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Abstract

Purpose: To develop techniques and establish a workflow using hyperpolarized carbon-13 

(13C) MRI and the pyruvate-to-lactate conversion rate (kPL) biomarker to guide MR-transrectal 

ultrasound fusion prostate biopsies.

Methods: The integrated multiparametric MRI (mpMRI) exam consisted of a 1-min 

hyperpolarized 13C-pyruvate EPI acquisition added to a conventional prostate mpMRI exam. Maps 

of kPL values were calculated, uploaded to a picture archiving and communication system and 

targeting platform, and displayed as color overlays on T2-weighted anatomic images. Abdominal 

radiologists identified 13C research biopsy targets based on the general recommendation of focal 

lesions with kPL >0.02(s−1), and created a targeting report for each study. Urologists conducted 

transrectal ultrasound-guided MR fusion biopsies, including the standard 1H–mpMRI targets as 

well as 12–14 core systematic biopsies informed by the research 13C-kPL targets. All biopsy 

results were included in the final pathology report and calculated toward clinical risk.

Results: This study demonstrated the safety and technical feasibility of integrating 

hyperpolarized 13C metabolic targeting into routine 1H–mpMRI and transrectal ultrasound fusion 

biopsy workflows, evaluated via 5 men (median age 71 years, prostate-specific antigen 8.4 ng/mL, 

Cancer of the Prostate Risk Assessment score 2) on active surveillance undergoing integrated scan 

and subsequent biopsies. No adverse event was reported. Median turnaround time was less than 

3 days from scan to 13C-kPL targets, and scan-to-biopsy time was 2 weeks. Median number of 
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13C targets was 1 (range: 1–2) per patient, measuring 1.0 cm (range: 0.6–1.9) in diameter, with a 

median kPL of 0.0319 s−1 (range: 0.0198–0.0410).

Conclusions: This proof-of-concept work demonstrated the safety and feasibility of integrating 

hyperpolarized 13C MR biomarkers to the standard mpMRI workflow to guide MR-transrectal 

ultrasound fusion biopsies.
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1 | INTRODUCTION

Multiparametric prostate MRI (mpMRI) is a standard-of-care imaging tool in the clinical 

workup of men with either known or suspected prostate cancer. Many practice guidelines 

such as National Comprehensive Cancer Network, American Urological Association, and 

European Association of Urology1 have incorporated mpMRI into the workflow of prostate 

cancer diagnosis, although the indications for which mpMRI should be ordered, and at what 

frequency, still vary from guideline to guideline. This stems from divergent views regarding 

mpMRI’s overall role and importance in the prostate cancer risk assessment.

Active surveillance is a preferred management strategy for men with low-risk, and selected 

intermediate-risk, localized prostate cancer to minimize treatment-associated morbidity 

without compromising oncologic outcomes. This is evidenced by the 10-year cancer-specific 

survival rate of nearly 99% for men undergoing active surveillance.2 Whereas conventional 

mpMRI is widely used to guide prostate biopsies, its role in the surveillance setting has 

long been a subject of controversy.3,4 Although mpMRI-guided confirmatory biopsy led to 

decreased active surveillance failures,5 a few randomized and retrospective studies failed to 

confirm the clinical utility of mpMRI in active surveillance.6–8 These contradicting results 

not only lead to discrepant endorsement among guidelines regarding the use of surveillance 

mpMRI but highlighted the unmet need to improve both the diagnostic accuracy and yield of 

mpMRI in this setting.

Hyperpolarized (HP) carbon-13 (13C)-pyruvate MRI is a new rapid molecular imaging 

technique that can detect increased pyruvate-to-lactate conversion rates (kPL) in clinically 

significant, aggressive prostate cancer as compared to more indolent tumors.9,10 The 

emerging technology uses dynamic nuclear polarization to increase the SNR of 13C-enriched 

compounds by more than 50,000-fold through means of temporarily rearranging the spins to 

increase their nuclear polarization.11,12 This enables interrogation of previously inaccessible 

in vivo metabolic pathways with unprecedented signal quality and quantitative accuracy. 

Several studies have explored the technical aspects of HP 13C MRI in men with localized 

and metastatic prostate cancer,13–15 as well as correlating 13C markers to histological and 

molecular signatures of this malignancy.16,17

MR-guided transrectal ultrasound (TRUS) fusion biopsy was designed to utilize MRI’s 

superior tissue contrast compared to ultrasound to detect prostatic lesions and improve 

prostate cancer diagnosis and grading. The fusion technology combines targeting 
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information from a prior diagnostic MR exam with real-time, intraprocedural ultrasound 

guidance for accurate prostate tissue sampling.18 MR-guided TRUS fusion biopsies, together 

with systematic biopsies, are usually conducted in urologists’ offices as a simple outpatient 

procedure without requiring an operating room or general anesthesia.

Thus far, HP 13C MRI of localized prostate cancer has been studied primarily in the 

context of a high-risk cohort, looking at pathological correlation with the prostatectomy 

specimen.16,17 Prior to this study, it had not been applied to prospectively guide 

confirmatory or surveillance biopsies. This technical development project aimed to integrate 

the metabolically defined research targets based on HP 13C-pyruvate MRI into mpMRI 

workflow and guide MR-TRUS fusion biopsies to improve the identification of clinically 

significant disease.

2 | METHODS

2.1 | Hyperpolarized 13C MRI and standard-of-care multiparametric MRI protocols

The MRI exams were conducted on a clinical 3 Tesla MRI scanner (MR750, GE Healthcare, 

Chicago IL) equipped with multinuclear spectroscopy capability. The MR coils and imaging 

setup have been previously described.19 Briefly, HP 13C imaging was performed using a 

clamshell Helmholtz transmitter and an endorectal coil for receive. For proton imaging, 

the body coil was used as a transmitter, and signal reception was accomplished using a 

4-channel torso array combined with the endorectal probe. The endorectal receiver was a 

specialized proton (1H)/13C dual-element design.19

The proton mpMRI exam consisted of T1-weighted fast spin echo (FSE), T2-weighted 

FSE (in-plane resolution = 0.35 mm, 3 mm slices, TR/TE = 6000/102 ms), 3D T2-FSE, 

and small FOV (Field-of-view optimized and constrained undistorted single-shot, FOCUS) 

DWI (TR/TE = 4000/78, pixel bandwidth = 1305, b = 0 and 600 s/mm2, and 3 mm slice 

thickness) sequences. Dynamic contrast-enhanced imaging using a 3D fast spoiled gradient-

recalled echo (SPGR) sequence (TR/TE = 3.5/0.9 ms, flip angle = 5°, and 3 mm slice 

thickness) with gadobutrol (Bayer Pharmaceuticals, Leverkusen, Germany) was acquired as 

the final series of the exam after the conclusion of the 13C-pyruvate acquisition and other 

proton imaging. The multiparametric portion of the exam was consistent with the standard 

mpMRI20 indicated for prostate cancer care at the University of California, San Francisco 

(UCSF).

For the hyperpolarized 13C pyruvate study, pharmacy kits containing a mixture of 1.432 

g of GMP grade [1-13C] pyruvic acid (MilliporeSigma, Miamisburg OH) and 28 mg 

electron paramagnetic agent (AH111501; GE Healthcare, Oslo, Norway) were prepared 

and polarized in a 5 Tesla clinical-research polarizer (SPINLab, GE Healthcare, Chicago 

IL) at 0.77 K for 2.5–3 hours. Subsequently, the pyruvic acid was rapidly dissoluted and 

neutralized with tris-EDTA buffer solution, yielding sterile doses meeting release criteria 

of pyruvate concentration (median: 248 mM, 238–271 mM), polarization (median: 38.4%, 

34.6%–40.6%), pH (median: 7.7, 7.4–8.2), temperature (<37 °C), and electron paramagnetic 

agent concentration (median: 1.5 μM, 0.7–1.9 μM). Following terminal sterilization, 

pharmaceutical release was issued after confirming quality control parameters and filter 
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bubble point test as previously published.21 The dosage of pyruvate solution delivered to the 

patient was 0.43 mL/kg at an injection rate of 5 mL/s (up to 40 mL), immediately followed 

by a 20 mL saline flush at the same rate.

A symmetric EPI sequence was prescribed for the HP 13C study.22 Key sequence parameters 

included TR/TE = 1 s/25.2 ms; resolution = 6.5–8 mm in-plane, 8 mm through-plane; FOV 

= 10.4 × 10.4–12.8 × 12.8 cm in-plane, and 11.2 cm through-plane. Independent flip angles 

were applied to pyruvate (15°) and lactate (30°) resonances. The acquisition started 10 

s after the completion of the pyruvate injection and saline flush. A rapid, low-resolution 

T2-FSE axial series (in-plane resolution = 0.35 × 0.8 mm, 3 mm slices, ~1 min length) 

was acquired immediately after the 13C scan to measure possible motion shift during the 

exam, which could result from patient movements or bladder filling, and the resulting 

misalignment in between series. 13C center frequency and power were calibrated using a 

built-in 8 M urea phantom inside the endorectal coil. Transmit power was increased to 

~133% of the nominally calibrated power to compensate for the inductive coupling losses 

between clamshell transmitter and the 13C element of the endorectal coil.

2.2 | Image processing

The 13C-pyruvate EPI images were reconstructed using the GE Orchestra Toolbox (GE 

Healthcare, Chicago IL). Nyquist ghost correction was conducted using the 1H reference 

scan method, as previously described.22 Global phases of the pyruvate and lactate images 

were independently calculated and accounted for. The HP 13C metabolic biomarker, kPL, 

was quantified using an inputless 2-site exchange model that makes no assumptions about 

the dynamic or bolus profile of pyruvate but rather derives kPL values solely based on 

measured pyruvate and lactate signals for improved robustness.23

Any misalignment was manually calculated between the high-quality T2-weighted series, 

acquired near the beginning of the exam, and the quick, post-13C-injection T2-FSE series, 

and the 13C data were shifted accordingly in 3D to compensate for motion offset. This 

improved the alignment precision between the kPL maps and the high-quality T2 series on 

the targeting software Dynacad (Philips Invivo Corp., Gainsville, FL), and thereby allowed 

more accurate lesion identification and outlining.

2.3 | Transfer of 13C-pyruvate MRI data to PACS and targeting software

The kPL maps were interpolated to the T2-FSE resolution, matching the exact same 

registration and matrix size as the T2 series for easy visualization and overlays. A predefined 

series number was assigned to the kPL maps. For example, if the high-quality T2 were series 

5, the kPL map would have been series 502.

The kPL map series was labeled as nondiagnostic HP-13C kPL (diffusion) to easily 

distinguish it from clinical 1H mpMRI sequences. The color kPL map was overlaid on 

T2-weighted images. Using the keyword “(Diffusion)” masqueraded the kPL maps as a 

diffusion-weighted series. This nomenclature allowed us to repurpose the built-in color 

overlay function on Dynacad (Philips Invivo Corp.; referred to as “fusion” overlays on the 

UI) that was intended for overlay of DWI as a pseudo color map over grayscale T2-weighted 

images.
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The kPL maps were first uploaded to the picture archiving and communication system 

(PACS). Following a quality control check on one of the PACS workstations to ensure 

correct registration, the kPL maps were transferred to the Dynacad (Philips Invivo Corp.), 

a commercial targeting software that radiologists routinely use to identify and outline 

suspicious prostate MRI lesions as a part of biopsy planning. All the processing and 

data transfer occurred between our internal radiology network and PACS system and were 

therefore compliant with the Health Insurance Portability and Accountability Act.

2.4 | Prostate lesion targeting and fusion biopsy

Figure 1 illustrates the workflow of HP 13C MR research targeting of the prostate. The 

conventional 1H mpMRI exam was interpreted by board-certified radiologists according 

to the standard departmental workflow, and any lesions were categorized using Prostate 

Imaging Reporting and Data System (PIRADS) v2.1.24 Any suspicious lesions were 

outlined in Dynacad (Philips Invivo Corp.) in preparation for targeted biopsy. One of 

3 board-certified abdominal radiologists, each with more than 10 years of experience 

reading prostate MRI, additionally outlined the 13C research targets on the kPL-T2w color 

overlay displayed on Dynacad (Philips Invivo Corp.) (Figure 2A). The 13C research targets 

were identified and delineated following the general recommendation of delineating focal 

lesions on the kPL map with kPL value >0.02(s−1), a biomarker of suspected cancer.17 

The recommended kPL threshold of 0.02(s−1) for this initial technical development study 

was selected based on a prior high-risk cohort of patients (Supporting Information Figure 

S1), who after 13C-pyruvate MRI scans underwent radical prostatectomy with step-section 

histopathology (gold standard), representing the kPL differences of high- versus low-grade 

tumors (corrected for different MR sequence TEs25). Radiologists’ experience and judgment 

play an important role in target selection (similar to selection of 1H MRI targets). Their 

discretion to include/exclude a target is allowed based on lesion focality, shape, and visual 

features, as well as likelihood of tumor presence in a given anatomical zone. The 1H 

mpMRI-defined clinical targets and 13C-defined research targets were independently labeled 

for urologist review.

Both 13C research and standard 1H mpMRI targeted biopsies were conducted by 1 of the 

3 board-certified urological oncologists, each with more than 10 years of experience, who 

used a commercial fusion-biopsy platform (Uronav, Philips Invivo Corp., Gainsville, FL) 

following the standard mpMRI-targeted biopsy procedure at our institution (Figure 2B). 

The transrectal biopsy approach was used by our urologists per institutional practice. The 

MRI-generated overlays delineating 13C/1H targets were fused with real-time TRUS images 

in the UroNav system (Philips Invivo Corp.) to guide the biopsy sampling. Systematic TRUS 

biopsies (12–14 cores) were also conducted in the same session, and the biopsy cores of 

any 13C research target replaced the systematic biopsy in the same sextant. As such, the 13C 

research biopsy did not increase the total number of cores.

A sample overlay and targeting procedure is illustrated in Supporting Information Video S1.
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2.5 | Patient characteristics

Five patients with biopsy-confirmed prostate cancer were enrolled (NCT03933670). Eligible 

patients were 18 years or older, had a biopsy-confirmed diagnosis of prostate cancer, ECOG 

score 0 or 1, and were either candidates for or currently on an active surveillance protocol 

as defined by the UCSF urologic oncology practices at the time of enrollment.26 The key 

exclusion criteria entailed prior treatments for prostate cancer, biopsy within 14 days prior to 
13C MRI, poorly controlled hypertension, or contraindication for endorectal coil placement. 

The patient studies were conducted with informed consent in compliance with Food and 

Drug Administration- and Institutional Review Board-approved protocols (NCT03933670).

2.6 | Pathology assessment

The specimens from the 13C research biopsies were submitted to pathology along with 

the other samples from the same session. All formalin-fixed–paraffin-embedded cores were 

read by experienced urologic pathologists in a standardized fashion27 and included in the 

final pathology report. UCSF–Cancer of the Prostate Risk Assessment (CAPRA) score28 

was recalculated based on the updated biopsy findings and the most recent prostate-specific 

antigen values.

3 | RESULTS

3.1 | Safety and technical feasibility

Integrated MRI exams and the ensuing biopsies for all 5 patients were safe, successful, 

and without adverse events. The kPL (HP 13C metabolic biomarker) map was calculated 

and uploaded to PACS/Dynacad (Philips Invivo Corp.) along with the mpMRI exam. Image 

postprocessing and upload of kPL maps were done the same day, typically within 1–2 h after 

the end of the exam. The average turnaround time for the MRI report and targeting was 

less than 3 days after each exam. A 13C research biopsy targeting report (a representative 

instance given in Figure 3) was generated and showed the target locations in the 3D 

segmented prostate, as well as the 13C-kPL/T2 overlay, diffusions, and T1-weighted images 

arranged side by side to assist the urologists planning the biopsies.

3.2 | HP 13C MRI targeting and MR-guided TRUS fusion biopsy

The patient demographics (N = 5) and clinical characteristics are summarized in Figure 4. 

The patients enrolled in this study had low- to intermediate-risk disease with median age 

71 (range: 62–79), prostate-specific antigen 8.4 ng/mL (range: 1.3–17), and CAPRA score 

2 (range: 1–3). The median number of 13C research targets was 1 (range: 1–2), and that 

of proton mpMRI was 1 (range: 0–2). The 13C targets measured 1 cm (range: 0.6–1.9) 

in diameter; the median kPL was 0.0319 s−1 (range: 0.0198–0.0410); and the intralesion 

distribution is given in Table 1. The mean kPL in the segmented prostate excluding 13C 

targets was 0.0110±0.0022 s−1. The index lesions on proton mpMRI had a median PIRADS 

score 4 (range: 2–5). The 1H targets had a median 1.1 cm (range: 0.9–2) diameter. All 5 

patients underwent TRUS/MRI fusion and systematic biopsies after the integrated mpMRI 

exam, with 2–3 cores sampled per target.
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3.3 | Correlation between kPL and histopathologic findings from biopsy

Overall, 1 patient (patient 3) had Gleason 3+4, and 4 patients (patient 1,2,4,5) had 3+3 

disease (number of biopsy cores positive for cancer per patient, median: 4/17, range: 

3/19–10/18), combining pathological findings from standard and 13C research-targeted 

biopsies (Table 1) (Figure 5) (Supporting Information Table S1). On a per patient basis, 

the maximum involvement of any core was 16%–52% (median: 16%). The cores sampled 

from 13C research targets were Gleason 3+3 in 4 patients (patient 1,2,4,5), with median 

16% involvement (range: 1%–16%). One patient (patient 5) had atypical small acinar 

proliferation and high-grade prostatic intraepithelial neoplasia among the 13C cores in 1 

target, and the 13C target in another patient (patient 3) contained benign prostate tissue.

Figure 6 illustrates a representative case (patient 1) who underwent fusion plus systematic 

biopsies with a 13C research target (kPL = 0.0378 s−1) at the left mid-apex peripheral zone 

and a 1H mpMRI target (PIRADS 4) at the right mid-base transition zone. Pathological 

diagnosis of the tissue sample from the 13C target was Gleason 3+3 cancer (16% 

involvement, 1/2 cores), whereas that from the 1H-MRI target was described in the histology 

report as “rare atypical glands.” Systematic biopsy found 3/12 cores with low volume 3+3 

disease. Altogether, patient 1 had CAPRA score of 1, consistent with the clinically low-risk 

diagnosis.

Taken together with other clinical biomarkers, the biopsy findings in these 5 patients 

were consistent with clinically low- to intermediate-risk disease (summarized in Table 1), 

indicating that these patients are appropriate candidates for active surveillance. Four patients 

continued active surveillance after the study, whereas 1 patient later elected to undergo 

definitive treatment.

4 | DISCUSSION

We investigated for the first time the safety and technical feasibility of integrating a rapid, 

1-min hyperpolarized 13C-pyruvate MRI acquisition into standard-of-care 1H mpMRI exams 

for guiding TRUS fusion prostate biopsies. No HP 13C MRI- or biopsy-related adverse 

events were reported in this initial cohort, which is in agreement with the excellent safety 

record of 600+ hyperpolarized 13C MRI studies conducted worldwide thus far on patients 

and volunteers, as well as that of the active surveillance biopsy procedure at our institution 

and many other centers globally.29,30 These results support future investigations focused on 

determining whether HP 13C-1H mpMRI could benefit men who are either candidates for or 

undergoing active surveillance of prostate cancer.

Using the existing infrastructure, we incorporated the rapid HP 13C-pyruvate scan and the 

associated metabolic biomarker kPL into the routine prostate MRI workflow, for which 

the major components includes image postprocessing, radiology read with lesion targeting, 

MR-guided TRUS fusion biopsies, and finally pathology evaluation. The integrable nature of 

this approach proved effective to improve efficiency and minimize additional effort.

The new 13C targeting feature took advantage of the existing overlay and lesion outlining 

functions on a commercial, out-of-the-box prostate mpMRI processing, and targeting 
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platform (Dynacad, Philips Invivo Corp.). This not only enabled easy deployment of the 
13C targeting capabilities on any PACS workstation within our radiology network, without 

the burden of additional software installations or modifications, but also allowed directly 

exporting the 13C targets from the PACS/Dynacad (Philips Invivo Corp., Gainsville FL) to 

the fusion biopsy platform (UroNav, Philips Invivo Corp.) in the urological oncologists’ 

offices, along with the 1H mpMRI targets. We envision the same rationale and workflow 

are generalizable to other commercial targeting and fusion biopsy platforms31,32 in a 

vendor-independent fashion. Our approach is presumably suitable for either transrectal 

or transperineal biopsy techniques because most commercial platforms support both by 

default.33

The 13C research biopsy results were readily incorporated in the pathology report, and 

the pathological information of the 13C biopsy cores, including the Gleason scores, total 

percentage of tumor involvement, percentage of Gleason ≥4 pattern, and presence of adverse 

pathological features, were directly factored into the patients’ clinical risk calculations, 

such as the UCSF-CAPRA score utilized at our institution. This paves the way for easy 

incorporation into routine clinical practice in the future.

Five patients were enrolled to test this new approach in a pilot, technical feasibility study. 

Interestingly, 4 out of 6 13C-kPL targets did not correlate to a PIRADS lesion on 1H mpMRI 

on a per-lesion basis. The discrepancy is consistent with the knowledge that HP 13C MRI 

offers unique, complementary information based on prostate tumor metabolism in addition 

to the anatomical and functional features provided by 1H mpMRI. It also highlights the need 

to investigate, in a larger cohort, whether a HP 13C-1H mpMRI protocol may overcome the 

known limitation in sensitivity with conventional prostate MRI for detection of occult but 

clinically significant tumors in the surveillance setting.34

Our study design substituted systematic biopsy cores with 13C-targeted biopsy cores in 

the same sextant. The rationale was to reduce oversampling bias as a confounder when 

comparing the diagnostic accuracy between men who received fusion biopsies, including 

the 13C targets, versus those who only received standard-of-care targeted and systematic 

biopsies. Our approach was consistent with that taken by the Active Surveillance Magnetic 

Resonance Imaging (ASIST) trial,35 also designed to evaluate the utility of mpMRI-guided 

biopsy. An additional benefit was to fulfill the technique development aim for 13C-guided 

fusion biopsy without introducing additional biopsy-related morbidity to the men who 

participated in this technical feasibility study.

Distinct from standard mpMRI series, the 13C-kPL series was labeled nondiagnostic on 

PACS. On Dynacad (Philips Invivo Corp.), the kPL target lesions were labeled as C13 lesion 
#, setting them apart from the 1H mpMRI targets, which were named lesion 1, lesion 2, 

etc. Using separate labels reduced equivocal nomenclature and improved communications 

between imaging researchers and the patients’ multidisciplinary care team by making the 

distinction between 13C research imaging results and associated target lesions from those of 
1H mpMRI.
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Whereas this study successfully demonstrated the safety and technical feasibility of guiding 

fusion prostate biopsies using the HP 13C MRI-derived kPL biomarker, a few limitations 

and challenges need to be acknowledged. First, a consensus in the field of prostate mpMRI 

is trending away from the use of endorectal coils. Similar to current conventional 1H MRI 

coils, new flexible 13C array coils are becoming commercially available to provide wider 

spatial coverage and higher SNR. Combining with the recent developments in 13C parallel 

imaging36 and denoising algorithms,37,38 these advancements will likely obviate the need of 

endorectal coils for future 13C-pyruvate prostate studies.

Second, the kPL cutoff value (0.02 s−1), representing the dichotomy between high-grade 

prostate adenocarcinoma and low-grade tumor/benign tissue, was derived from the 

histopathology of a high-risk cohort who underwent radical prostatectomy.17 This high-

risk cohort likely possesses quite distinct underlying biology from the lower-risk, active 

surveillance population who may benefit the most from HP 13C MRI. Whether the same 

kPL cutoff value is appropriate for detecting occult high-grade disease in the surveillance 

population thus needs to be further explored and validated. Additionally, developing and 

testing a PIRADS-like grading schema for HP 13C would benefit future clinical research but 

will require a broader evaluation in larger patient populations, as well as input from research 

radiologists on the methods developed in this project.

Although replacing the systematic cores with 13C-kPL cores reduces oversampling bias, a 

potential downside would be the missed opportunity to determine whether the standard 12–

14 core systematic TRUS biopsy would have also found the 3+3 disease as the 13C-guided 

biopsy in the same sextant on an individual-patient basis.

The primary factor affecting biopsy accuracy is the imperfect registration of MR-TRUS 

software fusion and mechanical deflection of the biopsy needles, which can similarly affect 
1H mpMRI targeted biopsies.39 Therefore, biopsies are not considered a gold standard like 

postprostatectomy step-section histopathology is.

Finally, this technical feasibility study was neither designed nor powered to calculate the 

sensitivity/specificity of HP 13C MRI-guided biopsy, and it would not be appropriate to 

report the clinical utility or biological significance results given the limited data and lack 

of a gold standard. The clinical question of whether 13C MRI improves diagnostic accuracy 

of prostate cancer needs to be tested in a future larger-scale clinical trial. We believe such 

a trial is feasible given multiple NCI-designated cancer centers are now equipped with 

HP 13C MRI capabilities and are either already performing or planning to conduct 13C 

prostate cancer research.40,41 Assuming HP 13C MRI is proven to increase detection of 

clinically significant prostate cancer, whether this improvement ultimately translates into 

better disease-specific outcome will require long-term follow-up studies.

5 | CONCLUSION

This technical development study demonstrated the feasibility of adding HP 13C-pyruvate 

MRI to guide TRUS fusion prostate biopsies. HP 13C MRI biomarkers were integrated into 

the diagnostic mpMRI workflow, complete with identification of 13C research targets and 
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sampling of these targets in fusion biopsies. These initial results support future studies in 

a larger cohort of patients to evaluate the role of HP 13C MRI–guided targeted biopsy for 

improving prostate cancer risk stratification.
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FIGURE 1. 
The workflow developed in this project for HP 13C MR research targeting of prostate 

biopsies based on abnormally high pyruvate-to-lactate conversion kPL values. The HP 13C 

MR exam and research targeting were integrated into the SOC MRI fusion and systematic 

biopsy procedures at our institution. First, the patient undergoes an integrated mpMRI exam 

of the prostate, including a 1-min acquisition following the HP 13C-pyruvate injection. The 

kPL map is calculated and uploaded to PACS and a software targeting platform (Dynacad, 

Philips Invivo Corp., Gainsville FL). A radiologist reads the study and outlines the research 

targets based on 13C kPL findings, in addition to those from the PIRADS lesions based on 

the 1H mpMRI. The targets and a report are uploaded to the fusion biopsy system (UroNav, 

Philips Invivo Corp., Gainsville FL) in the urologist’s offices, where they review the 

targeting and plan for the procedure. After US/MRI fusion-guided biopsies are performed, 

the tissue specimens are submitted to Pathology for processing and diagnosis. Thus, the HP 
13C research biopsy integration takes advantage of the existing infrastructure and minimizes 

the additional workload for the researchers and clinicians involved. 13C, carbon-13; HP, 

hyperpolarized; kPL, pyruvate-to-lactate conversion rate; mp, multiparametric; PACS, picture 

archiving and communication system; PIRADS, Prostate Imaging Reporting and Data 

System; SOC, standard- of- care; US, ultrasound.
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FIGURE 2. 
(A) A representative targeting protocol using a commercial prostate biopsy targeting 

platform (Dynacad, Philips Invivo Corps.). This protocol can also be found in Supporting 

Information Video S1. The 3D kPL image series was named with the keyword “diffusion” 

to allow a fusion overlay, displaying kPL as a pseudocolor over T2-weighted series. The 

overlay was displayed side by side with T2, ADC, and DCE maps, enabling the radiologist 

to correlate between series and outline 3D ROI for both 1H PIRADS and 13C research 

biopsy targets. Whereas the recommended kPL threshold for identifying potentially high-

grade 13C lesions was set to 0.02(s−1), the lowest value of the heatmap was set to 0.01 

for display purposes. This is designed to provide radiologists context on the shape/size 

of the lesion. The corresponding kPL scales is shown next to the original color bar. (B) 

Both clinical and research targets are transferred to a commercial TRUS-fusion biopsy 

platform (UroNav, Philips Invivo Corps.), where the research biopsy targets were counted as 

systematic biopsies. The urologist sampled these targets under TRUS fusion guidance during 
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a biopsy session, assisted by TRUS-MRI fusion (left panel: US axial, top right: MR sagittal) 

and 3D-rendered segmentation (bottom right panel) of the prostate. The biopsied tissues 

were submitted for histopathology analyses. 1H, proton; ROI, region of interest; TRUS, 

transrectal ultrasound.
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FIGURE 3. 
Shows a representative biopsy targeting report a radiologist created using DynaCAD (Philips 

Invivo Corp.). The report and targets were then sent to the UroNav system (Philips Invivo 

Corp.) to assist the urological oncologist to identify the 1H mpMRI (PIRADs) and 13C 

research targets and plan for the biopsy procedure. The report, shown as montage here, 

illustrates the target locations on the 3D segmented prostate for visual reference (left panel). 

In the center panel, the 13C-kPL/T2 overlay, DWI, and T1-weighted images are arranged side 

by side. A 13C-kPL lesion was identified and outlined at the right mid-PZ. The right panel 

reports the automatically calculated volumes and mean ADC values over the outlined 13C 

target. PZ, peripheral zone.
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FIGURE 4. 
(A) Pie chart summarizing the serum PSA and age of this initial cohort. (B) Pie chart 

summarizing the pathologic characteristics of the HP 13C research biopsies, PIRADS scores 

of 1H mpMRI biopsies, overall Gleason score, and clinical risk (CAPRA score). The 

Gleason 3+4 findings in patient 3 in the left midgland (contralateral to the 13C target) was 

small-volume (1 out of 4 cores in the sextant, <5% involvement per core) and only detected 

by systematic biopsy. The kPL value per lesion was calculated from the maximum voxel. 

CAPRA, Cancer of the Prostate Risk Assessment; PSA, prostate-specific antigen.
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FIGURE 5. 
HP 13C-kPL targets from the 5 cases summarized in Table 1 and Supporting Information 

Table S1
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FIGURE 6. 
(A) Shows an example of an integrated HP-13C research and standard 1H mpMRI study 

(patient 1) including key multiparametric T2-weighted, diffusion, and kPL images identifying 

the biopsy target. One 1H target (PIRADS 4) was identified at right mid-base transition zone 

and one 13C research target (kPL = 0.0378 s−1) at left mid-apex peripheral zone, as indicated 

by the arrows. (B) 13C and 1H mpMRI biopsy targets as drawn by an experienced abdominal 

radiologist. Pathological diagnosis of the tissue sample from the 13C target was Gleason 3+3 

cancer (16% involvement, 1/2 cores), whereas that from the 1H-MRI target was described in 

the histology report as “rare atypical glands”
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