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Abstract

Cardiovascular disease is the most common cause of death worldwide, especially beyond the 

age of 65, with the vast majority of morbidity and mortality due to myocardial infarction and 

stroke. Vascular pathology stems from a combination of genetic risk, environmental factors, and 

the biologic changes associated with aging. The pathogenesis underlying the development of 

vascular aging, and vascular calcification with aging in particular, is still not fully understood. 

Accumulating data suggests that genetic risk, likely compounded by epigenetic modifications, 

environmental factors, including diabetes mellitus and chronic kidney disease, and the plasticity 

of vascular smooth muscle cells to acquire an osteogenic phenotype are major determinants of 

age-associated vascular calcification. Understanding the molecular mechanisms underlying genetic 

and modifiable risk factors in regulating age-associated vascular pathology may inspire strategies 

to promote healthy vascular aging. This article summarizes current knowledge of concepts and 

mechanisms of age-associated vascular disease, with an emphasis on vascular calcification.

Introduction

Cardiovascular disease is the leading cause of death worldwide and increases with age, in 

large part due to the cumulative effects of risk factors such as hypertension, hyperlipidemia, 

diabetes, tobacco use, and sedentary behavior. However, with advancing age, even 

individuals without traditional risk factors gradually develop vascular pathology including 

arterial fibrosis, stiffness, and calcification, increasing the risk of serious cardiovascular 

events. The importance of understanding the interplay between vascular biology and aging, 

independent of traditional risk factors, is of utmost importance.

Isolating vascular aging as an independent biological variable is challenging for several 

reasons. First, vascular aging is often accompanied by one or more cardiovascular disease 

risk factors. Second, there is likely a synergistic effect of both the duration and number 

of cardiovascular risk factors that make it challenging to fully adjust for such variables. 

Although studies of aging exist, they are prone to survival bias in that only individuals 

who survived until older age can be studied if not enrolled earlier in life. Studies such 

as the Progression and Early detection of Subclinical Atherosclerosis (PESA)1 and the 

Asklepios Study2 were designed to circumnavigate these challenges in order to study the 

interactions of age and inflammation with cardiovascular hemodynamics and development 

of atherosclerosis. Studies of human longevity are also challenging due to the costly and 
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time-consuming nature of studying an individual human over a lifespan, and long-lived 

individuals may have different genetic longevity variants and protein signatures.3–5

Improving our understanding of vascular aging and its role in cardiovascular disease 

progression, morbidity, and mortality is essential. The following review discusses what 

is currently known regarding the biology of vascular aging, clinical manifestations of age-

associated vascular disease with a focus on calcification, the impact of genetic risk on 

vascular aging, and the environmental and molecular factors that may influence vascular 

aging and promote longevity (Figure 1).

Clinical manifestations of age-associated cardiovascular calcification

Arterial stiffening and calcification are characteristics of vascular aging, serve as important 

predictors of cardiovascular morbidity and mortality, and are exacerbated by cardiovascular 

disease risk factors and metabolic syndromes.6–9 Arterial calcification is closely associated 

with atherosclerotic plaque evolution, and the area of coronary artery calcification (CAC) 

quantified on noncontrast cardiac computed tomography (CT) has a direct relationship with 

histopathologic coronary plaque area.10 Autopsy studies have consistently shown a strong 

association between calcification of the coronary arteries and atherosclerosis.11 Calcification 

is often categorized as intimal, typically associated with atherosclerotic plaque, or medial, 

often a more diffuse arteriosclerotic process marked by vascular stiffening and associated 

with conditions such as chronic kidney disease and diabetes.

CAC volume and vulnerable plaques with a lipid-rich core, thin cap, or spotty or micro 

calcifications are associated with the risk of future atherosclerotic cardiovascular disease 

(ASCVD) events.12–15 However, within a given coronary artery, there is a wide variation 

between the degree of plaque calcification and severity of luminal stenosis on invasive 

coronary angiography due in part to individual variations in coronary artery remodeling.16

Noninvasive methods to evaluate coronary heart disease risk, such as exercise stress testing, 

typically only identify patients with advanced, obstructive atherosclerotic disease. This is 

of relevance as myocardial infarctions may occur when a non-obstructive atherosclerotic 

plaque ruptures.17 Thus, there has been great interest in characterizing atherosclerosis 

in its pre-flow limiting phase, so that intensified preventive strategies can be instituted. 

Measurement of CAC volume on CT imaging often improves the accuracy of cardiovascular 

risk assessment in intermediate risk adults and may help to determine which patients may 

benefit from initiation of or intensification of risk factor modification strategies such as lipid 

lowering, aspirin, or antihypertensive therapies.18–20

Prospective studies of CAC and incident cardiovascular disease risk from the Multi-Ethnic 

Study of Atherosclerosis and other observational cohorts show a very strong correlation 

between increased CAC and the risk of future cardiovascular disease events.21 CAC scores 

greater than the 75th percentile for age, sex, and ethnicity or more than 100 indicate an 

elevated 10-year ASCVD risk and should lead to more improved lifestyle habits and strong 

consideration of statin therapy in intermediate-risk adults.20 CAC percentiles based on age, 
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sex, and ethnicity are better predictors of lifetime risk, whereas CAC scores provide the best 

estimate of absolute risk in the next decade.19

Traditionally, CAC scores have been used to determine the need for initiating statin therapy. 

However, evidence suggests that while high-intensity statin therapy lowers cardiovascular 

event risk, it paradoxically may modestly increase CAC and potentially stabilize existing 

atherosclerotic plaques.22, 23 While CAC volume has been associated with increased CVD 

risk, CAC density is inversely associated with CVD risk.24 Statin-induced atherosclerotic 

plaque calcification has been attributed to increased plaque alkaline phosphatase activity25 

and disinhibition of the macrophage Rac (Ras-related C3 botulinum toxin substrate)–IL-1β 
(interleukin-1 beta) signaling axis.26

Emerging data has indicated that CAC scores can help in prioritizing the need for more 

intensive medications in higher risk individuals who have above average amounts of CAC 

for their age, gender, and ethnicity. These medications may include glucagon-like peptide 

1 receptor agonists or sodium-glucose cotransporter 2 inhibitors in adults with diabetes 

or proprotein convertase subtilisin/kexin type 9 inhibitors in adults with suboptimal LDL-

cholesterol lowering on maximally tolerated statin therapy. Cainzos-Achirica et al. have 

made a compelling case for measuring CAC to more accurately allocate medications and to 

use the CAC score to enrich study populations of primary prevention randomized controlled 

trials with participants at higher absolute risk of cardiovascular events.27 Conversely, a 

CAC score of zero is a powerful negative predictor of future cardiovascular events in older 

patients, such that it is reasonable to consider withholding statin therapy in the absence of 

other risk factors.28 Additional study of individuals who age without developing vascular 

calcification would be of interest.

Measurement of CAC is well-validated for risk stratification in middle to older-age adults. 

Incorporating CAC scores improves risk stratification for incident sudden cardiac death 

beyond traditional ASCVD risk factors in individuals with low-to-intermediate risk.29 Until 

recently, there was limited data in adults with an age less than 40. Javaid et al recently 

studied the prognostic importance of CAC in nearly 20,000 asymptomatic adults aged 30–45 

years without known ASCVD. They found that any CAC in this age range placed females 

at >90th percentile (high lifetime risk). The presence of any CAC placed White males at the 

90th percentile by age 34 and Black males by age 37.30

Extracoronary cardiovascular calcification, including aortic31, peripheral vascular32, and 

valvular, also predicts cardiovascular risk. Calcific aortic valve stenosis is the most common 

valvular heart disease in the Western world, and progressive fibrocalcific changes in 

the valve leaflets may lead to partial aortic outflow tract obstruction.33 However, aortic 

valve sclerosis (calcification and thickening of the aortic valve), even in the absence of 

hemodynamically significant obstruction of left ventricular outflow track, is independently 

associated with an increased risk of ASCVD events.34–36 Research is ongoing to determine 

if aortic valve calcium scoring using cardiac CT may be useful for risk stratification and to 

identify those at increased risk of developing significant aortic valve stenosis.37
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A striking demonstration of accelerated vascular calcification in adults is calciphylaxis

— a rare but devastating condition that is predominantly seen among patients with end-

stage kidney disease (ESKD) who have typically been dialysis-dependent for over 2–3 

years.38 The primary clinical manifestation of calciphylaxis is painful skin ulcers caused 

by cutaneous ischemia. These patients, almost universally, have diffuse extra-skeletal 

calcification. In addition to metabolic abnormalities of calcium and phosphate metabolism 

originating from the ESKD, over 40% of patients with calciphylaxis have diabetes 

mellitus, and as many as 30% have been exposed to warfarin prior to the development 

of calciphylaxis.39, 40

Warfarin, a vitamin K antagonist, may impair the gamma-carboxylation of a potent 

calcification inhibitor known as Matrix Gla Protein. This may further accelerate the process 

of vascular calcification among patients who are predisposed to it from their underlying 

comorbidities. At present, there is no approved treatment for calciphylaxis, although 

anecdotal reports of successful resolution of calciphylaxis lesions with treatments such 

as vitamin K supplementation and kidney transplantation provide potential insights into 

strategies to reduce calcification and eventually improve clinical outcomes.41, 42

The Biology of Vascular Aging

Vascular aging is a biological variable, conceptually distinct from chronological aging, 

whereby sequential and progressive changes in a cell or whole organism leads to an 

increased risk of dysfunction, disease, and death.43–45 Hallmarks of biological aging include 

cellular dysfunction and vulnerability to cell death, and many of these hallmarks also 

contribute to vascular dysfunction and calcification.46–48

Telomeres shorten with every cellular replication cycle leading to reduced proliferative 

capacity of cells.49, 50 The single strand ends of telomeres are protected to prevent 

the chromosomal ends from appearing as double-stranded DNA breaks, which otherwise 

trigger DNA damage responses.51 Breakdown of these telomere caps can lead to age-

related vascular dysfunction, including increased cellular senescence, oxidative stress, and 

inflammation.52, 53

Senescent cells are not inert and may extrude chemical mediators that further propagate 

an inflammatory phenotype to neighboring cells.54 Vascular smooth muscle cells (SMCs) 

exhibit markers of senescence and calcify in response to uptake of endothelial-derived 

exosomes.55, 56 In addition, microparticles from older individuals’ senescent endothelial 

cells induce vascular SMC calcification57, and human vascular function in vivo inversely 

correlates with the presence of senescence markers in endothelial cells.58 In mice, senolytic 

drugs, which induce death of senescent cells, restore vascular function in aged mice.59

Accumulation of DNA damage, whether due to exogenous factors (such as ionizing 

radiation), replication errors, or impaired repair, contributes to cellular dysfunction in 

part due to the generation of reactive oxygen and nitrogen species and may also lead to 

cardiovascular calcification.60, 61 Increased oxidative stress is also a major factor promoting 
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loss of vascular SMC contractility and increased osteogenic differentiation and calcification, 

characteristics of vascular aging.8, 62

Inflammageing, or the age-related increase in pro-inflammatory markers in the blood 

and tissues63, is likely both a biomarker of biological aging as well as cause of age-

related cardiovascular pathology. Inflammageing may occur due to increased production 

of inflammatory mediators, such as from senescent cells, or due to impaired inflammatory 

resolution, 64, 65 as was recently reviewed in detail elsewhere as a target in atherosclerosis.66 

That endothelial cells stimulated with tumor necrosis factor (TNF) α released microparticles 

containing bone morphogenetic protein 2 (BMP2), which in turn were phagocytosed 

by vascular SMCs and enhanced osteogenesis supports the role for inflammageing in 

promoting age-associated arterial calcification.67 BMP2 is also proinflammatory and 

induces endothelial activation, suggesting these local inflammatory perturbations could 

auto-feedback and escalate age-associated calcification.68 C-reactive protein has been 

implicated in promoting age-associated vascular SMC osteogenic transdifferentiation via 

the Fc fragment of IgG receptor IIa and the p38 mitogen-activated protein kinase pathway.69

Epigenetic marks on histones can dictate global gene expression patterns.44 These epigenetic 

modifications correlate with biological age and more accurately predict lifespan than 

chronological age.70–72 Epigenetic programming occurs during development and informs 

cellular phenotypes. Recent studies show that these developmental programs, or the loss 

of them, help to drive vascular cell dysfunction, including calcification and the loss of the 

contractile phenotype of vascular SMCs.73–79

Genetic risk and cardiovascular disease

While many traditional risk factors become more clinically relevant in middle age, one’s 

genetics are present from birth. Polygenic scores (PGS, also known as genetic risk scores 

or polygenic risk scores) build on results from genome-wide association studies (GWASs) 

to allow estimation of one’s cumulative genetic risk for a given endpoint.80 PGS enable 

identification of patients at high risk for common, complex diseases such as cardiovascular 

disease (CVD), much like carriers of a Mendelian mutation. PGS also allow for improved 

reclassification of patients with cardiovascular disease and early onset myocardial infarction 

and early onset coronary heart disease.81, 82

For example, in the United Kingdom (UK) Biobank, participants with a PGS for coronary 

artery disease (CAD) in the top 5% of the cohort’s PGS distribution have a greater than 

three-fold risk for CAD compared to the rest of the population.83 This is similar to the 

CAD risk conferred by mutations in genes causing familial hypercholesterolemia (FH), 

yet 20 times as many individuals fall into this polygenic high-risk category as carry 

an FH mutation.83, 84 Moreover, PGS have stronger risk stratification power in younger 

populations than older ones.85 PGS have been found to predict incident CAC86–88 and can 

be useful in predicting the optimal age for CAC screening.89 Favorable lifestyles mitigate 

the susceptibility to CAC even if genetic risk is elevated.90
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The Finnish GeneRISK study, a web-based communication tool (KardioKompassi), aims 

to assess the clinical utility of PGS by providing personalized 10-year CVD risk to a 

prospective cohort of 7,342 individuals.91 After only 1.5 years, 71% of the participants were 

re-assessed, and genetic risk was found to motivate positive health behavior. In another study 

with a prospective observational cohort of 3,800 individuals, knowledge of having a high 

CAD PGS was associated with earlier initiation (52 years versus 65 years) and use of a lipid 

lowering therapy (42.4% versus 28.5%).92

The potential clinical utility of PGS is often quantified with the net reclassification index 

(NRI), the percent of patients who would be reclassified into a different risk category upon 

addition of the PGS to conventional CVD risk prediction models (Table 1). An important 

limitation is that PGSs have mostly been derived from populations of European genetic 

ancestry and are generally not available at large commercial labs for clinical use. However, 

the AHA recently issued a scientific statement with guidance for their use.93

Genetics underpinnings of cardiovascular calcification

In contrast to the use of polygenic scores based on common genetic variation to predict 

risk, certain gene defects are responsible for rare, Mendelian disorders of premature 

vascular pathology (Table 2). For example, rare diseases resulting in premature vascular 

calcification stem from abnormalities in the extracellular ATP metabolic pathway.94 ATP is 

released from cells under conditions of stress or death and can act in a paracrine manner 

through its cognate receptors or be metabolized to its constituent parts by a series of 

ectonucleotidases.95 Several ATP metabolites regulate vascular calcification.96 Calcium and 

inorganic phosphate are the building blocks of calcification, but an endogenous inhibitor 

of mineral nucleation is pyrophosphate, which is the product of the breakdown of ATP 

by ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1).96 In a murine model 

of Hutchinson-Gilford progeria syndrome with accelerated vascular aging, pyrophosphate 

treatment inhibited arterial calcification.97

In generalized arterial calcification of infancy (GACI), mutations in ENPP1 lead to a 

deadly disease of extensive medial arterial calcification in large arteries, which presents 

in infancy, and it is the lack of local production of extracellular pyrophosphate that 

drives this devastating phenotype.98 The other product of ENPP1 is AMP, which is 

further metabolized to inorganic phosphate and adenosine by the ectonucleotidase CD73.96 

Inactivating mutations in the gene encoding for CD73 lead to medial arterial calcifications 

in adulthood that phenocopy the pathologies seen in patients with diabetes and ESRD.99, 100 

In this disease (termed Arterial Calcification due to Deficiency of CD73, ACDC), 

mechanistic studies have uncovered that the lack of adenosine signaling via the A2b 

adenosine receptor (A2bAR) drives the osteogenic transition of these SMCs.101 Calcified 

femoropopliteal arteries from patients with non-genetic forms of medial arterial calcification 

exhibit signatures of this rare disease, suggesting the mechanism that operates in this 

pathology.102, 103 Pseudoxanthoma elasticum is characterized by microvascular arterial 

calcification in childhood and is caused by mutations in the ATP binding cassette subfamily 

C member 6 (ABCC6); however, the factor being transported is debated.104, 105 Singleton-

Merton syndrome is caused by a missense mutation in interferon-induced helicase C domain 

Sutton et al. Page 7

Arterioscler Thromb Vasc Biol. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1 (IFIH1)106, and Hutchinson-Gilford progeria syndrome is caused by a splice defect in 

lamin A (LMNA)107, 108; both disorders manifest with premature and extensive aortic 

and valvular calcification. The relationships of these genes to adult, age-related calcific 

disorders, however, remain uncertain.

GWAS have identified several seemingly unrelated genes implicated in CAC. The first 

GWAS for CAC identified two loci at 6p24 and 9p21.109 The former is nearest to the 

phosphatase and actin regulator 1 (PHACTR1) gene, which plays a role in endothelial 

cell survival. Targeted deletion at this locus increases the expression of nearby gene 

endothelin 1 (EDN1), a potent vasoconstrictor known to promote atherosclerosis.110 In an 

exome-wide association meta-analysis, protein-coding variants in apolipoprotein B (APOB) 

and apolipoprotein E (APOE) were also associated with CAC among patients without overt 

coronary heart disease, thus linking CAC, perhaps unsurprisingly, with lipid metabolism.111

More recently identified is the association between clonal hematopoiesis of indeterminate 

potential (CHIP) with CAC. CHIP carriers had 3.3 times higher CAC than non-carriers.112 

Insufficiency of tet methylcytosine dioxygenase 2 (TET2), a gene commonly mutated 

in CHIP, exaggerated atherosclerosis in mice,112 which has been attributed to TET-2 

deficient macrophages exhibiting an increase in Nucleotide-binding oligomerization domain, 

Leucine rich Repeat and Pyrin domain containing (NLRP) 3 inflammasome-mediated IL-1β 
secretion.113 Finally, matrix gla protein (MGP) is considered to be one of the strongest 

endogenous inhibitors of vascular calcification, and putatively disruptive polymorphisms in 

MGP correlate strongly with subclinical CAC.114 These findings highlight the diversity of 

known cell types (e.g., endothelial, SMC, hematopoietic) and signaling pathways involved in 

CAC development.

GWAS have also identified an abdominal aortic calcification (AAC) risk locus on 

chromosome 7 in the intergenic region between histone deacetylase 9 (HDAC9) 

and twist family bHLH transcription factor 1 (TWIST1).115 Knockdown of HDAC9 
reduced calcification, contractility, and RUNX2 expression of aortic SMCs induced to 

undergo osteogenic transformation.115 Conversely, overexpression of HDAC9 amplified 

RUNX2 expression and increased calcification.115 Analogously, Hdac9-null mice were 

protected from calcification and mortality compared to haploinsufficient and wild-

type mice in a model of medial vascular calcification (MGP deficiency).115 HDAC9 

also promotes endothelial-to-mesenchymal transition and unfavorable atherosclerotic 

plaque composition.116 In rat SMC calcification assays, TWIST1 knockdown increased 

calcification, and overexpression decreased calcification.117

Aortic valvular (AV) calcification has been associated with the lipoprotein a (LPA) locus 

on chromosome 6 at genome-wide significance, and minor alleles in this locus confer as 

much as a two-fold increase in the odds of AV calcification and an increased risk for aortic 

stenosis.118 Mendelian randomization analysis demonstrated a causal role for genetically 

determined Lp(a) levels in the development of AV calcification. In the same study, two 

variants near the proinflammatory gene, interleukin 36 gamma (IL1F9), were associated 

with mitral annular calcification at a genome-wide level of significance.
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In a separate GWAS of calcific aortic stenosis, the association of AV disease with LPA 
was redemonstrated, and two additional risk loci near palmdelphin (PALMD) and testis 

expressed 41 (TEX41) were identified.119 These loci are also associated with bicuspid aortic 

valve and congenital septal defects, potentially implicating cardiac developmental pathways 

in calcific aortic valve disease.

Environmental and modifiable factors that accelerate calcification

There are several clinical conditions where vascular calcification is markedly accelerated, 

including metabolic abnormalities such as diabetes mellitus and chronic kidney disease 

(CKD).120 In these conditions, calcification and mortality do not track with chronological 

age, as observed in the general population. Instead, patients show accelerated cardiovascular 

mortality, such that young adults with ESKD requiring chronic dialysis have a risk of 

cardiovascular mortality similar to octogenarians.121, 122 Emerging evidence suggests that 

accelerated vascular aging may contribute to the development of vascular calcification and 

increased mortality in these patient groups.123–126

Using human tissue samples, several studies have documented the presence of DNA damage 

(gamma H2 histone family member X (gH2AX) and 8-oxo-2’-deoxyguanosine (8-oxo-Dg)) 

and senescence markers, such as the cell cycle regulators p21 and p16, in calcified arteries 

of patients with CKD and diabetes.126 Compelling evidence comes from studies of the 

arteries of children with CKD on dialysis, which showed elevated oxidative DNA damage 

and senescence in medial vascular SMCs.124 Numerous ex vivo and in vitro studies of SMCs 

have shown that a number of environmental factors contribute to oxidative stress and DNA 

damage in these disease states. These include elevated glucose and dysregulated mineral 

metabolism, with elevated phosphorus thought to be a driver of premature aging, as well as 

various uremic toxins and mitochondrial damage.120, 127–131

DNA damage signaling and cellular senescence drive a number of processes that lead to 

vascular SMC calcification, including osteogenic differentiation and cell death. Two key 

DNA damage signaling pathways upstream of vascular SMC osteogenic differentiation 

are ataxia telangiectasia mutated (ATM) and poly-ADP ribose polymerase (PARP), and 

blocking either of these pathways can alleviate mineralization both in vitro and in vivo in 

models that mimic the dysregulated mineral metabolism observed in CKD.77, 132

These signaling pathways exert their effects on osteogenic differentiation of SMCs in a 

number of ways, and many of them converge to the Runt-related transcription factor-2 

(Runx2), the major transcription factor driving osteogenic phenotype transition.133–139 

Oxidative stress-induced Runx2 upregulation plays an essential role in vascular SMC 

calcification, while SMC-specific Runx2 deletion protects from the development of 

vascular calcification in atherosclerosis and CKD.137–139 Multifaceted posttranslational 

modifications (PTMs) of Runx2, including phosphorylation, acetylation, ubiquitination, 

and O-GlcNAcylation, modulate Runx2 protein stability, cellular localization, and its 

interaction with other transcription factors and target genes that are critical for its osteogenic 

transcriptional activity.131
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Recent studies have linked protein O-GlcNAcylation with Runx2 upregulation and 

SMC calcification in diabetes.140–143 In addition, Runx2 is a component of the DNA 

damage response (DDR). In response to elevated calcium and phosphate, Runx2 becomes 

PARylated, leading to the selective activation of its downstream osteogenic targets.139

Another mechanism whereby metabolic changes can influence vascular calcification include 

epigenetic modifications to DNA or histones. In many instances, these pathways also 

intersect with DNA damage signaling and senescence. Sirtuins, a family of histone 

deacetylases, play a role in regulating the DDR and senescence in vascular SMCs and hence 

osteogenic differentiation and calcification. Sirt1 is reduced in the vasculature of patients 

with diabetes mellitus, and its activation leads to efficient DNA repair and normalizes 

vascular SMC phenotype.144 Similarly, sirtuin 6 is reduced in the vessels of patients with 

CKD. Studies in vitro show that sirtuin 6acts to deactylate Runx2, leading to its nuclear 

export and degradation, thus preventing osteogenic differentiation.145

An additional feature of the persistent DNA damage and cellular senescence is activation 

of the senescence-associated secretory phenotype (SASP) and activation of innate immune 

signals by vascular SMC, including interleukin-6 (IL-6) and BMP2 as relevant to 

arteriosclerotic calcification.124, 146 The connections to osteogenic BMP-Msx-Wnt signaling 

are presented below.

Activation of the BMP2/Msx/Wnt signaling pathways increases SMC calcification in vitro 
and in vivo.147–150 Wnts are secreted, fatty acylated glycoproteins that signal through G-

protein coupled receptors of the Frizzled (Fzd) family or via GPR124.151–153 Signaling 

is modulated by co-receptors including low density lipoprotein related proteins LRP5 and 

LRP6 and several transmembrane receptor tyrosine kinase-like proteins.154, 155 Wnts are 

fatty acylated and very hydrophobic -- associated with membranes, extracellular vesicles, 

and lipoprotein particles.156 The vertebrate genome encodes 19 Wnt ligands and 10 Fzd 

receptors with downstream signaling relays characterized as either canonical (requiring β–

catenin) or noncanonical (calcium/NFAT, Jun kinase, planar cell polarity).157, 158 Alternative 

Wnt signaling through transcriptional coactivators YAP and TAZ resulting in osteogenic 

differentiation has also been described.157, 159

The first robust clue that Wnt signaling might be involved in vascular aging phenotypes 

came from the work of Mani and colleagues. They identified that a missense mutation in 

LRP6 (R611C) resulted in precocious osteoporosis and coronary artery disease in an Iranian 

kindred.160 This hypomorphic allele causes dysregulated signaling bias between canonical 

and noncanonical Wnt relays in vascular SMCs as necessary to stabilize phenotype.161 

Consistent with this, others demonstrated that loss of SMC LRP6 increases noncanonical 

Wnt signals that activated SMC osteochondrogenic gene expression, and promoted vascular 

calcification, and arteriosclerotic stiffening in mice susceptible to atherosclerosis.162, 163

Interestingly, expression of non-canonical Wnt ligands is increased in calcific aortic 

valve disease and with cardiac fibrosis.164–167 Age-related mitochondrial dysfunction and 

ER stress bias towards non-canonical Wnt signaling as well.168, 169 These data suggest 

that development of LRP6 mimetics, or other strategies that restrain specific aspects of 
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non-canonical Wnt signaling, may help prevent or mitigate progression of cardiovascular 

fibrocalcific disease processes with aging.170

A common theme in all of the age-associated cardiovascular “Wnt-opathies” is activation of 

innate immunity, a key feature of inflammation, and some features of cell senescence (vide 

infra).170–172 Pathogen- and senescence –associated programs elevate the expression of Wnt 

genes either directly or indirectly via TNF, IL1-β, or receptor for AGE (RAGE) ligands 

including oxylipids.170 Importantly, senescent cells that accrue in aging tissues actively 

contribute to the inflammatory phenotypes.173–176 A gene set containing numerous direct 

BMP/Wnt modulators (e.g., Bmp2, Wnt2, Wnt16, Dkk1, etc.) and targets of noncanonical 

Wnt action was shown to demarcate senescent cells in multiple tissues.174 However, the 

conflicting literature on the role of Wnt agonists in promoting or preventing cell senescence 

suggests that canonical-noncanonical signaling bias and duration of signal exposure deserves 

additional investigation.177, 178

Therapeutic considerations

There are no currently approved therapies specifically targeting prevention or promoting 

regression of vascular or valvular calcification for the general population at any age. 

Metformin is associated with reduced coronary calcification in animal and human 

studies179, 180; possible mechanisms included reduced osteoprotegerin181 production and 

decreased oxidative stress.182, 183 Senolytic combinations of desatinib and quercetin 

were shown to reduce vascular calcification in animal models, attributed to reduced 

oxidative stress.59, 184 Also in animal models, PARP inhibition with specific inhibitors 

or minocycline185 reduced vascular calcification, as has pyrophosphate administration.97 

No therapy is available to treat valvular calcification except surgical and transcatheter 

interventions. Ample opportunities remain to apply known mechanisms of aging and 

calcification to clinical cardiovascular care.

Conclusions and perspective

In this review, we provide a high-level summary of the current knowledge of vascular aging, 

emphasizing the clinical manifestations, genetic diatheses, environmental risk factors, and 

emerging molecular mechanisms of cardiovascular calcification. Age-associated pathways 

critical to the development of vascular calcification are highlighted, including DNA damage 

repair and senescence signals, innate immunity, activating BMP2-Msx-Wnt pathways, and 

the Runx2 transcription factor. Arterial SMC phenotypic switching contributes significantly 

to vascular aging -- manifested as abnormal conduit vessel physiology and mechanical 

integrity due to arteriosclerotic calcification, fibrosis, matrix remodeling, and impaired 

contractile functions. Even though key discoveries have been made, much remains to be 

learned concerning the regulation of arteriosclerotic calcification and its relationship to the 

vascular SMC phenotype with aging.

For instance, both Runx2 and Msx2 directly reduce the expression of SMC contractile 

markers and promote the osteogenic phenotype, and Runx2 and Msx2 proteins interact 

to form a transcriptional complex.137, 186–188 On the other hand, O-GlcNAcylation via 
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Ogt has also emerged as an important regulator for the master SMC transcription factors, 

including myocardin, serum response factor (SRF), and KLF4.141, 142 However, the reasons 

why activities of Runx2, Msx2, and Ogt in the SMC lineage – absolutely required for 

osteogenic differentiation and matrix deposition – can become dissociated from arterial 

matrix mineralization in some settings remains to be determined.189 Incorporation of 

multi-omics, systems biology, single cell sequencing, and computational studies are novel 

approaches for the identification of new pathways, candidate drug targets, and repurposing 

of old drugs to treat vascular and valvular calcification.187, 190, 191

Endothelial cell dysfunction, with or without the endothelial-mesenchymal transition, 

also impacts the SMC phenotype via juxtacrine/paracrine signals that controls osteogenic 

potential, and may be one such determinant.192, 193 Likewise, key components of the 

vascular extracellular matrix such as nitogen-2 also control SMC plasticity, and matricrine 

cues in cardiovascular aging are poorly characterized.194 Of note, in utero or childhood 

environmental exposures impair endothelial functions decades later in adulthood.195, 196

Therefore, a better understanding of the vascular epigenetic landscape that regulates vascular 

SMC phenotypic plasticity during health span and lifespan will be needed to mitigate age-

associated vascular dysfunction. Finally, it has become abundantly apparent that duration 

of cardiometabolic insult exposure197 and sex significantly impact age-dependent responses, 

and women experience a much steeper increase in cardiovascular disease severity with 

age, later in life.198 Other age-related vasculopathies exhibit sex dimorphism as well, 

including aneurysmal remodeling, that is determined by sex chromosome content.199 Thus, 

additional studies are warranted to uncover in even greater detail the mechanisms controlling 

vascular SMC phenotypic stability vs. plasticity, phenotypic switching with osteogenic 

re-programming, and vascular mineralization as a function of environment, cardiometabolic 

insult, matricrine cues, (epi)genetics, age, and sex. Insights from these studies will afford 

novel targets and therapeutic strategies necessary to halt, or potentially reverse, processes of 

age-associated vascular calcification.
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Highlights

• The pathogenesis underlying the development of vascular aging, and vascular 

calcification with aging in particular, is still not fully understood.

• Genetic risk, likely compounded by epigenetic modifications, environmental 

factors, including diabetes mellitus and chronic kidney disease, and the 

plasticity of vascular smooth muscle cells to acquire an osteogenic phenotype 

are major determinants of age-associated vascular calcification.

• Arterial SMC phenotypic switching contributes significantly to vascular aging 

-- manifested as abnormal conduit vessel physiology and mechanical integrity 

due to arteriosclerotic calcification, fibrosis, matrix remodeling, and impaired 

contractile functions.

Sutton et al. Page 28

Arterioscler Thromb Vasc Biol. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Vascular aging and aging-accelerated vascular disease. Genetic and environmental factors 

induced endothelial cell dysfunction and vascular smooth muscle cell phenotypic 

modulation that leads to vascular remodeling and development of cardiovascular disease.
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Table 1.

Net Reclassification Index of Polygenic Risk Scores

Publication Score description Outcome Group 
(Ancestry)

# of 
samples

Continuous 
NRI (%)

Categorical NRI 
(%)

Elliot et al., JAMA 

2020
a200

Lassosum Incident CAD in 
UKBiobank

Events (EUR) 6272 15.4 (13.0, 
17.9)

4.4 (3.5, 5.3)

Non-events 
(EUR)

346,388 15.8 (15.5, 
16.1)

−0.4 (−0.5, −0.4)

All (EUR) 352,600 31.2 (28.7, 
33.7)

4.0 (2.1, 4.9)

All (EUR) 4,168 1.8 (−0.2, 3.6)

All (EUR) 2,101 0.1 (−3.8, 7.6)

Mars et al., Nature 
Medicine 202082

LDpred from 
external GWAS

Incident CHD in 
FINRISK

Events (FIN) 1,209 0.9 (−0.02, 2.0)

Non-events 
(FIN)

18,956 0.2 (−0.1, 0.5)

All (FIN) 20,165 1.1 (−0.1, 2.2)

Hindy et al., ATVB, 
2020201

LDpred from 
Khera et al

Incident CAD in 
Malmö Diet and 
Cancer Study

Events (EUR) 815 17.3 (8.8, 19.9)

Non-events 
(EUR)

4,870 −0.9 (−1.8, −0.2)

All (EUR) 16.5 (7.6, 18.2)

LDpred from 
Khera et al

Incident CAD in 
UKBiobank

Events (EUR) 7,708 9.1 (7.7, 10.5)

Non-events 
(EUR)

317,295 −0.6 (−0.7, −0.6)

All (EUR) 325,003 8.5 (7.1, 9.8)

Riveros-McKay, Circ 
Gen & Prec Med, 

2021
a202

Novel PRS Incident CAD in 
UKBiobank

Events 4,122 5.97 (4.83–7.12)

Non-events 24,434 −0.09 (−0.26, 
0.08)

All 186,451 5.88 (4.73,7.04)

Sun et al., PLOS Med, 

2021
b203

metaPRS Incident CVD in 
UKBiobank

Events (EUR) 5680 10.2 (7.2, 
13.2)

0.3 (−0.7,1.2)

Non-events 
(EUR)

300,974 12.6 
(12.2,13.0)

2.2 (1.8, 2.6)

Weale et al., American 
Journal of Cardiology, 
2021204

LDpred of custom 
GWAS summary 
statistics

Incident CVD 
combined across 
UKBiobank, MESA, 
ARIC

Events (EUR) 2096 2.7 (1.17–4.22)

Events (AFR) 309 2.24 (0.39–4.08)

Lu et al., European 
Heart Journal, 2022205

Custom PRS of 
CAD and CAD-
related traits in 
EAS and EUR

Incident CAD in 
China-PAR

Events (EAS) 840 15.7 (7.7, 
22.2)

3.2 (0.9–5.8)

Non-events 
(EAS)

32,859 10.1 (9.1, 
11.1)

0.3 (0.1–0.5)

All (EAS) 33,699 25.8 (18.5, 
32.5)

3.5 (1.2–6.0)

Stienfeldt, et al. Lancet 
Digital Health, 2022 
c206

6 PGS from PGS 
Catalog

Incident MACE in 
UKBiobank

Non-events 
(majority 
EUR)

371,909 0.05 (0.03, 0.12)

Events 
(majority 
EUR)

23,790 1.12 (0.62,1.54)
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Publication Score description Outcome Group 
(Ancestry)

# of 
samples

Continuous 
NRI (%)

Categorical NRI 
(%)

All (majority 
EUR)

394,713 1.16 (0.66, 1.59)

Net reclassification index (NRI) for ASCVD-Pooled Cohorts Equation (PCE) versus Pooled Cohorts Equation with polygenic score in several 
cohorts with various polygenic scores and primary outcomes used. Categorical NRI uses the 7.5% 10-year risk of ASCVD threshold unless 
otherwise noted.

a
NRI multiplied by 100 as pseudo percentage with range −200 to 200

b
Comparison made between conventional risk factors alone and with polygenic score. Categorical NRI using <5%, 5–7.5%, and ≥7.5% 10-year 

risk thresholds according to 2019 ACC/AHA guideline

c
Comparison made between a neural network CVD risk predictor with and without additional of polygenic score predictors. Categorical NRI using 

10% risk thresholds.

Abbreviations: AFR African genetic ancestry, CAD Coronary Artery Disease, CHD Coronary Heart Disease, CVD Cardiovascular disease, EAS 
East Asian genetic ancestry, EUR European genetic ancestry, MACE major adverse cardiac event
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Table 2.

Genetic Determinants of Vascular and Valvular Calcification

Genomewide Significant Loci

Calcific Disorder

Gene/Locus
(Lead Single Nucleotide 
Polymorphism) Gene/Locus description Study

Coronary artery 
calcification

PHACTR1/EDN1
(rs9349379; chr 6)

phosphatase and actin regulator 1; 
endothelial cell survival; upregulates 
endothelin 1 (EDN1), a vasoconstrictor

O’Donnell et al., 2011109; 
Gupta et al., 2017110

9p21
(rs1333049; chr 9)

CDKN2A/CDKN2B O’Donnell et al., 2011109

APOB
(rs5742904; chr 2)

apolipoprotein B Natarajan et al., 2016111

APOE
(rs7412; chr 19)

apolipoprotein E Natarajan et al., 2016111

 

Abdominal aortic 
calcification

HDAC9/TWIST1
(rs57301765; chr 7)

histone deacetylase 9; modulator of 
osteogenic phenotype; promotes endothelial-
to-mesenchymal transition twist family 
bHLH transcription factor 1

Malhotra et al., 2019115; 
Lecce et al., 2021116; 
Nurnberg et al., 2020117

 

Aortic valvular 
calcification

LPA
(rs10455872; chr 6)

lipoprotein a; causal role for Lp(a) in AV 
calcification

Thanassoulis et al., 2013118; 
Helgadottir et al., 2018119

PALMD
(rs7543130; chr 1)

palmdelphin; also associated with congenital 
heart disease

Helgadottir et al., 2018119

TEX41
(rs1830321; chr 2)

testis expressed 41; also associated with 
congenital heart disease

Helgadottir et al., 2018119

 

Mitral valvular 
calcification

IL1F9
(rs17659543; chr 2)

interleukin 36 gamma; proinflammatory Thanassoulis et al., 2013118

 

Mendelian Disorders

Calcific Disorder Gene(s) Description Study

Generalized arterial 
calcification of infancy 
(GACI)

ENPP1 or ABCC6 ectonucleotide pyrophosphatase/
phosphodiesterase 1; ATP binding cassette 
subfamily C member 6; purine and 
pyrophosphate metabolism

Rutsch et al., 200398

Arterial Calcification due 
to Deficiency of CD73 
(ACDC)

CD73 (aka NT5E) Ecto-5’-nucleotidase or cluster of 
differentiation 73; purine metabolism

St. Hilaire et al., 2011100

Pseudoxanthoma 
elasticum

ABCC6 ATP binding cassette subfamily C member 
6; purine and pyrophosphate metabolism

Jansen et al., 2013104
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