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Abstract

We consider spatially dependent functional data collected under a geostatistics setting, where

locations are sampled from a spatial point process. The functional response is the sum of

a spatially dependent functional effect and a spatially independent functional nugget effect.

Observations on each function are made on discrete time points and contaminated with

measurement errors. Under the assumption of spatial stationarity and isotropy, we propose a tensor

product spline estimator for the spatio-temporal covariance function. When a coregionalization

covariance structure is further assumed, we propose a new functional principal component analysis

method that borrows information from neighboring functions. The proposed method also generates

nonparametric estimators for the spatial covariance functions, which can be used for functional

kriging. Under a unified framework for sparse and dense functional data, infill and increasing

domain asymptotic paradigms, we develop the asymptotic convergence rates for the proposed

estimators. Advantages of the proposed approach are demonstrated through simulation studies and

two real data applications representing sparse and dense functional data, respectively.
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1 Introduction

1.1 Literature review

Modern technology and data collection methods produce massive data with repeated

measurements over time and space, thus give rise to functional data (Ramsay and Silverman,

2005; Horváth and Kokoszka, 2012; Kokoszka and Reimherr, 2017). In many applications,

functional data collected at different times or locations are naturally correlated. There have

been a lot of recent theory and methodology developments for dependent functional data,
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including multi-level functional data (Crainiceanu et al., 2009; Xu et al., 2018), functional

time series (Hörmann and Kokoszka, 2010; Aue et al., 2015), and spatially dependent

functional data (Staicu et al., 2010; Zhou et al., 2010; Gromenko et al., 2012; Zhang et al.,

2016; Kuenzer et al., 2020; Liang et al., 2020). There has also been some work on modeling

spatio-temporal point process data using a functional data approach (Li and Guan, 2014).

Functional data are commonly viewed as infinite dimensional random vectors in a Hilbert

space, and dimension reduction is crucial for visualization, interpretation and inference on

these data (Hsing and Eubank, 2015). There has been a lot of methodological and theoretical

developments on dimension reduction for independent data using the functional principal

component analysis (FPCA) (Yao et al., 2005; Hall et al., 2006; Li and Hsing, 2010).

The functional principal component scores are also widely used as predictors in linear or

nonlinear regression models to predict other variables of interest (Cai and Hall, 2006; Wong

et al., 2019).

There has also been some work on FPCA on spatially dependent functional data. Hörmann

and Kokoszka (2013) provide some theoretical justification on spatial FPCA, assuming

the functions are fully observed. In practice, however, functional data are often observed

on discrete time points and the measurements are contaminated with errors. Based on

the number of observations on each curve, functional data are traditionally classified as

sparse functional data (Yao et al., 2005) and dense functional data (Hall et al., 2006). For

independent functional data, it is known that the convergence rates for various functional

estimators (such as the mean, covariance and principal components) are different under

different sampling schemes. Wang et al. (2018) show that nonparametric hypothesis tests

have different properties under sparse and dense functional data, in terms of asymptotic null

distribution and power. However, sparse and dense functional data are asymptotic concepts,

which are not clearly defined in any practical contexts. A lot of recent research efforts were

focused on developing unified estimation and inference strategies for all types of functional

data (Li and Hsing, 2010; Zhang and Wang, 2016; Wang et al., 2018). No such results yet

exist for spatially dependent functional data.

There is also a large volume of recent literature on spatial and spatio-temporal data analysis

which is relevant to our work, see the textbooks of Cressie (1993); Banerjee et al. (2004);

Schabenberger and Gotway (2017); Cressie and Wikle (2015) for comprehensive accounts of

this area. Some recent work also include Lu et al. (2009); Lu and Tjøstheim (2014); Kuusela

and Stein (2018); Al-Sulami et al. (2017); AL-SULAMI et al. (2019); Jiang et al. (2020),

just to name a few.

1.2 Motivating data examples

Our work is motivated by two real data examples from business applications, representing

sparse and dense spatially dependent functional data, respectively.

Example 1: sparse functional data on London house price. The data are public records of

home sales from the UK government website (https://www.gov.uk/government). The dataset

includes all houses with at least 5 transactions between Jan 1, 1995 and Dec 31, 2018 in

the Greater London Area. Each transaction record contains information on the price, date,
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and property address. Exact locations, including longitudes and latitudes, of the houses are

obtained by searches of the property addresses on Google Map API. The house locations are

shown in Panel (a) of Figure 1.

The value of a house changes continuously over time, the trajectory of which we model as

functional data. However, the value is measured by the market only when a sale is made,

and the number of sale transactions per house ranges between 5 and 12. The house price

trajectories are shown in Panel (b) of Figure 1. As we can see, the transaction times are

sparse, irregular and house-specific.

Example 2: dense functional data from Zillow Real Estate. Zillow (https://

www.zillow.com/research) publishes real estate data for research purposes for all major

cities in the US. Our variable of interest is the “home price-to-rent ratio”, defined as the

ratio of residential real estate price to the annual rent, which has attracted broad interests

in economics and social sciences (Campbell et al., 2009; Kishor and Morley, 2015). It has

strong relationships with market fundamentals, and has been widely used as an indicator

for housing market bubbles. This variable is updated monthly for geographical units called

“neighborhoods” defined by Zillow.

The dataset we analyze consists of monthly median price-to-rent ratios from 234

neighborhoods in the San Francisco Bay Area from October 2010 to August 2018, with

95 observations on each curve at a missing rate of 1.48%. Figure 2 illustrates the geographic

locations of these neighborhoods and their price-to-rent ratio trajectories.

1.3 Our contributions

We propose a unified FPCA method that is applicable to both sparse and dense functional

data collected under a geostatistics setting, where locations are sampled from a spatial point

process. We assume that the trajectory of a random function is determined by two effects:

a temporal process that is spatially correlated with neighboring functions and a location-

specific random process independent from neighbors. The location-specific random process

is also interpreted as the “nugget” effect following classic geostatistics literature(Cressie,

1993). Observations on each function are made on discrete time points and contaminated

with measurement errors. Under the assumption of spatial stationarity and isotropy, we

propose a tensor product spline estimator for the spatio-temporal covariance function. If a

coregionalization covariance structure (Banerjee et al., 2004; Gelfand et al., 2004) is further

assumed, we propose a new FPCA method that borrows information from neighboring

functions. Byproducts of our approach also include nonparametric estimators for the spatial

covariance functions of the principal component scores. Under a unified framework that

combines both infill and increasing domain asymptotic paradigms, we develop unified

asymptotic convergence rates for the proposed estimators which demonstrate a phase

transition from sparse to dense functional data.

The rest of the paper is organized as follows. We introduce the model and framework

in Section 2, propose our estimation procedure in Section 3, and investigate the

theoretical properties of the proposed estimators in Section 4. We address some important

implementation issues in Section 5 and further extend our method for functional kriging
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in Section 6. Numerical performance of the proposed methods is illustrated by simulation

studies in Section 7, where we also show existing methods ignoring the functional nugget

effect can lead to biased results. We analyze the two motivating data examples in Section

8 and provide concluding remarks in Section 9. Technical proofs of the main theorems

and additional figures from our numerical studies are collected in the online Supplementary

Material.

2 Model and assumptions

2.1 Random field modeling for spatially dependent functional data

Suppose random functions of time defined on a time domain T are sampled from locations

in a spatial domain Dn ⊆ ℝ2. Let Yij = Y(si, tij) be the discrete observation at time tij on

the random curve sampled at spatial location si, i = 1, …, N, j = 1, …, Mi, and assume the

following model

Y (si, tij) = X(si, tij) + Ui(tij) + ϵij, (1)

where X(·,·) is a spatio-temporal process on Dn × T  representing a spatially correlated

functional effect, {Ui(·)} are zero-mean, independent temporal processes called the

functional nugget effects, and {ϵij} are the independent measurement errors with E(ϵij) = 0

and var(ϵij) = σϵ2. The functional nugget effects Ui(·) characterize local variations that are not

correlated with neighboring functions, with the covariance function denoted by Λ(t1, t2) =

cov{U(t1),U(t2)}. The three model components X(·,·), U(·) and ϵ are mutually independent.

Assuming that the spatial dependency is second-order stationary and isotropic, the general

covariance function of X(s,t) can be written as

R(‖ s1 − s2 ‖, t1, t2) = cov{X(s1, t1), X(s2, t2)}, (2)

for any (s1, t2), (s2, t2) ∈ Dn × T . We consider Xs(t) = X(s,t) as spatial replicates of a temporal

process with a standard Karhunen-Loève expansion

Xs(t) = μ(t) + ∑
j = 1

∞
ξj(s)ψj(t), (3)

where μ(t) = E{Xs(t)} is the mean function, ψj(·)'s are orthonormal functions known as the

principal components, and the principal component score ξj(s) = ʃT {X(s, t)−μ(t)}ψj(t)dt
is the loading of X(s, t) on the jth principal component. We assume (ξj(s)} are zero-mean,

second-order stationary and isotropic random fields, that are uncorrelated across different j.
Spatial dependence among the function data is induced by the dependence within each ξj(s).

Denote the spatial covariance function of ξj(s) as Cj(‖ s1 − s2 ‖) = cov{ξj(s1), ξj(s2)}, for any

s1, s2 ∈ Dn, then the covariance function for X(s, t) can be written as
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R(‖ s1 − s2 ‖, t1, t2) = cov ∑
j = 1

∞
ξj(s1)ψj(t1), ∑

j = 1

∞
ξj(s2)ψj(t2)

= ∑
j = 1

∞
Cj(‖ s1 − s2 ‖)ψj(t1)ψj(t2) .

(4)

Denote ϖj = Cj(0) as the marginal variance for ξj(s), and assume the principal components

are ordered according to their magnitudes such that ϖ1 ≥ ϖ2 ≥ ⋯ > 0. It is easy to see

that ϖj’s and ψj(·)’s are the eigenvalues and eigenfunctions of the covariance function

R(0,·,·), which reveals an important connection between our model and classic models for

independent functional data. The functional nugget effect Ui(·), on the other hand, may have

an entirely different covariance structure with different eigenvalues and eigenfunctions.

In many applications, including the two real data examples in Section 1, we are interested

in the temporal processes defined on some spatially distributed entities, e.g. houses. These

entities may not exist on all locations, and the random field framework is a tool of choice

to describe the spatial dependence. Model (3) is also analogous to recent developments in

factor models for high dimensional multivariate time series (Fan et al., 2018) in the sense

that ξj(s) can be considered as latent factors that govern the dynamics of the temporal

process Xs(t) and provides reduced rank representations of these temporal processes. In

some applications, the latent factors ξj(s) are of interest and can used as predictors in a

second stage regression analysis (Wong et al., 2019). Similar FPC expansion as (3) was also

promoted by Horváth and Kokoszka (2012) for spatially dependent functional data, who

argued that, even if stationarity in space is mildly violated, the mean and eigenfunctions

still provide meaningful marginal summary statistics for the data. By allowing different

orders of FPC score to have different spatial covariances, covariance function (4) is a

“coregionalization” model (Banerjee et al., 2004; Gelfand et al., 2004), which is the sum of

many separable spatio-temporal covariance functions, and it reduces to a separable structure

if Cj( ⋅ ) = ϖjρ( ⋅ ) for all j.

2.2 Sampling scheme for spatial locations and observation times

As illustrated by the two examples in Section 1, the spatial locations {si} are often irregular

and random, and can be best described by a spatial point process Ns( ⋅ ). The simplest spatial

point process is the inhomogeneous Poisson process, where given the total number the

locations are independent and identically distributed. A point process can be used to describe

more complicated location patterns, such as clustered or regular patterns (Cressie, 1993).

The correlation between locations are described by the higher-order intensity functions.

For any location s, let ds be a small neighborhood around s, and denote ∣ds∣ as the area of

ds and Ns(ds) as the number of locations sampled in ds. The k-th order intensity function of

Ns( ⋅ ) is defined as (Cressie, 1993)
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λs, k(s1, …, sk) = lim
∣ dsr ∣ 0,
r = 1, …, k

E Ns(ds1)…Ns(dsk)
∣ ds1 ∣ … ∣ dsk ∣ ,

(5)

and we assume Ns has up to the 4th order intensity function well defined. The collection

of observation time points on Y(s,·) is a realization of a temporal point process Nt(dt ∣ s).
Assume that temporal point processes at different locations are independent and identically

distributed. Denote the first and second intensity functions of Nt( ⋅ ∣ s) as

λt, 1(t) = lim
∣ dt ∣ 0

ENt(dt ∣ s)
∣ dt ∣ , λt, 2(t1, t2)

= lim
∣ dt1 ∣ , ∣ dt2 ∣ 0

E Nt(dt1 ∣ s)Nt(dt2 ∣ s)
∣ dt1 ∣ ∣ dt2 ∣ ,

(6)

which are independent of Ns(ds). This setting also implies that the number of repeated

measures on Y(si,·) is a random variable Mi ≔ ∫T Nt(dt ∣ si)dt. We can also define the joint

point process for sampling locations and times as N(ds, dt) = Ns(ds)Nt(dt ∣ s).

As further discussed in Section 4, we do not require Ns( ⋅ ) or Nt( ⋅ ∣ s) to be stationary, but

rather need the intensity functions of these point processes to be bounded from zero so that

we have a positive chance to sample from any location and time. By allowing the intensity

functions, λs,k(t) and λt,k(t), to diverge to infinity, we also allow the “infill” paradigm: the

number of sampled locations in unit space and the number of measurements in unit time are

allowed to diverge to infinity.

3 Estimation method

We now propose nonparametric estimators for various model components described in

Section 2, where the core issue is estimating the spatio-temporal covariance function R(·,·,·)

in (2). We then use the estimated covariance function to further derive estimators for the

principal components ψj(·) and spatial covariance functions Cj( ⋅ ), which are of fundamental

importance to dimension reduction and understanding the spatial dependence. We will also

estimate the covariance function Λ(·,·) for the functional nugget effect and the variance of

the measurement error σϵ2, which will be further used in the functional kriging.

3.1 Estimation of the spatio-temporal covariance function

For ease of exposition, we assume μ(t) ≡ 0 for Sections 3 and 4. In practice, one can

estimate μ(t) using the smoothing method described in Section 5, center the response as

Y (si, tij) = Y (si, tij) − μ(tij), and then the rest of our methods and theory still apply.

We will only estimate R(u,·,·) up to a pre-determined spatial distance Δ > 0. As pointed

out by many authors (Hall et al., 1994; Li et al., 2007), spatial dependency usually decays

to zero beyond certain distance; the spatial covariance estimator at a large spatial lag tends

to be highly variable, consisting of more noise than signal. To determine Δ, one needs
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to get a rough estimate for the range of spatial dependency based on a pilot study, for

example using the nonparametric method in Li et al. (2007) based on a more stringent

separable spatio-temporal covariance structure. We consider R(u, t1, t2) as a function over

a 3-dimensional domain H ≔ [0,Δ]×T×T, and propose to estimate it using 3-dimensional

tensor product B-splines. For independent functional data, many nonparametric smoothing

methods have been proposed to estimate the covariance function, including kernel methods

(Yao et al., 2005; Li and Hsing, 2010) and penalized splines (Xiao et al., 2013). In this

paper, we focus on tensor product regression spline methods for their computational merits

(Huang and Yang, 2004), but our methods and theory can be naturally extended to other

smoothers.

Without loss of generality, assume T = [0,1]. Let

BT (t) = {B1, Kt
pt (t), B2, Kt

pt (t), …, BKt + pt, Kt
pt (t)}T be a vector of normalized B-spline functions

(de Boor, 2001; Huang and Yang, 2004) of order pt, defined on time domain T with equally

spaced interior knots κj = j / (Kt + 1), j = 1,…, Kt, and denote the corresponding spline

space as SKt
pt [0, 1]. Similarly, let BS(u) = {B1, Ks

ps (u), B2, Ks
ps (u), …, BKs + ps, Ks

ps (u)}T be a vector

of B-spline basis functions on [0,Δ] with equally spaced interior knots, where the order

ps and number of knots Ks can be different from pt and Kt allowing different amount of

smoothing in spatial and temporal directions. The assumption of knots being equally spaced

is for ease of theoretical derivations, but can be relaxed in practice. Denote the spline

space spanned by Bs(u) as SKs
ps [0, Δ]. Then the 3-dimensional tensor product spline space

is defined as S[3] ≡ SKs
ps [0, Δ] ⊗ SKt

pt [0, 1] ⊗ SKt
pt [0, 1], which is spanned by basis functions

Bj1j2j3(u, t1, t2) = Bj1, Ks
ps (u)Bj2, Kt

pt (t1)Bj3, Kt
pt (t2). Pool the tensor product spline basis functions

into a vector B[3](u, t1, t2) = BS(u)⊗BT(t1)⊗BT(t2), where ⊗ is the Kronecker product.

Define Ns, 2(ds1, ds2) ≔ Ns(ds1)Ns(ds2)I(s1 ≠ s2), and the tensor product spline estimator of

the spatio-temporal covariance function is

R( ⋅ , ⋅ , ⋅ ) = argmin
g( ⋅ , ⋅ , ⋅ ) ∈ S[3]

∫Dn
∫Dn

∫
T
∫

T
Y (s1, t1)Y (s2, t2) − g(‖ s1 − s2 ‖, t1, t2) 2

× I(‖ s1 − s2 ‖ ≤ Δ)Nt(dt1 ∣ s1)Nt(dt2 ∣ s2)Ns, 2(ds1, ds2
),

(7)

where I(·) is the indicator function. The estimator above can be equivalently written as

R(u, t1, t2) = B[3]
T (u, t1, t2)β, where β minimizes

ℒ(β) = ∑
i = 1

N
∑ i′ ≠ i

‖si − si′‖ ≤ Δ ∑
j = 1

Mi
∑

j′ = 1

Mi′
Y ijY i′j′ − B[3]

T ‖ si − si′ ‖, tij, ti′j′ β 2 . (8)

The numbers of knots Ks and Kt decide the amount of smoothing and can be selected by

data-driven methods described in Section 5.
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3.2 Estimation of the functional principal components

When the coregionalization structure in (4) is assumed, define

Ω(t1, t2) ≔ ∫
0

Δ
R(u, t1, t2)W(u)du = ∑

j = 1

∞
ωjψj(t1)ψj(t2), (9)

where W( ⋅ ) ∈ L2 is a non-negative and bounded weight function and ωj = ∫0
ΔCj(u)W(u)du.

For all numerical studies in this paper, we use a simple weight function W(u) ≡ 1 for u
∈[0,Δ] and 0 otherwise. It is easy to see that the FPCs ψj(t) are eigenfunctions of Ω(·,·). An

estimator of Ω is obtained as

Ω(t1, t2) = ∫
0

Δ
R(u, t1, t2)W(u)du, (10)

and the estimated eigenvalues and eigenfunctions of Ω(·,·), denoted as {ωj, ψj(t)}, are

obtained by solving the eigen-decomposition problem

∫
T

Ω(t1, t2)ψj(t1)dt1 = ωjψj(t2), j = 1, 2, …, (11)

subject to the orthonormal constraints ∫T ψj(t)ψj′(t)dt = I(j = j′).

From the right hand side of (10), it is easy to see that all B-splines in the spatial

direction are integrated out, and Ω( ⋅ , ⋅ ) is contained in a bivariate tensor product spline

space S[2] spanned by the basis B[2](t1, t2) ≔ BT(t1)⊗BT(t2). Hence, the functional

eigen-decomposition problem in (11) can be translated into a multivariate problem. Notice

that our estimator Ω is inherently symmetric. We can arrange the coefficient vector into

a symmetric matrix S, so that Ω(t1, t2) = BT
T(t1)SBT (t2). Define an inner product matrix

J = ∫T BT (t)BT
T(t)dt, then the eigen-decomposition problem in (11) is equivalent to the

multivariate generalized eigenvalue decomposition

ϕjTJSJϕj = ωj, subject to ϕj′
TJϕj = I(j = j′),

and ψj(t) = BT
T(t)ϕj, j = 1, 2,…

3.3 Estimation of the spatial covariance and correlation functions

By the orthogonality of ψj(t)’s and (4), Cj(u) = ∫T ∫T R(u, t1, t2)ψj(t1)ψj(t2)dt1dt2, which

motivates the following estimator of the spatial covariance function

Cj(u) = ∫
T
∫

T
R(u, t1, t2)ψj(t1)ψj(t2)dt1dt2 . (12)

Zhang and Li Page 8

J Bus Econ Stat. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We then estimate the variance of the jth FPC by ϖj = Cj(0) and estimate the spatial

correlation function ρj(u) = Cj(u) ∕ C(0) by ρj(u) = Cj(u) ∕ Cj(0).

3.4 Covariance estimation for the functional nugget effect

Define Γ{t1, t2) = R{0, t1, t2) +Λ(t1, t2). By independence between X{si, t) and the

functional nugget effect Ui(t), it is easy to see cov{Y(s, t1),Y(s, t2)} = Γ(t1, t2) for t1 ≠

t2, which motivates another spline estimator

Γ( ⋅ , ⋅ ) = argmin
g( ⋅ , ⋅ ) ∈ S[2]

Γ ∫Dn
∫

T
∫

T
Y (s, t1)Y (s, t2) − g(t1, t2) 2I(t1 ≠ t2)Nt(dt1 ∣

s)Nt(dt2 ∣ s)Ns(ds) .
(13)

Here, S[2]
Γ  is a functional space of bivariate tensor product splines of order pΓ defined on

KΓ interior knots. This spline space can be defined on a different set of temporal knots than

those used to estimate R(·,·,·), thus allowing a different amount of smoothing. A natural

covariance estimator for the functional nugget effect is

Λ(t1, t2) = Γ(t1, t2) − R(0, t1, t2), (14)

where R(0, t1, t2) is the estimator defined in (7) evaluated at u = 0.

3.5 Variance estimation for the measurement errors

The variance function of the response is

σY
2 (t) = var{Y (s, t)} = R(0, t, t) + Λ(t, t) + σϵ2 = Γ(t, t) + σϵ2. We estimate σY

2 (t) by the following

spline estimator,

σY
2 ( ⋅ ) = argmin

g( ⋅ ) ∈ S[1]
ϵ ∫Dn

∫
T

Y 2(s, t) − g(t) 2Nt(dt ∣ s)Ns(ds), (15)

where S[1]
ϵ  is a univariate spline space of order pϵ defined on Kϵ interior knots. The

following variance estimator is similar in spirit with those proposed by Yao et al. (2005)

σϵ
2 = 1

∣ T ∣∫T
{σY

2 (t) − Γ(t, t)}dt . (16)

Both σϵ
2 and Λ are important quantities we will later use for functional kriging.

Remark. Our estimation procedure involves integration of (multivariate) spline functions,

when calculating Ω( ⋅ , ⋅ ), ψj( ⋅ ), Cj( ⋅ ) and σϵ. In our R code that supplements this paper, we

compute the exact values of these integrals, using close-form expressions for integrals and

the Gram matrix of B-splines (de Boor, 2001).
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4 Theoretical properties

One important theoretical challenge in our problem is that there is only one copy of

the spatio-temporal random field and all data are correlated. Under such a setting, it is

well-known that infill asymptotics may lead to inconsistent estimation of spatial covariance

(Zhang and Zimmerman, 2005). We therefore adopt a theoretical framework that combines

both the infill and increasing domain asymptotic paradigms. Lu and Tjøstheim (2014)

proposed a different way to combine the increasing domain and infill paradigms, which

does not rely on point process modeling of the sampling locations, but their message was

in line with ours that we need to combine the two asymptotic paradigms for good statistical

properties and flexible modeling of the data.

For any function f(·) (univariate or multivariate) defined on a compact support, denote ∥ f ∥L2

and ∥ f ∥∞ as its L2 and L∞ norms. For any positive sequences {an} and {bn}, we write an

≲ bn if an / bn is bounded above by a constant, and an ≍ bn if C1 ≤ an / bn ≤ C2 for all n and

some C1, C2 > 0. For any subset E ⊂ ℝ2, let ℱX(E) be the σ-algebra generated by {X(s, t):(s,

t) ∈ E × T}. Suppose the spatial dependence of the functional data can be described by the

α-mixing coefficients (Rosenblatt, 1956):

αX(ℎ) = sup
E1, E2 ⊂ ℝ2

dist(E1, E2) ≥ ℎ

sup
A1 ∈ ℱX(E1),
A2 ∈ ℱX(E2)

∣ P (A1 ∩ A2) − P (A1)P (A2) ∣ ,
(17)

where dist(E1, E2) denotes the minimal Euclidean distance between E1 and E2. We make the

following assumptions for our theoretical investigation.

Assumption 1. While the time domain T is fixed, consider a sequence of spatial

domains {Dn} with the same shape such that, as n → ∞, C1n ≤ ∣ Dn ∣ ≤ C2n, and

C1 n ≤ ∣ ∂Dn ∣ ≤ C2 n, for some C1, C2 > 0. Here, ∣ Dn ∣ and ∣ ∂Dn ∣ are the area

and perimeter of Dn.

Assumption 2. Assume X(s, t) is strictly stationary in s and, for some ν> 4,

sup
t ∈ T

E ∣ X(s, t) ∣v < ∞ and sup
t ∈ T

E ∣ U(t) ∣v < ∞.

Assumption 3. The α-mixing coefficient (17) is well defined for X(s, t), and there exist

constants δ1 > 2ν(ν−4) and C > 0 such that αX(h) ≤ Ch−δ1 for all h ≥ 0 (Guyon, 1995).

Assumption 4. Suppose Ns(ds) is also α-mixing with the coefficient, denoted as αN(ℎ),
similarly defined as (17), and assume αN(ℎ) ≤ C exp( − δ2ℎ) for some C > 0 and δ2

> 0. There exists a sequence of positive numbers {Ln}, that is either constant or

monotonically increasing to infinity with n, and constants C2 > C1 > 0 such that

C1Ln
k ≤ λs, k(s1, …, sk) ≤ Ln

kC2 for k = 1,…, 4 and all s1, …, s4 ∈ Dn.

Assumption 5. Let Mn be a sequence of positive constants depending on n, such that there

exist some C1, C2 > 0 such that C1Mn
k ≤ λt, k(t1, …, tk) ≤ C2Mn

k for all t1, t2 ∈ T and k = 1, 2.
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Assumption 6. As n → ∞, both Ks and Kt → ∞, and KsKt
2 = o n ∕ log2(n) .

Assumption 7. Restricting R(·,·,·) on the compact 3-dimensional domain H = [0, Δ]×T×T,

for order r = (r1, r2, r3) and a > 0, define the Hölder class of functions on H as

C3
r, a(H) ≔ {f : sup

x1x2 ∈ H
∣ f(ℓ1, ℓ2, ℓ3)(x1) − f(ℓ1, ℓ2, ℓ3)(x2) ∣ ∕ ‖x1 − x2 ‖a < ∞, 0 ≤ ℓi ≤ ri, i

= 1, 2, 3}

.

Assume that R ∈ C3
p, a, where p = {ps, pt, pt) is the order of the 3-dimensional tensor product

spline function and a > 0.

Assumption 8. Define a class of bivariate Holder continuous functions on T2 as

C2
r, a(T 2) ≔ {f : sup

x1x2 ∈ T2
∣ f(ℓ1, ℓ2)(x1) − f(ℓ1, ℓ2)(x2) ∣ ∕ ‖x1 − x2 ‖a < ∞, r = (r1, r2), 0 ≤ ℓ1

≤ r1, 0 ≤ ℓ2 ≤ r2}

.

Assume that Γ(·,·) and Λ( ⋅ , ⋅ ) ∈ C2
(pt, pt), a T 2 , where a > 0.

Assumption 1 describes a typical increasing domain asymptotic framework (Guan et al.,

2004). A rectangular or circular spatial domain Dn with the same shape but increasing area

would satisfy Assumption 1. Assumption 2 is a standard moment condition in functional

data analysis (Li and Hsing, 2010). Assumption 3 allows the spatial dependency in X(s, t)
to decay in a slow polynomial rate. In Assumption 4, we assume that the sampling spatial

point process is also weakly dependent and there is a positive chance to sample any four

points in Dn. A homogenous Poisson process would satisfy Assumption 4. By allowing Ln

→ ∞, our framework also accommodates the infill paradigm, meaning we allow λs,k(·)

and hence the expected number of sampling points on any unit space to diverge to infinity.

It is also worth pointing out that the expected number of repeated measures on Y(si,·) is

ʃT λt,1(t)dt ≍ Mn under Assumption 5. When Mn are bounded by a constant, the data are

spatially correlated sparse functional data; on the other hand, if Mn → ∞ fast enough as a

function of n, the data are dense functional data. In all of our theoretical results below, we

allow Mn to be of any rate relative to n, thus admit all types of functional data in a unified

framework. Assumption 6 is a standard assumption on the number of knots and sets a range

for the tuning parameters. Assumptions 7 and 8 govern the smoothness of the functions that

we estimate.

The following theorem provides the asymptotic convergence rate for the tensor-product

spline estimator of the spatio-temporal covariance function.

Theorem 4.1. Under the model framework in Section 2 and Assumptions 1 – 7,

‖ R − R ‖L2 = Op ∣ Dn ∣−1 ∕ 2 { Ks + KsKt ∕ (MnLn) + KsKt2 ∕ (Mn2Ln2)} + Ks
−ps + Kt

−pt .

Remark (Effect of Infill). Theorem 4.1 implies that the most dominating factor in achieving

consistent covariance estimation is the domain size ∣ Dn ∣. The infill factor Ln only plays

a secondary role in the convergence rate: letting Ln → ∞ but holding ∣ Dn ∣ fixed will
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result in an inconsistence covariance estimator, which is in agreement with the results of

Zhang and Zimmerman (2005) and Hörmann and Kokoszka (2013). Intuitively, increasing

the sampling locations in a unit spatial domain will result in increasingly correlated data but

not more information that is equivalent to independent samples. The factor LnMn measures

the number of spatio-temporal measurements in a unit spatial neighborhood. In an ideal case

Ln → ∞ in a fast enough rate so that we can choose Ks ≲ Kt ≲ LnMn, the dominant terms in

‖ R − R ‖L2 are of order Op(Ks
1 ∕ 2 ∣ Dn ∣−1 ∕ 2 + Ks

−ps).

Remark (Phase Transition from Sparse to Dense Functional Data). For simplicity, the

following discussion is restricted to a standard increasing domain framework where

∣ Dn ∣ ∞ and Ln is a fixed constant. For sparse functional data where Mn is a bounded

constant, assume Ks = Kt ≡ K and ps = pt ≡ p for simplicity, then the result in Theorem

4.1 can be simplified to ‖ R − R ‖L2 = Op(K3 ∕ 2 ∣ Dn ∣−1 ∕ 2 + K−p). Since ∣ Dn ∣ ≍ E(N) is
proportional to the sample size (i.e. the number of functions) under this setting, such a rate

is the classic convergence rate for a 3-dimensional nonparametric regression using splines

(Stone, 1994). For dense functional data with Mn ≳ n1/(2 pt) and choosing Kt ≍ Mn, we

have ‖ R − R ‖L2 = Op(Ks
1 ∕ 2 ∣ Dn ∣−1 ∕ 2 + Ks

−ps), which is the nonparametric convergence

rate for estimating a stationary, isotropic spatial covariance function (Li et al., 2007). This

result suggests Mn ≍ n1/(2 pt) is a transition point (Li and Hsing, 2010; Zhang and Wang,

2016; Wang et al., 2018), where estimating the 3-dim spatio-temporal covariance function

is as efficient as estimating a 1-dim spatial covariance, and further increasing the number of

repeated measures on each curve would not improve the convergence rate of R.

The bivariate function Ω(·,·) in (10) is of fundamental importance to our FPCA methodology,

where we borrow spatial information up to a distance Δ > 0. The following theorem provides

the convergence rate of Ω.

Theorem 4.2. Under the assumptions in Theorem 4.1 and the coregionalization structure in

(4), ‖Ω − Ω‖L2 = Op ∣ Dn ∣−1 ∕ 2 {1 + Kt ∕ (MnLn)} + Ks
−ps + Kt

−pt .

Remark. By integrating over the spatial dimension of R, we apply another step of smoothing

and therefore obtain a faster convergence rate for Ω than R. By undersmoothing in

the spatial direction letting Ks ≳ n1/(2 ps), the Op(Ks
−ps) nuisance of estimating spatial

covariance becomes negligible, then the rate in Theorem 4.2 is comparable to the classic

covariance estimation convergence rate (Li and Hsing, 2010) for independent functional data

using kernel smoothing. The convergence rate above becomes a typical bivariate spline

smoothing rate Op(Kt ∕ ∣ Dn ∣1 ∕ 2 + Kt
−pt) when the data are sparse (the total number

of measurements in a unit area LnMn is bounded); and the root-n convergence rate,

‖Ω − Ω‖L2 = Op( ∣ Dn ∣−1 ∕ 2 ), is attainable, if the data are dense enough with LnMn ≳

n1/(2 pt) and if we choose Kt ≍ LnMn.

The convergence rate for ψj(t) is a direct result from the perturbation theory in Hall and

Hosseini-Nasab (2006) and is provided in the following theorem.
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Theorem 4.3. Under the assumptions in Theorem 4.2 and suppose all eigenvalues of Ω(·,·)

are distinct,

‖ ψj − ψj ‖L2 = Op ∣ Dn ∣−1 ∕ 2 {1 + Kt ∕ (MnLn)} + Ks
−ps + Kt

−pt ,

for j = 1, 2,…,J , up to any fixed order J.

Remark. Results in Theorem 4.3 are comparable to those in Hall et al. (2006) and Li and

Hsing (2010) for independent functional data. For sparse functional data where LnMn is

bounded by a constant, by adopting an undersmoothing strategy in the spatial direction (i.e.

Ks ≳ n1/(2 ps), we get ‖ ψj − ψj ‖L2 = Op{(Kt ∕ ∣ Dn ∣ )1 ∕ 2 + Kt
−pt}. This is a 1-dim spline

smoothing convergence rate, even though ψj(t) is a byproduct of a 2-dim nonparametric

estimator Ω( ⋅ , ⋅ ) that converges in a slower 2-dim rate. For dense functional data (LnMn ≳

n1/(2 pt)), by choosing Kt ≍ LnMn, we get ‖ ψj − ψj ‖L2 = Op( ∣ Dn ∣1 ∕ 2 ), which is a root-n

rate.

Restricting Cj(u) and Cj on [0,Δ], the following theorem provides convergence rates for the

estimated spatial covariance functions.

Theorem 4.4. Under the assumptions of Theorem 4.3,

‖ Cj − Cj ‖L2 = Op ∣ Dn ∣−1 ∕ 2 { Ks + Kt ∕ (MnLn)} + Ks
−ps + Kt

−pt ,

for j = 1, 2,…, J up to any fixed order J.

Remark. Suppose the covariance function R is smoother in the temporal directions than

the spatial direction, i.e. pt ≥ ps, by choosing Ks
ps ∕ pt ≲ Kt ≲ Ks, the convergence rate in

Theorem 4.4 becomes Op (Ks ∕ ∣ Dn ∣ )1 ∕ 2 + Ks
−ps , which is comparable to the results in

Li et al. (2007) developed for 1-dimensional spatial domain, multivariate response and under

a rather stringent separable covariance assumption.

With the additional smoothness conditions in Assumption 8, we have the following results

on the covariance estimator Λ for the functional nugget effect and the variance estimator σϵ
2

for the measurement errors.

Theorem 4.5. Under Assumptions 1–8 and assume KΓ ≍ Kt and pΓ = pt,

‖ Λ − Λ ‖L2 = Op ∣ Dn ∣−1 ∕ 2 { Ks + KsKt ∕ (MnLn) + Kt2 ∕ (Mn2Ln) + KsKt2 ∕ (Mn2Ln2)} + Ks
−ps

+ Kt
−pt .

Theorem 4.6. Under Assumptions 1 – 8 and further assume KΓ ≍ Kϵ ≍ Kt and
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pΓ = pϵ = pt, σϵ2 − σϵ2 = Op ∣ Dn ∣−1 ∕ 2 {1 + Kt ∕ (MnLn)} + Kt
−pt .

Remark. The convergence rate of σϵ
2 in Theorem 4.6 is comparable to Theorem 3.4 of Li and

Hsing (2010) for independent functional data. Both (HTML translation failed) and σϵ
2 are

important quantities we will later use for functional kriging.

5 Implementation

5.1 Positive semi-definite adjustment for spatial covariance functions

The spatial covariance functions Cj(u): j = 1, ⋯, J  are required by definition to be

positive semi-definite in ℝ2, meaning ∬ Cj(‖ s1 − s2 ‖)a(s1)a(s2)ds1ds2 ≥ 0, for any integrable

functions a(·) defined on ℝ2. The spline estimators Cj(u) defined in (12), even though

consistent, are not guaranteed to be positive semidefinite. Nevertheless, this violation can be

easily corrected using a correction procedure similar to that used in Hall et al. (1994).

By Bochner’s theorem (Schabenberger and Gotway, 2017, p. 141), Cj(u) is positive

semidefinite if Cj
+(θ) ≥ 0 for all θ, where Cj

+(θ) = ∫0
∞Cj(u)J0(θu)udu is the Hankel

transformation of Cj( ⋅ ) and J0(·) is the Bessel function of the first kind with order 0.

This motivates us to take a nonnegative truncation on the Hankel transformation of Cj( ⋅ ),

i.e., Cj
+(θ) = max ∫0

∞Cj(u)J0(θu)udu, 0 . In practice, Cj(u) decays to zero beyond the range of

spatial dependence and Cj(u) is unstable for a large u. We therefore multiply Cj by a weight

function w(u) ≤ 1 when taking the Hankel transformation,

Cj
+(θ) = max ∫

0

∞
Cj(u)J0(θu)w(u)udu, 0 . (18)

Possible choices of w(·) suggested by Hall et al. (1994) are w1(u) = I(∣u∣≤ D) for a threshold

D > 0; and w2(u) = 1 if ∣u∣< D1, (D2 − ∣u∣) / (D2 − D1) for D1 ≤∣u∣≤ D2 and 0 if ∣u∣> D2. Then

the adjusted covariance estimators are the inverse Hankel transformations

Cj(u) = ∫
0

∞
Cj

+(θ)J0(θu)θd θ . (19)

And the correlation functions are adjusted as ρ j(u) = Cj(u) ∕ Cj(0) and an adjusted estimator

for the spatio-temporal covariance function R(·,·,·) can be constructed as

R(u, t1, t2) = ∑
j = 1

J
Cj(u)ψj(t1)ψj(t2), (20)
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where J is a large enough number such that the first J principal components capture most of

the variation in the data. For the choice of the weight function in (18), we use w1(u) = I(∣u∣≤
D) and set D = Δ in all of our numerical studies, which leads to satisfactory results.

5.2 Choosing the number of B-spline knots

The amount of smoothing in our spline covariance estimator R is governed by the numbers

of knots Ks and Kt. Following Huang and Yang (2004), we choose these tuning parameters

by minimizing the following Bayesian Information Criterion (BIC)

BIC(Ks, Kt) = Nlog{ℒ(β)} + df × log(N), (21)

where ℒ( ⋅ ) is the square loss function defined in (8), the degree of freedom df =
(Ks + ps)(Kt + pt)2 is the total number of tensor product B-spline basis functions, and

N = ∫Dn∫Dn∫T ∫T I(‖ s1 − s2 ‖ ≤ Δ)Nt(dt1 ∣ s1)Nt(dt2 ∣ s2)Ns, 2(ds1, ds2) is the total sample

size for estimating R(·,·,·). Similar BIC criteria are used to choose the number of knots in

Γ( ⋅ , ⋅ ) and σY
2 ( ⋅ ).

5.3 Estimation of the mean function

Up to this point, we assume μ(t) ≡ 0. In practice, we first estimate μ(t) by

μ( ⋅ ) = argmin
g( ⋅ ) ∈ SKm

pm [0, 1]
∫Dn

∫
T

Y (s, t) − g(t) 2Nt(dt ∣ s)Ns(ds),
(22)

where SKm
pm [0, 1] is a spline space with order pm and Km interior knots, and then proceed with

the methods described in Section 3 using the centered response Y (si, tij) = Y (si, tij) − μ(tij).
For fully observed functional data with simple parametric spatial covariance and no

measurement error, Kokoszka and Reimherr (2017) proposed a method to improve

estimation efficiency for the mean function taking into account the spatial dependence.

However, it is not yet clear how to extend this method to the discretely observed functional

data with non-separable covariance structures in our paper, especially with the complication

of functional nugget effect and measurement error.

6 Kriging of spatially dependent functional data

Spatial prediction or kriging is a major interest in spatial statistics (Stein, 2012) and there

has been some recent work on kriging for spatially dependent functional data. The FPCA-

then-kriging two-step procedure (Nerini et al., 2010; Menafoglio et al., 2016) is to first

perform the classic FPCA (Yao et al., 2005) ignoring any spatial dependence and then

perform co-kriging on the estimated FPC scores by fitting parametric spatial covariance

models such as those in the Matérn family. There are several issues with this procedure:

first, it does not consider functional nugget effect and, as shown in our simulation studies,

may suffer from large estimation biases; second, the estimated FPC scores are contaminated

with estimation errors, which bring a lot of nuisance into spatial covariance estimation;

third, the spatial covariance models are limited to a few parametric families which may be
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mis-specified. The trace kriging method (Giraldo et al., 2011; Menafoglio et al., 2013) does

not depend on dimension reduction (e.g. FPCA) and requires fully observed functional data

without measurement error nor nugget effect.

We now propose a new functional kriging method under our model. Let s0 ∈ Dn be a

new location where no data are observed, and our goal is to predict the unobserved

functional data X(s0,t) using information from neighboring locations. Under our framework,

X(s0, t) = μ(t) + ∑j = 1
∞ ξj(s0)ψj(t). In practice, the infinite principal component expansion of

X(s0,t) needs to be truncated at a finite order J, which can be determined by a simple

“percentage of variation explained” method (Yao et al., 2005). We then predict X(s0,t) by

X(s0, t) = μ(t) + ∑j = 1
J ξ j(s0)ψj(t), where ξ j(s0) is the Best Linear Unbiased Predictor (BLUP)

of ξj(s0) using data collected from locations close to s0.

Let N(s0, Δ) be the collection of sampled locations within a distance Δ

from s0, and Y s0, Δ = {Y (si, tij), si ∈ N(s0, Δ)}T be the vector of observed data

from the neighboring locations. Similarly, let Xs0, Δ = {X(si, tij), si ∈ N(s0, Δ)}T and

Us0, Δ = {Ui(tij), si ∈ N(s0, Δ)}T be the latent random vectors in Ys0,Δ. Suppose Rs0,Δ =

cov(Xs0,Δ) is the covariance matrix interpolated from the spatio-temporal covariance

function R(·,·,·), Λs0,Δ = cov(Us0,Δ) is a block diagonal matrix representing the covariance

of the functional nugget effect, then Σs0, Δ = cov(Y s0, Δ) = Rs0, Δ + Λs0, Δ + σϵ2I is the

covariance matrix of the observed data within the neighborhood N(s0, Δ). Define

Υs0, j = cov{ξj(s0), Y s0, Δ} = {Cj(‖ si − s0 ‖)ψj(tiℓ), si ∈ N(s0, Δ)}T, then the BLUP for ξj(s0)

is

ξ j(s0) = Υs0, j
T Σs0, Δ

−1 (Y s0, Δ − μs0, Δ), (23)

where μs0,Δ = E(Ys0,Δ) is the mean vector interpolated from the mean function μ(t). The

BLUP in (23) depends on unknown functions such as R(·,·,·), Λ(·,·), Cj( ⋅ ), ψj(·) and μ(·),

which we replace with the estimators proposed in Sections 3 and 5.

7 Simulation studies

We now illustrate the proposed methodology using simulation studies. Data are generated

from model (1) in the spatial domain D = [0, 10]2 and time domain T = [0,1], with

X(s, t) = μ(t) + ∑
j = 1

3
ξj(s)ψj(t), μ(t) = 2t sin(2πt), ψ1(t) = 2 cos(2πt), ψ2(t) = 2 sin(2πt)

and ψ3(t) = 2 cos(4πt). The principal component scores, ξj(s), j = 1, 2, 3, are Gaussian

random fields generated using the RandomFields package in R. The variances of ξj’s are

(ϖ1, ϖ2, ϖ3) = (3, 2, 1). Their spatial covariance functions are members of the Matérn family,
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Cj(u; v, ρ) = ϖj
21 − v
Γ(v) ( 2vu ∕ ρ)vKv( 2vu ∕ ρ), where Kv(·) is the modified Bessel function of

the second kind with degree ν. We set the shape parameter ν to be 5.5, 3.5 and 1.5 and

range parameter ρ to be 1, 0.5 and 0.5 respectively for the three principal components. The

spatial locations {si} are sampled from a homogeneous spatial Poisson process over D, with

the first-order intensity λs ≡ 10; time of repeated measures on each function are sampled

from a Poisson process over T with λt = 10. The measurement errors ϵij are generated as iid

Normal(0, σϵ2), where σϵ2 = 0.25. We consider two scenarios for the functional nugget effect.

• Scenario A: functional nugget effect Ui(t) = ∑j = 1
2 ξnug, j(si)ψnug, j(t), where

ψnug,1(t) and ψnug,2(t) are the first two basis functions in the normalized Fourier-

Bessel Series, ξnug,j ~ Normal(0, ωnug,j), j = 1, 2, and (ωnug,1, ωnug,2) = (2,1).

• Scenario B: no functional nugget effect, i.e., Y(si, tij) = X(si, tij) + ϵij.

We simulate 200 datasets for each scenario and apply the proposed estimation procedure

(denoted as sFPCA) to each simulated dataset. We use tensor product of cubic B-splines

to estimate the spatial-temporal covariance function. The tuning parameters are selected

using the BIC described in Section 5 on some pilot datasets, then held fixed for massive

simulations. For comparison, we also apply the classic FPCA method (Yao et al., 2005)

to the simulated datasets. To the best of our knowledge, Liu et al. (2017) is the only

exiting work on FPCA for discretely-observed, spatially-dependent functional data, and

their method is identical to the classic FPCA method when it comes to estimating the

eigenvalues and eigenfunctions. The classic FPCA, denoted as iFPCA, is implemented using

the R package fdapace, which has built-in tuning parameter selection. Compared with our

methods, iFPCA only estimates a bivariate temporal covariance function using observations

at the same location s, does not distinguish the functional nugget effect and does not

borrow spatial information like what we do through integration in (10). Since our focus

is on covariance estimation, estimation results for μ(t) are relegated to Figure S.1 in the

Supplementary Material.

In Panels (a) - (f) of Figure 3, we summarize the estimation results of sFPCA under

Scenario A for ψj(·) and Cj( ⋅ ), j = 1, 2, 3. In each plot, we compare the mean of our

estimator with the true function and provide confidence bands formed by pointwise 5%

and 95% percentiles of the estimator. By taking a spectral decomposition of Λ in (14), we

also get estimators of ψnug,j(·) and ωnug,j. Graphical summaries of ψnug, j(t), j = 1, 2, are

provided in Panels (g) and (h) of Figure 3; boxplots of scalar estimators ϖj and ωnug, j are

provided in Panel (i). As we can see, the sFPCA estimators behave reasonably well: all

functional estimators exhibit very little bias and the confidence bands are tight around the

true functions. The only functional estimator shows considerable variation is ψnug, 2, which

is partially due to the fact that the convergence rate of Γ in Theorem 4.5 is much slower

compared with that of Ω in Theorem 4.2.

The iFPCA method does not produce estimates for the spatial covariance functions nor

the eigenfunctions of the functional nugget effect, we therefore only provide graphical

summaries of ψj(t) for iFPCA under Scenario A in Figure 4. As we can see, these
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functional estimators suffer from significant biases and large variation. The large biases

can be explained by fact that iFPCA does not distinguish the functional nugget effect

from the spatially dependent functional effect; the large variations, on the other hand,

are due to strong spatial dependence and the fact that iFPCA does not borrow spatial

information like we do through integration in (10). Under Scenario B, which is a simpler

setting by removing the functional nugget effect Ui(t) from Scenario A, both the classic

iFPCA and our sFPCA methods provide consistent estimators for the eigenfunctions, and

the differences between these methods are not as striking as in Scenario A. We therefore

relegate graphical summaries under Scenario B to Figures S.2 and S.3 in the Supplementary

Material. In theory, spectral decomposition of R(0, ⋅ , ⋅ ) also provides consistent estimators

of the eigenfunctions, however such a method suffers from the slow convergence rate of

3-dim spline smoothing and is not recommended. In simulation results not shown here,

directly decomposing R(0, ⋅ , ⋅ ) performs poorer than the proposed method under Scenario

A and poorer than both methods presented under Scenario B.

We also summarize, in Table 1, the mean and standard deviation of integrated square error

(ISE) for the functional estimators of sFPCA and iFPCA. These numerical summaries

confirm our observations from the graphs that the sFPCA estimators behave overwhelmingly

better than those of iFPCA under Scenario A, due to the existence of functional nugget

effect. All estimators behave better under Scenario B due to smaller noises. However, even

under Scenario B without functional nugget effects, sFPCA estimators of the eigenfunctions

are still better than iFPCA because we borrow spatial information by including pairs of data

in neighboring locations.

To illustrate the proposed sFPCA kriging method in Section 6, we randomly sample new

functions from 100 new locations in each simulated dataset, and use the training data and the

estimated covariance structure to predict X(s, t) at the new locations. The integrated square

error (ISE), ∫ {X(s, t) − X(s, t)}2dt, is averaged over all new locations and then repeated for

each dataset. For comparison, we apply the iFPCA+CoKriging two-step procedure (Nerini

et al., 2010) and the trace kriging method (Giraldo et al., 2011) to the simulated data. Both

methods are implemented in R package fdagstat. For the iFPCA+CoKriging method, the

number of principal components for iFPCA is selected to explain 99% of the variation

and the spatial covariance functions are estimated using the Matérn models based on the

estimated iFPCA scores. The trace kriging method requires fully observed functional data,

we therefore treat the observed data as step functions with jumps at observed time points.

The kriging results are summarized in Table 2, where we provide the mean and standard

deviation of ISE for all competing methods. As we can see, our kriging method yields much

smaller prediction errors than the two competing methods under both scenarios.

8 Data analysis

We now analyze the two motivating datasets described in Section 1.
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8.1 Analysis of the London house price data

This dataset consists of 10, 980 transaction records of 2013 houses in the Greater London

Area from Jan 1, 1995 to Dec 31, 2018. Figure S.4 in the Supplemental Material shows the

empirical distributions for the number of transactions per house and the transaction dates.

The estimated mean function, shown in Figure 1, demonstrates an overall increasing trend.

Remarkably, the two dips on the mean curve reflect the impacts of the 2008 financial crisis

and the 2016 Brexit.

A pilot study indicates that the range of spatial dependency is about 5.5 kilometers, which

is also confirmed by the final estimators of the spatial correlations in Figure 5. We therefore

estimate the spatio-temporal covariance function R(·,·,·) up to a spatial lag of Δ = 5.5 km,

using tensor product of cubic B-splines. The numbers of knots chosen by BIC are Ks = 6 and

Kt = 6 in spatial and temporal directions, respectively.

Next, we perform FPCA to the data by a spectral decomposition of Ω. The first two

eigenvalues, ω1 = 285.80 and ω2 = 21.52, in total explain 99.42% of variation in Ω. A

contour plot of Ω( ⋅ , ⋅ ) and the first two estimated eigenfunctions are shown in Figure

5 (a) and (c). The estimated spatial correlation functions and their positive semi-definite

adjustments are shown in Figure 5 (e) and (f). As we can see, ρ2(u) decays to 0 more sharply

than ρ1(u), indicating that the two principal components have different ranges of spatial

dependence and the spatio-temporal covariance may not be separable. We also estimate

the covariance function Λ(·,·) of the functional nugget effect and the nugget principal

components, the results of which are shown in Figure 5 (b) and (d). The noise-to-signal

ratio of the functional nugget effect is ‖ Λ( ⋅ , ⋅ ) ‖L2 ∕ ‖ R(0, ⋅ , ⋅ ) ‖L2 = 1.11. The first three

eigenvalues, ωnug, 1 = 144.89, ωnug, 2 = 80.50, and ωnug, 3 = 29.23, explain 98.77% of the total

variation in the functional nugget effect. These results show that, for the London housing

market, the house-specific effect is more important than the spatial dependent effect. These

house-specific effects might be explained by factors such as size, year built, number of

bedrooms, number of bathrooms, etc. These variables are not available in public records,

hence not included in our analysis. It would be interesting to include these covariates in our

future analysis, should an external data source becomes available.

8.2 Analysis of the Zillow real estate data

The spatial locations in this dataset are sampled from six regions in the Bay Area: Fremont,
Oakland, Palo Alto, San Francisco, San Jose, and San Mateo. The estimated region-specific

mean functions are presented in Figure S.5 of the Supplementary Material. To get rid of the

regional effects, we center the trajectories in Figure 2 by subtracting their region-specific

mean functions, and the residual trajectories are presented in Figure S.6. Our methodology

is based on the spatially stationary assumption, but can be easily extended to piecewise-

stationary settings, we therefore apply the proposed methodology to the residual trajectories.

Our pilot analysis on the Zillow data indicates that the spatial correlation diminishes at

a distance of about 3 km. We therefore estimate the spatio-temporal covariance function

R(·,·,·) up to a spatial lag of Δ = 3.5 km, using tensor-product cubic B-splines. The number
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of knots chosen by BIC are Ks = 5 and Kt = 6. Spectral analysis of Ω yields that the first two

eigenvalues, ω1 = 974.22 and ω2 = 18.59, explain 97.97% of variation in Ω. A contour plot of

Ω( ⋅ , ⋅ ) and the first two eigenfunctions are shown in Figure 6. Notice that ψ1(t), given by

the solid curve in Figure 6 (c), is almost constant over time, which implies that the first FPC

is a spatial random intercept – locations with high scores ξ1(s) on the first FPC has higher

than average price-to-rent ratio. On the other hand, ψ2(t) represents a decreasing trend in

time. Since the overall trend of price-to-rent ratio is increasing in Figure 2 (b), locations with

high values of ξ2(s) has slower than average increase of price-to-rent ratio. The estimated

spatial correlation functions and their positive semi-definite adjustments are shown in the

lower panels of Figure 6. We also estimate the covariance function Λ(·,·) of the functional

nugget effect and the nugget principal components, the results of which are shown in Figure

6. The first three eigenvalues, ωnug, 1 = 92.72, ωnug, 2 = 20.75, and ωnug, 3 = 10.43, explain

91.12% of the total variation in the functional nugget effect. The estimated variance of

measurement errors is σϵ
2 = 0.246.

We illustrate the performance of the proposed sFPCA kriging method by a leave-one-curve-

out kriging experiment: leave one curve out as test data, use the rest of the data and the

fitted model to predict the curve on the left out location, calculate the integrated squared

error (ISE) for the prediction, and repeat this experiment for all locations. For comparison,

we also perform the same kriging experiment for iFPCA+Co-kriging and Trace Kriging,

described in Sections 6 and 7. After scaling the time domain to [0,1], the median prediction

ISE is 1.85 for sFPCA kriging, 2.91 for Trace Kriging, and 3.61 for iFPCA+Co-kriging,

which confirms that our proposed kriging method has much smaller prediction error than

existing functional kriging methods.

8.3 Sensitivity Analysis

In Figures S.7 and S.8, we show contour plots of R(u, ⋅ , ⋅ ) at different values of u for the

two data examples, respectively. To make different slices of this 3-dim function comparable,

we standardize the contour plots by ‖ R(u, ⋅ , ⋅ ) ‖1 = ∫ ∣ R(u, t1, t2) ∣ dt1dt2 ∕ ∣ T ∣2. For both

datasets, the differences in the standardized contour plots show some evidence that the

covariance structures are non-separable.

In Section S.6 in the Supplementary Material, we perform sensitivity analyses on both

datasets to verify the assumption of spatial stationarity. We compare the FPCA estimates

obtained from the whole spatial domain with those obtained from sub-domains. For the

London data, we consider two sub-domains – regions to the north and south of River

Thames; for the Zillow data, we divide the domain into two sub-domains: areas on the

peninsula (San Francisco, San Mateo and Palo Alto) and those outside (Fremont, Oakland
and San Jose). The fact that the FPCA estimates from the whole domain agree well

with those from subdomains suggests that there is no serious violation of the stationarity

assumption.
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9 Discussion

As discussed in Section 2, spatial functional data analysis is deeply connected with spatio-

temporal models, yet substantially different. In the two real data examples presented in this

paper, our focus is to perform dimension reduction for temporal processes defined on real

entities, which happen to be spatially correlated. We demonstrate how our model can be

used for spatial prediction, but more importantly it extracts latent factors in the data, which

can be used in further analysis, including a second stage regression.

We propose a three dimensional tensor product spline approach to estimate the spatio-

temporal covariance function. Based on a coregionalization structural assumption, which

is more flexible than the commonly used separable structure assumed in the literature,

our three dimensional spline covariance estimator yields important byproducts, including

nonparametric estimators of the principal components and the spatial covariance functions

for the FPC scores. We also stress the importance of modeling the functional nugget effects,

which model the local characteristics that are not dependent to the neighbors. We show in

our simulation studies, ignoring the functional nugget effects can potentially cause large

biases in the FPCA estimators. Our asymptotic study for the proposed methodology is

quite comprehensive, where we combine both infill and increasing domain paradigms and

accommodate both sparse and dense functional data. We found that, compared with the

domain size, the effect of infilling locations in a unit spatial domain only has a secondary

effect on the asymptotic convergence rate of the proposed estimators. We also establish

phase transition in the convergence rates from sparse to dense functional data, which was not

previously available for spatially dependent functional data.

Our method is based on three dimensional spline smoothing on the product of all data

pairs within a prescribed distance, and hence computationally more intense than some of

the existing method such as the iFPCA method implemented in the ‘fdaPACE’ package. In

the Scenario A of our simulation study reported in Section 7, the average running time of

iFPCA on a computer of 2.60GHz processor and 128 GB memory is 45.2 seconds, while

the average running time for our method is 384.0 seconds. The extra computational cost is

justifiable by the additional information we offer on the spatio-temporal covariance structure

and being able to distinguish the functional nugget effect from the spatial functional

effect. In our supplementary material, we also provide additional simulation results on the

sensitivity of our method to the choice of Δ. We recommend to use a Δ approximately equal

to the range of spatial dependency, where the spatial correlation decays to 0. In reality such

a range is unknown and our results in Table S.1 suggest that our estimation results for the

functional principal components are not sensitive to the choice of Δ. On the other hand,

Table S.1 also summarizes the running time of sFPCA under different choices of Δ, and a

larger Δ results in a longer running time. This is understandable because more data pairs are

included into the three dimensional smoothing when a larger Δ is used.

Our approach is based on moderate model assumptions, such as spatial stationarity.

As we demonstrate in our real data analysis, the stationarity assumption can be easily

relaxed to piecewise stationarity. The second order stationarity assumption on the

principal component scores can also be relaxed: suppose Cj(s1, s2) = cov{ξj(s1), ξj(s2)}
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is non-stationary, but the averages of these covariance functions at distance u,

Cj
∗(u) = lim

n ∞
1

2πu ∣ Dn ∣∫Dn∫‖v‖ = 1Cj(s, s + uv)dvds, exist and are uniformly bounded, then

under some weak dependence assumptions the proposed tensor spline covariance estimator

consistently estimates ℛ∗(u, t1, t2) = ∑jCj
∗(u)ψj(t1)ψj(t2). We still get legitimate principal

component estimates, but spatial covariance function estimates become less interpretable.

Our work based on the stationary assumption also paves the way for extensions to more

sophisticated models, such as the locally stationary models (Kuusela and Stein, 2018), which

can be applied to data collected from a large spatial region. Our methods also open up

many new research questions, related to model selection and statistical inference for the

proposed model. For instance, one important research question is how to select the number

of principal components in the model. Aikaike information criterion such as that studied

in Li et al. (2013) depends on evaluating the likelihood, which is difficult for spatially

dependent functional data. It might also be possible to relax the isotropic assumption in our

approach to a more flexible geometric anisotropy setting. All these questions and possible

extensions call for future research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
London house price data. (a) Locations of houses in the Greater London Area; (b)

trajectories of the house prices and the estimated mean function (dashed line).
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Fig. 2.
(a) The locations of the 234 neighborhoods in the San Francisco Bay Area; (b) trajectories

of the home price-to-rent ratios, observed monthly from October 2010 to August 2018 in the

234 neighborhoods.
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Fig. 3.
Estimation results of sFPCA under Scenario A. Panels (a) - (h) contain summaries of the

functional estimators, as described in the labels. In each panel, the solid line is the true

function; the dashed line is the mean of the functional estimator; and the shaded area

illustrates the bands of pointwise 5% and 95% percentiles. Panel (i) contains the boxplots of

ϖ1, ϖ2, ϖ3, ωnug, 1, and ωnug, 2.
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Fig. 4.
Estimation results of iFPCA under Scenario A. In each panel, the solid line is the true

function; the dashed line is the mean of the functional estimator; and the shaded area

illustrates the bands of pointwise 5% and 95% percentiles.
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Fig. 5.
Results on the London housing price data: (a) contour plot of Ω(t1, t2); (b) contour plot

of Λ(t1, t2), covariance of the functional nugget effect; (c) the first two eigenfunctions of

Ω( ⋅ , ⋅ ); (d) the first three eigenfunctions of Λ( ⋅ , ⋅ ); (e) spatial correlation function ρ1( ⋅ )
and its positive semi-definite adjustment ρ1( ⋅ ); (f) ρ2( ⋅ ) and ρ2( ⋅ ).
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Fig. 6.
Results on the Zillow real estate data: (a) contour plot of Ω(t1, t2); (b) contour plot of Λ(t1, t2),
covariance function of the functional nugget effect; (c) the first two eigenfunctions (d) the

first three eigenfunctions of Λ( ⋅ , ⋅ ) (e) the estimated spatial correlation function ρ1( ⋅ ) and

its positive semi-definite adjustment ρ1( ⋅ ); (f) ρ2( ⋅ ) and ρ2( ⋅ ).
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Table 1

Simulation results on the mean and standard deviation of integrated square errors for functional principal

components estimated by sFPCA and iFPCA.

Simulation Scenario FPC sFPCA iFPCA

Scenario A ψ1 0.076(0.104) 0.411(0.376)

ψ2 0.104(0.119) 0.367(0.369)

ψ3 0.077(0.071) 1.494(0.311)

ψnug,1 0.035(0.031) –

ψnug,2 0.368(0.515) –

Scenario B ψ1 0.073(0.114) 0.134(0.232)

ψ2 0.092(0.113) 0.123(0.232)

ψ3 0.061(0.043) 0.059(0.025)
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Table 2

Kriging results in the simulation study: mean and standard deviation of the integrated squared errors for

sFPCA, iFPCA+CoKriging and Trace Kriging.

Simulation Scenario sFPCA iFPCA+CoKriging Trace Kriging

Scenario A 2.123(0.589) 5.147(0.989) 5.224(4.941)

Scenario B 1.563(0.704) 4.602(1.335) 5.073(4.846)
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