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ABSTRACT
Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, has affected millions of individuals 
with various implications. Consistent with the crucial role of the microbiome in determining 
health and disease in humans, various studies have investigated the gut and respiratory micro
biome effect on the COVID-19. Microbiota dysbiosis might support the entry, replication, and 
establishment of SARS-CoV-2 infection by modulating various mechanisms. One of the main 
mechanisms that the modulation of respiratory microbiota composition during the COVID-19 
infection affects the magnitude of the disease is changes in innate and acquired immune 
responses, including inflammatory markers and cytokines and B- and T-cells. The diversity of 
respiratory microbiota in COVID-19 patients is controversial; some studies reported low microbial 
diversity, while others found high diversity, suggesting the role of respiratory microbiota in this 
disease. Modulating microbiota diversity and profile by supplementations and nutrients can be 
applied prophylactic and therapeutic in combating COVID-19. Here, we discussed the lung 
microbiome dysbiosis during various lung diseases and its interaction with immune cells, focusing 
on COVID-19.
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Introduction

Although severe acute respiratory syndrome coronavirus-2 
(SARS-CoV-2) was first reported in China’s Hubei pro
vince in November 2019, it rapidly spread globally and 
caused Coronavirus Disease 2019 (COVID-19) pandemic 
disease [1]. Despite the approval of some preventive vac
cines and the availability of vaccinization programs, 
COVID-19 has affected around 311 million people world
wide by now (11 January 2022). Mild fever, fatigue, dry 
cough, sore throat, diarrhoea, and anosmia are the most 
common symptoms in SARS-CoV-2-infected patients [2]. 
Many infected people remain asymptomatic or have only 
mild upper respiratory tract symptoms, but others exhibit 
acute respiratory distress syndrome (ARDS) as well as 
pneumonia, necessitating intubation that can experience 
fatal complications [3]. Alongside respiratory complica
tions, infection with SARS-CoV-2 can cause acute kidney 
injury, vascular thrombosis, endothelial sloughing, and 
shock [4]. Thus, multi-organ failures and complications 
imposition great stress for healthcare systems and pro
longed hospitalization [5].

The microbiome is an aggregate of microorganisms, 
including bacteria, fungi, viruses, and protozoans, that 
reside in a particular microenvironment on or within 
the human body and are involved actively in cellular 
metabolisms and functions [6]. There is evidence that 
the interaction between microbes and humans plays 
a decisive role in determining the health or disease 
status in the human body owing to the contribution 
of microbiomes to the improvement or impairment of 
immune and metabolic functions [7]. Thus, under
standing host-microbe interactions and dysbiosis of 
the microbiome could be useful in diagnosing and 
introducing appropriate treatment for diseases. Due to 
the high expression of the angiotensin-converting 
enzyme 2 (ACE2), a receptor of the SARS-CoV-2 
virus, in respiratory and gastrointestinal tracts [8], 
some emerging scientific and clinical investigations 
have indicated the dysbiosis of the gut and respiratory 
microbiome during COVID-19 infection [9,10]. For 
example, the analyses of stool microbiome from 15 
patients during hospitalization in Hong Kong revealed 
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that COVID-19 patients exhibited remarkably reduced 
bacterial diversity and increased abundance of oppor
tunistic ones, such as Rothia, Streptococcus, 
Actinomyces, and Veillonella [11]. On the other hand, 
the invasion of the SARS-CoV-2 virus towards the 
lungs for beginning COVID-19 disease is related to 
the lung infection and subsequent immune responses 
in which the lung microbiome might play an essential 
role in the initiation, development, and response to 
therapeutic agents. This review will summarize the 
lung microbiome dysbiosis during various lung diseases 
and its interaction with immune cells and responses. 
We focused on the alterations in the lung microbiome 
in patients infected with COVID-19 and how these 
alterations can be used to improve treatment outcomes.

Lung microbiome dysbiosis during diseases

The studies based on the traditional culture systems 
have reported that the bronchial tree in healthy indivi
duals is sterile [12,13]. Nowadays, the advent of high- 
throughput sequencing technologies and culture- 
independent techniques, such as sequencing the 16S 
rRNA gene, revealed that the bronchial tree is not 
sterile, even in healthy people. The lungs are 
a microbial ecosystem with a collection of microorgan
isms, both viable and non-viable, colonizing in the 
bronchial tree and parenchymal tissues, and are essen
tial for health, including immunoregulation, epithelial 
integrity, and colonization resistance [14]. The main 
genera have been identified in healthy lungs are 
Streptococcus, Prevotella, Fusobacterium, Haemophilus, 
and Veillonella [15,16]. Compared to the gastrointest
inal (GI) tract, which contains 1011-1012 bacteria per 
gram of tissue, the microbial population in the lungs of 
healthy individuals is relatively lower (about 103-105 

bacteria per gram of tissue) [17]. It is reported that 
there are 10–100 bacteria per 1000 human cells in the 
lung tissue samples [18], and three factors determine its 
composition: 1) microbial immigration, such as direct 
mucosal dispersion, bacteria inhalation, and microas
piration; 2) microbial elimination, such as host defence 
responses, mucociliary clearance, and cough; and 3) 
regional growth conditions, such as pH, temperature, 
and nutrient availability [19,20].

It has been shown that both acute and chronic 
respiratory diseases dramatically alter the lung micro
biome composition (Table 1). For instance, patients 
with idiopathic pulmonary fibrosis (IPF) [35], cystic 
fibrosis (CF) [36] and bronchiectasis [37] have exhib
ited an increase in bacterial burden in their lower air
ways. In addition to changes in the load of bacteria, 
some specific bacteria are frequently identified in the 

airways of unhealthy people, such as Streptococcus, 
Veillonella, Neisseria, and Haemophilus (in IPF); 
Staphylococcus aureus, Pseudomonas aeruginosa, and 
Burkholderia spp. (in CF); and Haemophilus, 
P. aeruginosa, Prevotella, and Veillonella (in bronchiec
tasis) [38]. In asthma, bacterial composition and dys
biosis in the lung airway contribute to the severity of 
the disease and its pathogenesis. Using 16S rRNA-based 
methods, Huang et al. indicated airway dysbiosis in 
patients with the severe asthmatic condition compared 
with milder asthma which promotes inflammatory 
responses by recruiting neutrophils in a Th17- 
dependent manner. They also found that the lungs of 
patients with severe asthma were remarkably enriched 
with Actinobacteria and Klebsiella [39]. In patients with 
chronic obstructive pulmonary disease (COPD), the 
microbiome analysis revealed a reduction in microbial 
diversity associated with remodelling of the alveolar 
and bronchiolar tissue, the infiltration of CD4+ 
T-cells, and emphysematous destruction. The COPD 
patients exhibited an increase in Actinobacteria and 
Proteobacteria and reduced Bacteroidetes and 
Firmicutes. This alteration in microbiota composition 
was associated with the infiltration of neutrophils, 
B-cells, and eosinophils, suggesting the correlation 
between host immune responses and lung dysbiosis 
[40]. Furthermore, numerous studies showed that the 
gut microbiota composition in lung cancer patients is 
significantly different from healthy control ones, and 
the respiratory microbiome dysbiosis contributes to 
inflammation responses and tumorigenesis of lung can
cer [41]. A systematic review conducted on 41 studies 
indicated that pre-existing Mycobacterium tuberculosis 
is associated with the risk of lung cancer [42]. The 
examination of bronchoalveolar lavage fluid (BALF) 
samples from 28 patients (20 with lung cancer and 8 
at the benign stage) revealed the increase of genera 
Megasphaera and Veillonella in patients with lung can
cer and TM7 and Firmicutes phyla compared with 
patients at the benign stage [31]. 

In addition to the mentioned pathological complica
tions, there is evidence that smoking is another condition 
that affects the lung microbiota. Smoking and exposure to 
tobacco could increase the risk of infection with bacteria by 
increasing the microbial diversity at the lower respiratory 
tract [43]. Cigarette smoking increases the risk of ARDS in 
patients following severe trauma. The lung of these patients 
with smoking status was enriched with pathogenic bacteria, 
including Haemophilus, Fusobacterium, Streptococcus, 
Prevotella, and Treponema [44]. Also, cigarette smoking 
could alter virus populations in the lungs. Gregory et al. 
indicated that the abundance of bacteriophages infecting 
Actinomyces, Haemophilus, Xanthomonas, Rodoferax, 
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Aeromonas, Prevotella, and Capnocytophaga was increased 
in smokers, whereas Morganella and Enhydrobacter bacter
iophages were prevailing in non-smokers [45].

Immune responses against SARS-CoV-2 
infection

The intracellular adherence and tight junctions act as 
connectors of adjacent cells as well as barriers to regulate 
paracellular permeability. The impairment of barrier 
function during diseases increases epithelial permeability 
and, subsequently, pathogen entry [46]. During infection 
with viruses, they can bind to their cognate cellular recep
tors and induce the stimulation of pattern recognition 
receptors (PRRs) in the epithelial cells, resulting in the 
secretion of molecules, enzymes, peptides, reactive oxy
gen species (ROSs), and chemokines with anti-microbial 
activities. Collectively, the released molecules recruit 
immune cells and facilitate their communication with 
each other, contributing to the immune responses that 
are essential for controlling the infection [47]. In the case 
of COVID-19, the infection of alveolar type II cells with 
higher expression of ACE2 receptor through SARS-CoV 
-2 disrupts the critical functions of these cells, including 
stabilization of airway epithelial barrier, airway regenera
tion following injury, and production of pulmonary sur
factant [48]. These cells also are involved in the immune 
responses against pathogens and alveolar damage by pro
ducing cytokines to stimulate the recruitment and activa
tion of immune cells, especially macrophages, in defence 
of the alveolus [49]. Following the binding of the S1 
subunit in the viral spike (S) protein, through its receptor- 
binding domain (RBD), to the receptor, the S protein 
undergoes protease cleavage by serine protease trans
membrane protease serine 2 (TMPRSS2), resulting in 
uncovering the S2 site and subsequent membrane fusion 
between the virus and alveolar type II cells, endocytosis of 

the virus, and release of viral compartments into the cell 
cytoplasm [50,51]. Neuropilin 1 (NRP1) and Furin also 
have been identified as co-factors of virus internalization 
[51,52]. The infected cells release damage-associated 
molecular patterns (DAMPs) and pathogen-associated 
molecular patterns (PAMPs), for-example viral RNA, 
which are recognized by various intracellular PRRs, like 
RIG-I/MDA5/MAVS/TRAF3/IRF3/IRF7/type I IFNs and 
TLRs/TRIF/MyD88/TRAF6/p65/p50/TNF pathways 
(Figure 1). Certainly, targeting these pathways could be 
beneficial therapeutic strategies in virus-induced diseases. 
For example, targeting TNF- and IFN-mediated 
responses during the respiratory syncytial virus infection 
protects lung cells against the harmful effects of the viral 
infection [53,54]. 

The involvement of the host immune system is char
acterized by the contribution of the innate immune sys
tem in the first phase. A typical alveolar immune 
landscape in the healthy lung is composed mainly of 
alveolar macrophages located at the air-liquid interface 
and a few granulocytes, including eosinophils and baso
phils [55]. Triggering PRR signalling within cells involved 
in the innate immune responses elevates the levels of pro- 
inflammatory factors, including tumour necrosis factor 
(TNF)-α and granulocyte macrophage-colony stimulating 
factor (GM-CSF) in the plasma of COVID-19 patients as 
well as interleukin (IL)-1β, IL-6, and IL-8, in their BALF 
and plasma [56–59]. Additionally, PRR signalling could 
promote the recruitment and infiltration of neutrophils, 
monocytes, and T-cells to the infection site by upregulat
ing CXCL8, CCL2, and CCL7 [57,60]. Importantly, the 
signalling of PRR activates the production of anti-viral 
type I IFNs within plasmacytoid dendritic cells (DCs) 
[61]. IFNs could stimulate phagocytosis in macrophages 
and the Janus kinase signal transducer and activator of 
transcription (JAK-STAT) pathway, which directs the 
polarization of anti-viral helper T-cells [62].

Table 1. Alteration of lung microbiome during respiratory diseases.
Disease Sample type Sample size Microbiome alteration Ref

CF BAL 95 ↑Streptococcus, Staphylococcus, Pseudomonas [21]
CF Sputum 17 ↑Staphylococcus, Pseudomonas, Achromobacter, Stenotrophomonas [22]
CF BAL 12 ↑Burkholderia, Streptococcus, Prevotella, Porphyromonas, Haemophilus, Veillonella [23]
COPD Sputum 16 ↑Pseudomonas, Moraxella, Corynebacterium [24]
COPD Lung tissue 24 ↑Firmicutes, Lactobacillus [18]
COPD Sputum 8 ↑Fusobacterium, Bacteroidetes, Actinobacteria, Firmicutes, Streptococcus, ↓Proteobacteria [25]
Asthma Nasopharyngeal 234 ↑Proteobacteria, Streptococcus [26]
Asthma Bronchoscopy 42 ↑Neisseria, Haemophilus, Porphyromonas, Fusobacterium [27]
Asthma BAL and endobronchial brushing 58 ↑Pseudomonas, Lactobacillus, Rickettsia [28]
Lung cancer Saliva 30 ↑Selenomonas, Veillonella, Capnocytophaga, ↓Streptococcus, Neisseria [29]
Lung cancer Lung tissues and bronchoscopy 42 ↑Streptococcus, ↓Staphylococcus [30]
Lung cancer BAL 28 ↑Veillonella, Megasphaera [31]
IPF BAL 55 ↑Streptococcus, Staphylococcus [32]
IPF BAL 65 ↑Streptococcus, Veillonella, Haemophilus, Neisseria [33]
IPF Bronchoscopy 35 ↑Pseudomonas, Streptococcus, Haemophilus, Prevotella, Veillonella [34]

CF, cystic fibrosis; BAL, bronchoalveolar lavage; COPD, chronic obstructive pulmonary disease; IPF, idiopathic pulmonary fibrosis. 

1078 T. ZHU ET AL.



Besides the innate immune system, adaptive 
immune responses in COVID-19 patients contribute 
to managing and controlling viral infection. The lysed 
and damaged epithelium cells in the lung and sube
pithelial DCs present virus antigens to CD8+ and CD4 
+ T-cells, leading to cytotoxicity activation against 
virus-infected cells and induction of apoptosis as well 
as promoting differentiation of CD4+ T-cells towards 
Th1, Th2, Th17, and T follicular helper (FH) [63]. 
Recently, Pavel et al. indicated that the imbalance in 
Th2/Th1 and Th17/Th1 cytokines could affect the out
comes in patients with SARS-CoV2 infection and is 
related to their mortality risk [64]. Also, TFH cells 
help the development of B-cells into plasma cells, pro
moting the production of virus-specific IgG, IgM, and 
IgA [63]. Mazzoni et al. exhibited that asymptomatic 
patients showed lower proportions of the viral-specific 
CD4+ T-cells and lower humoral response, suggesting 
that the frequency of SARS-CoV-2-reactive T-cells is 
associated with the disease severity. Furthermore, they 
revealed that asymptomatic individuals show lower 
multifunctionality of antigen-specific T-cells and 
lower expression of TIGIT and PD-1 immune- 
checkpoints compared with symptomatic patients. 
This indicates that immune responses in symptomatic 
patients against SARS-CoV-2 can not eliminate the 
virus rapidly, thus, resulting in repeated activation of 

immune system cells [65]. In another study, Qin et al. 
found that the population of memory and regulatory 
T-cells were lessened in COVID-19 patients, whereas 
naïve T-cell counts were increased compared to healthy 
ones [66]. Single-cell analysis of T-cells from COVID- 
19 patients revealed that CD4+ T-cells were activated 
with high expression of regulatory responses and CD25 
as well as suppression of FOXP3 expression in severe 
COVID-19. These cells showed unique differentiation 
pathways in the patient’s lungs with both Th1 and Th2 
characteristics. In addition, highly activated CD25- 
expressing CD4+ T-cells facilitated SARS-CoV-2 entry 
by producing the protease Furin [67].

Infection with SARS-CoV-2 and microbiome 
dysbiosis

Since super-infection or co-infection with bacteria par
tially attributed to the worth outcome and mortality of 
virus pandemics, including the 1918 H1N1 and 2009 
H1N1 influenza, various studies examined this in the 
infection with COVID-19. The microbiome in humans 
differs across sex, age, ethnicity, and race, suggesting 
the unique and specific profiles of the microbial popu
lation [68]. The infection of the GI tract by SARS-CoV 
-2 could disrupt gut microbiota and lead to dysbiosis, 
GI symptoms, and intestinal inflammation. This 

Figure 1. The effect of infection with SARS-CoV-2 on the innate immune response. Following infecting the target cells, the RNA of 
the virus was recognized by the cytosolic pattern recognition receptors (PRRs), such as the melanoma differentiation-associated 
protein (MDA5) and the retinoic acid-inducible gene I (RIG-I), which recruit the mitochondrial antiviral signaling protein (MAVS), 
followed by the phosphorylation and activation of interferon regulatory factor 3 and 7 (IRF3 and IRF7). The phosphorylated form of 
IRF3 and IRF7 upregulates the expression of type I interferons, as the antiviral response. In addition to the cytosolic receptors, the 
infection with SARS-CoV-2 is recognized by the endosomal receptors, such as toll-like receptors 3, 7, and 8 (TLR3, TLR7, and TLR8), 
leading to trigger a cascade to upregulate inflammatory responses. The secreted type I IFNs from the infected cells are recognized 
through their cognate receptors on the uninfected cells, resulting in the activation of IRF9, STAT1, and STAT2, and, subsequently, 
upregulation of interferon-stimulated gene (ISG).

VIRULENCE 1079



imbalance can not be fully restored after even three 
months of recovery [69]. Also, there is evidence that 
gut microbiota dysbiosis during infection with SARS- 
CoV-2 could affect the severity of COVID-19 [70]. It 
has been shown that gut microbiota could regulate 
immune responses and modulation of their composi
tion had preventive and therapeutic benefits [71]. For 
instance, beneficial bacteria Bifidobacteria and 
Lactobacilli and butyrate-producing bacteria 
Eubacterium rectale and Faecalibacterium prausnitzii 
were decreased in patients with COVID-19 [72,73], 
whereas the population of opportunistic bacteria such 
as Clostridium hathewayi and Clostrium ramosum were 
increased and positively correlated with COVID-19 
severity [73]. Zuo et al. indicated that the faecal samples 
from patients with COVID-19 were enriched with 
Collinsella tanakaei, Collinsella aerofaciens, Morganella 
morganii, and Streptococcus infantis, whereas the sam
ples from none-to-low SARS-CoV-2 infectivity dis
played a higher abundance of Lachnospiraceae 
bacterium 1_1_57FAA, Alistipes onderdonkii, and 
Bacteroides stercoris [74]. Furthermore, there is 
a negative correlation between the diversity of gut 
microbiota and COVID-19 severity levels; the diversity 
decreases with increasing the symptoms of severity in 
which the “severe” patients show the least diversity 
[75]. Khan et al. demonstrated that the severely 
COVID-19 patients had elevated levels of IL-21 in 
comparison with mildly ill and healthy participants, 
while there were no remarkable differences in the levels 
of INF-γ and TNF-α among the groups [75]. The 
investigation of alterations in the gut microbiota of 
115 patients and its influence on COVID-19 severity 
revealed that moderate and severe patients were 
enriched with Proteobacteria compared with mild 
ones. In contrast, the abundance of butyrate- 
producing bacteria, including Lachnospira and 
Roseburia, and the Firmicutes/Bacteroidetes ratio was 
lower in moderate and severe patients [76]. The pro
duced butyrate, short-chain fatty acids (SCFAs), and 
propionate with gut microbiota could increase the 
expression of Tc17 cells and CD8+ cytotoxic 
T lymphocytes (CTLs). For instance, butyrate could 
increase granzyme B and IFN-γ expression on CTLs 
as well as promote the Tc17 cells switch towards cyto
toxic phenotypes [77]. In a study, Zhou et al. compared 
the gut microbiota composition and immune responses 
in moderate COVID-19 patients with and without 
fever. They found that opportunistic pathogens, includ
ing Saccharomyces cerevisiae and Enterococcus faecalis, 
were enriched in COVID-19 patients with fever. 
S. cerevisiae was positively associated with diarrhoea 
symptoms in these patients, whereas E. faecalis was 

positively associated with D-dimer and lactate dehydro
genase (LDH) and negatively correlated with IL-4 and 
CD8+ T-cells. On the other hand, the proportion of 
species with protective and anti-inflammatory effects, 
including Eubacterium ramulus and Bacteroides fragilis, 
was increased in non-fever patients. Also, there was 
a negative correlation between enrichment with 
E. ramulus with aspartate aminotransferase (AST), 
LDH, and IL-6. This study suggested that the gut 
microbiota contributes to the induction of fever in 
COVID-19 patients by increasing the pathogenic bac
teria in the GI tract, which stimulate the secretion of 
inflammatory cytokines, including IL-6 [78]. Tao et al. 
found that the changes in the gut microbiota composi
tion is positively correlated with the higher expression 
of the pro-inflammatory factor IL-18 [79]. Thus, gut 
microbiota diversity and composition could be act as 
prognostic biomarkers for COVID-19 severity and 
immune responses.

Profiling of the respiratory microbiome in 
COVID-19 patients

Besides the gut microbiota, infection with SARS-CoV-2 
could affect the population and metabolism of respira
tory microbiota. The profiling microbiomes of the 
COVID-19 respiratory tract by Haiminen et al. revealed 
that metabolic pathways are modulated, including 
a decrease in lipid metabolism (such as sphingolipid 
metabolism) and glycan metabolism pathways (such as 
glycan degradation), and an increase in carbohydrate 
metabolism pathways (such as glycolysis and gluconeo
genesis) [80]. It has been shown that sphingosine, as 
a part of sphingolipids, hinders the interaction of the 
S subunit of SARS-CoV-2 with ACE2 and reduces the 
virus infectivity [81]. Also, the changes in glucose meta
bolism in both innate immune cells and pulmonary 
epithelial cells contribute to cytokine synthesis and 
inflammatory responses [82]. Under high glucose con
ditions, viral replication and cytokine production 
increase, leading to lung epithelial cell death [83]. 
Thus, lung microbiome alterations could affect the 
metabolism in immune cells and lung epithelial cells, 
affecting the SARS-CoV-2 life cycle. Because bacterial 
dysbiosis is discussed in detail throughout the article, 
Table 2. summarizes the dysbiosis of other respiratory 
microbiota in COVID-19 patients. There is evidence 
that respiratory viral co-infection in respiratory diseases 
is 3–68.0% [84]. For instance, Lin et al. stated that viral 
co-infections in SARS-CoV-2 patients were 3.2% [85]. 
Furthermore, a metagenomics analysis revealed that in 
addition to betacoronavirus, COVID-19 samples were 
associated with other viral co-infections, such as 
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Tombusvirus, Partitivirus, Victorivirus, Totivirus, and 
Chrysovirus [86]. 

It has been stated that the lung microbiota composi
tion of healthy individuals is mainly enriched with 
commensal bacteria, including Tropheryma whipplei, 
Prevotella spp., Streptococcus spp., and Veillonella spp., 
that maintain the immune homoeostasis [91]. The bac
terial diversity in COVID-19 patients is controversial; 
some studies found low microbial diversity [92,93], 
while others reported a high diversity [94]. These para
doxical results could be owing to the patients’ severity, 
treatment, disease stage, and differences in sampling 
location of the respiratory tract. Figure 2 represents 

the alteration in the respiratory bacteria during infec
tion with COVID-19. To identify the association 
between upper and lower respiratory tract microbiota 
and the COVID-19 severity, Lloréns-Rico et al. used 
nasopharyngeal swabs and BAL samples. They 
explained that the microbiome variation within the 
upper respiratory tract could be affected by the type of 
oxygen support (predominantly mechanical ventila
tion), time in ICU, and treatments (such as antibiotics), 
while viral load showed a reduced impact [95]. For 
instance, COVID-19 patients who develop ventilator- 
associated pneumonia have an impaired innate immune 
defence that leads to their susceptibility to secondary 

Table 2. Dysbiosis of respiratory microbiota in COVID-19 patients.
Microorganism Sample type Sample size Dysbiosis Ref

Fungi BAL 26 - ↑Candida spp. 
- ↑Ascomycota in patients with COVID-19 not colonized with Candida spp.

[87]

Fungi BAS, BAL 90 ↑Candida albicans [88]
Fungi Sputum, EA 99 - ↑Candida glabrata 

- ↑Candida albicans
[3]

Virus Throat swab, Nasal swab, Sputum 23 - ↑Human alphaherpesvirus 1 
- ↑Rhinovirus B 
- ↑ Human orthopneumovirus

[89]

Virus Nasopharyngeal swabs 8 - ↑Betacoronavirus 
- ↓Alphacoronavirus 
- ↓Cystovirus 
- ↑Macavirus 
- ↓Myovirus

[90]

Virus Nasopharyngeal swabs 10 - ↑Betacoronavirus 
- ↓Siphovirus 
- ↓Alphapapillomavirus 
- ↓Myovirus

[86]

Archaea Nasopharyngeal swabs 8 - ↑Halogeometricum 
- ↑Haloquadratum 
- ↑Natrialba 
- ↓Methanospirillum 
- ↓Methanoregula 
- ↓Methanocaldococcus

[90]

Archaea Nasopharyngeal swabs 10 - ↑Methanosarcina 
- ↑Methanocaldococcus 
- ↑Thermococcus 
- ↑Haloarcula 
- ↓Methanobrevibacter 
- ↓Methanococcus 
- ↓Methanocorpusculum

[86]

BAL, bronchoalveolar lavage; BAS, bronchial aspirates; EA, endotracheal aspirates. 

Cutibacterium, Lentimonas, 
Pseudomonas alcaligenes, 
Acinetobacter schindleri, 

Acinetobacter spp., 
Sphingobacterium spp., 

Enterobacteriaceae,
Veillonella infantium, 

Prevotella salivae, 
Streptococcus, Prevotella, 
Veillonella, Lactobacillus, 

Porphyromonas, 
Capnocytophaga, 

Aggregatibacter, Abiotrophia, 
Atopobium, Prevotella 

histicola, Veillonella dispar,  
Streptococcus sanguinis 

Prevotellaceae, Flectobacillus, 
Luminiphilus, Jannaschia, 
Comamonas, Actinomyces, 

Hemophilus, Neisseria, 
Haemophilus, Rothia, 

Fusobacterium, Parvimonas, 
Gemella spp., Gemella 
haemolysans, Gemella 

morbillorum, Leptotrichia 
hofstadii 

Higher abundanceLower abundance

Figure 2. The higher and lower abundance of bacteria in the respiratory tract of COVID-19 patients.
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infection as well as impaired clearance of SARS-CoV-2 
infection [96]. Otherwise, there is evidence that the lung 
microbiome composition between COVID-19 negative 
and COVID-19 positive patients who developed venti
lator-associated pneumonia was similar [97]. Another 
study revealed that COVID-19 symptomatic patients 
exhibited low nasopharyngeal bacteria diversity com
pared with asymptomatic and COVID-19 negative 
ones. They explained that running sneezing and nose 
could wash off the nasal microbiota of the symptomatic 
patients. In the symptomatic patients, nasal microbiota 
dysbiosis led to high levels of Cutibacterium and 
Lentimonas, while reducing the abundance of 
Prevotellaceae, Flectobacillus, Luminiphilus, Jannaschia, 
and Comamonas [98]. Liu et al. conducted an investiga
tion to identify metabolome features and nasopharyn
geal bacteria of COVID-19 patients. The sera 
examination of COVID-19 patients revealed that the 
levels of chlorogenic acid methyl ester (CME), 
L-proline, and lactic acid were notably reduced com
pared with COVID-19 negative individuals. Also, the 
pharynges of these patients were depleted from Gemella 
haemolysans, Gemella morbillorum, and Leptotrichia 
hofstadii. In contrast, the population of Prevotella histi
cola, Veillonella dispar, and Streptococcus sanguinis were 
increased. They found that the abundance of L. hofstadii 
and G. haemolysans were remarkably associated with 
the serum levels of CME [99]. CME could reduce the 
expression of inflammatory factors and alleviate the 
pathological impairment of lung tissue [100]. Gaibani 
et al. characterized the diversity of different bacteria in 
critically ill COVID-19 patients and healthy subjects 
using a 16S rRNA profiling on BAL samples. They 
found that the lung of COVID-19 patients enriched 
with Pseudomonas alcaligenes, Acinetobacter schindleri, 
Acinetobacter spp., Sphingobacterium spp., and 
Enterobacteriaceae. In contrast, Veillonella dispar, 
Haemophilus influenzae, Granulicatella spp., 
Streptococcus spp., and Porphyromonas spp., character
ized in the lung of COVID-19-negative participants 
[101]. In another study, Merenstein et al. indicated the 
lower abundance of Actinomyces, Hemophilus, and 
Neisseria in the oropharyngeal of severe COVID-19 
patients in comparison with normal ones. They also 
showed that the lower lymphocyte/neutrophil ratio 
was associated with the lower microbiome composition 
and diversity and inversely associated with the disease 
severity [102]. Iebba et al. identified Veillonella infan
tium and Prevotella salivae as predominant in patients 
suffering COVID-19, while Rothia mucilaginosa and 
Neisseria perflava were abundant in controls. 
Furthermore, the levels of cytokines IL-2, IL-5, IL-6, 
INF-γ, G-CSF, GM-CSF, and TNF-α were augmented 

in the COVID-19 patients, whereas only IL-12p70 was 
elevated in control subjects [103]. In a cross-sectional 
study, Soffritti et al. demonstrated that oral microbiome 
dysbiosis is inversely correlated with the COVID-19 
severity. They reported the higher abundance of 
Streptococcus, Prevotella, Veillonella, Lactobacillus, 
Porphyromonas, Capnocytophaga, Aggregatibacter, 
Abiotrophia, and Atopobium in COVID-19 patients, 
whereas Haemophilus, Rothia, Fusobacterium, 
Parvimonas, and Gemella spp. showed lower frequency. 
Interestingly, the oral fungal and virome in COVID-19 
patients were increased in comparison with controls. 
While Saccharomyces spp. and Candida were more 
abundant fungi in control participants, Nakaseomyces, 
Aspergillus, and Malassezia spp. were high in the 
COVID-19 patients. Bacteriophages targeted towards 
Streptococcus (phage PH10 and phage EJ-1), 
Lactobacillus (phage phiadh), and Staphylococcus 
(phage ROSA) as well as herpes simplex virus type 1 
(HSV-1) were abundant in the COVID-19 patients. 
Furthermore, a reduction in mucosal sIgA responses 
was exhibited in more severely COVID-19 patients, 
suggesting the importance of local immune response 
in controlling virus infection at the early phase. 
Among the pro-inflammatory cytokines/chemokines, 
the levels of IL-6 and IL-17 were meaningfully higher 
in the oral of COVID-19 patients, without remarkable 
changes in GM-CSF and TNF-α [104]. 

There is evidence reporting bacterial, fungal, and viral 
co-infection with COVID-19. Two meta-analysis studies 
showed bacterial co-infection in 7% and 14% of hospita
lized and critically ill patients, respectively [105,106]. The 
most commonly reported bacterial co-infection with 
COVID-19 patients are Enterobacteriaceae, H. influenza, 
and P. aeruginosa [106,107]. Gaibani et al. found that 
infection with carbapenem-resistant Acinetobacter bau
mannii elevated during COVID-19 [101]. In addition, 
Redondoviridae and Anelloviridae, airway commensal 
DNA viruses, exhibited more colonization frequency in 
COVID-19 patients and were completely linked to the 
severity of the disease [102].

The microbiome and treatments for COVID-19

Due to the undeniable role of microbiota in the 
COVID-19 disease, management of microbiota to 
shift its composition towards a healthy state could be 
effective in controlling SARS-CoV-2 infection and pre
venting the disease severity. Patients suffering from 
asymptomatic or mild COVID-19 infections are 
advised to eat a balanced, healthy, and anti- 
inflammatory diet, including legumes, fruits, grains, 
and vegetables. It has been reported that there is 
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a reverse correlation between the amount of fibre 
intake with inflammatory markers, for example TNF- 
α, C-reactive protein, IL-6, and IL-18. Furthermore, 
high-fibre diets are associated with higher adiponectin 
and lower glycaemia, which have positive anti- 
inflammatory effects. Also, the anti-inflammatory 
activities of dietary fibre could support the functions 
of immunosuppressive and anti-viral drugs [108]. 
Various studies, including clinical trials, have been 
directed to investigate the preventive and therapeutic 
efficacy of microbiota modulation on COVID-19 using 
probiotics, synbiotics, prebiotics, nutraceuticals, and 
trace elements. For example, probiotics such as 
Paenibacillus and Lactobacilli produce peptides with 
the binding ability to ACE2, inhibiting the binding of 
the SARS-CoV-2 to its targeted cells [109,110]. 
Ceccarelli et al. concluded that treatment of patients 
suffering severe COVID-19 pneumonia with probiotics 
was correlated with a reduced risk of death [111]. 
Probiotics also promote anti-viral immune responses 
by activating toll-like receptor 4 (TLR4) signalling and 
inducing the secretion of type I and II IFNs [112,113]. 
Liu et al. indicated that orally receiving capsules as 
faecal microbiota transplantation (FMT) in COVID- 
19 patients could improve GI symptoms and alter 
B-cell populations, in which naïve B-cells were 
decreased and memory and non-switched B-cells were 
augmented. In discharged patients after FMT adminis
tration, the abundance of Actinobacteria was increased 
from 4% to 15%, and the proportion of Proteobacteria 
was reduced from 9.2% to 2.8%. However, they 
reported abdominal pain and diarrhoea as side effects 

of FMT administration [114]. In a case report study 
with two patients, Biliński et al. showed that FMT 
administration to treat concomitant COVID-19 and 
C. difficile infection led to rapid resolution of 
COVID-19 [115]. A clinical trial is investigating the 
impact of FMT, as immunomodulatory intervention, 
on reduced risk of progression of COVID-19 disease 
with increased inflammatory parameters and cytokine 
storm (NCT04824222). A meta-analysis study demon
strated that vitamin D deficiency is associated with 
COVID-19 severity; lower levels in poor prognosis 
patients [116]. It has been reported that vitamin 
D could increase the production of butyrate, which 
improves the gut barrier, exerts anti-inflammatory 
activities, and promotes anti-viral effects [71]. 
Table 3. summarizes the clinical trials conducted to 
evaluate microbiota modulation’s efficacy on 
COVID-19.

Conclusion

Human microbiota can affect immune responses, thus 
influencing disease progression and prevention. In the 
case of COVID-19, respiratory microbiota dysbiosis 
could be associated with underactive and overactive 
immune responses, which results in various clinical 
complications. Currently, the respiratory microbiome 
alteration is effect or cause of the COVID-19 is not 
clearly distinguished. However, the composition of 
microbiota differs from person to person and may 

Table 3. The effect of nutrients and probiotics in microbiota modulation of COVID-19 under clinical trials.

Intervention/treatment
Participants 

(n) Goal
ClinicalTrials. 
gov Identifier

Probiorinse of Lactococcus Lactis W136 23 Reduction of the severity of COVID-19 symptoms NCT04458519
NSS using Saccharomyces bourllardii 80 Reduction of complications in COVID-19 patients and 

comorbidities
NCT04507867

Combination of Pediococcus acidilactici CECT7483, Lactobacillus 
plantarum CECT7484, L. plantarum CECT30292, and 
L. plantarum CECT7485

300 How does the combination of the probiotics reduce the 
risk of progression of COVID-19 to moderate or severe

NCT04517422

Lactobacillus 201 Effects on the incidence and severity of COVID-19 in the 
elderly population living in a nursing home

NCT04756466

NBT-NM108 100 Evaluating the effectiveness and feasibility of NBT- 
NM108, as a treatment, in modulating gut microbiota 
of COVID-19.

NCT04540406

Dry extract of polyphenols (tannins) from quebracho and 
chestnut

124 Evaluating the efficacy of Tannin against COVID-19 
infection

NCT04403646

Lactobacillus Coryniformis K8 314 Evaluating the protective effect against COVID-19 in 
healthcare workers

NCT04366180

Probiotic strains with maltodextrin as excipient 41 Improvement of symptoms in COVID-19 patients and 
reduction of hospitalization days

NCT04390477

Lactobacillus salivarius with Vit D and Zinc 60 Effects on immune responses in COVID-19 patients NCT04937556
Lactobaciltus rhamnosus GG 182 Effects on the microbiome of household contacts 

exposed to COVID-19
NCT04399252

Lactobacilli and Bifidobacteria 300 Facilitating faster recovery from COVID-19 and 
enhancing immune responses

NCT04907877

NSS, Nutritional support system. 
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explain the inter-individual variation in response to 
COVID-19. Due to the indispensable roles of micro
biota in response to COVID-19, the assumption of 
inexpensive and safe supplementations and nutrients, 
such as probiotics, can be considered a preventive 
strategy for COVID-19 negative individuals or an 
adjunctive for treatment strategies to limit the pro
gression of COVID-19 infection in the suffering 
patients. Furthermore, personalized diet regimens 
could direct the therapeutic strategies towards perso
nalized medicine. In the sampling, it should be con
sidered that sampling the lungs for microbial flora 
sequencing is technically demanding due to the rela
tively low biomass. In addition, lower respiratory tract 
sampling by bronchoscopy requires the instrument to 
be passed through the oral or nasal route, which may 
lead to the contaminations of samples.
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