Table 1: Comparison with fully-supervised transfer learning:
Initialization | Pre-training dataset | Classification [AUC (%)] |
Segmentation [Dice (%)] |
||
---|---|---|---|---|---|
ChestX-ray14 | CheXpert | SIIM-ACR | Montgomery | ||
| |||||
Random | - | 80.31±0.10 | 86.62±0.15 | 67.54±0.60 | 97.55±0.36 |
| |||||
Supervised | ImageNet | 81.70±0.15 | 87.17±0.22 | 67.93±1.45 | 98.19±0.13 |
Supervised | ChestX-ray14 | - | 87.40±0.26 | 68.92±0.98 | 98.16±0.05 |
| |||||
CAiDMoCo-v2 | ChestX-ray14 | 80.72±0.29 | 86.86±0.37 † † | 68.16±1.07 † † | 98.19±0.08 † † |
CAiDBarlow Twins | ChestX-ray14 | 80.86±0.16 | 87.44±0.33 ‡ † | 69.83±0.29 ‡ ‡ | 98.15±0.11 † |
CAiDSimSiam | ChestX-ray14 | 79.45±0.42 | 84.45±0.46 | 68.35±1.16 † † | 98.01±0.28 † |
The ‡ and † present the statistically significant (p < 0.05) and equivalent performances, respectively, compared to supervised ImageNet and ChestX-ray14 baselines.