfonic acid butyl-4-vinylpyridinium)chloroaluminate, a supported ionic liquid with both Lewis and Brønsted acid sites

eThis catalyst was also used in the synthesis of dicoumarol derivatives under solvent-free conditions. The reaction times were slightly shortened in neat conditions, and the yields were also slightly lower

fTBAF was found to be equally effective as catalyst

gYields for the reaction in water indicated in the table