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Abstract

The consideration of an existing stochastic approach for the reproduction of ranked data

pointed at a formal equivalence between its key mathematical expression and that for trajec-

tories at the tangent bifurcation. This fact led to a nonlinear dynamical approach for rank dis-

tributions that shows similarities with universality classes in critical phenomena. The

renormalization group (RG) fixed-point map f*(x) for a tangent bifurcation of arbitrary nonlin-

earity z > 1 has proved to be a powerful tool into which the formalism can be couched. The

source distribution P(N) of the stochastic approach can be linked to f*(x) while the size-rank

N(k) and frequency-rank F(k0) distributions are obtained, respectively, from the map trajecto-

ries xt and the sums of its positions. We provide now an extension to Number Theory as we

obtain from the trajectories xt of f*(x) the numbers, or asymptotic approximations of them,

for the Factorial, Natural, Prime and Fibonacci sets. A measure of the advance of these

numbers towards infinity is given by sums of positions that represent their reciprocals. We

specify rank distribution universality classes, already associated with real data, to these

number sets. We find that the convergence of the series of number reciprocals occurs first

at nonlinearity z = 2, that which corresponds to the classical Zipf law, and link this transition

edge to the action of the attractor when it first reduces the fractal dimension of trajectory

positions to zero. Furthermore, the search of logarithmic corrections common to borderline

dimensions provides a link to the Prime numbers set. Finally, we find corroborating evidence

of these logarithmic corrections from the analysis of large data sets for ranked earthquake

magnitudes. The formalism links all types of ranked distributions to a generalized extensive

entropy.

Introduction

It is possible to evaluate complex information reordering numerical data into an integer index

sequence of entries according to a certain criteria, i.e. by ranking them. This procedure has
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been in practice from immemorial times, and, looking back only to the last century, this exer-

cise has yielded important empirical laws, such as those of Gutenberg and Richter for earth-

quakes [1, 2], Zipf for words in texts [3, 4], and Benford for digits in different lists of numerical

data [5, 6]. The monotonic decay of ranked data often displays a conspicuous power law inter-

val and a degree of universality that have puzzled many and prompted quests for finding

underlying mechanisms [7]. A power law exponent often close to −1 together with the indis-

tinguishability found in practice between ranking according to magnitude or frequency has

led to a large body of processed data [8]. Nowadays, this topic is prominent amongst the com-

plex systems community [7, 9].

Instead of fitting data with a specific distribution to infer or test the underlying physical

mechanism responsible for the omnipresence of the classical Zipf law, we have pursued the

view [10–16] that an understanding of the omnipresence of this type of rank distribution hints

at a global structure similar to that which confers systems with many degrees of freedom the

familiar macroscopic properties described by thermodynamics. That is, the quantities used in

describing this empirical law obey expressions derived from principles like those for equilib-

rium statistical mechanics [10–16]. To obtain a global description for rank distributions it is

assumed that real data samples can be reproduced statistically by considering that the numbers

in a sample are random variable outcomes generated by a parent or source distribution [16,

17]. Then, the possible types of rank distributions can be obtained by considering parent distri-

butions with all possible decay rates from logarithmic to exponential decay passing trough all

possible power law decay rates [16, 17]. Furthermore, it was found that the rank distributions

for all such parent distributions are equivalently obtainable from nonlinear iterated maps close

to or at a tangent bifurcation, where now data samples are reproduced by their trajectories,

including Zipf law [10–16]. That is, numerical values in data samples are equally generated by

deterministic nonlinear dynamical low-dimensional systems. Additionally, a clear conceptual

difference arises between magnitude and frequency rank distributions, the former is a quantile,

while the latter is a cumulative distribution. These functions are inverses of each other and

have the same power law exponent −1 for the Zipf class (sizes of cities obey the same power

law as occurrences of words) [15]. It was also found that the reproduction of all classes of data

satisfy a maximum entropy principle that leads to an extensive generalized entropy, valid

under the important restriction that access to its configurational space is severely hindered to a

point that the allowed configurational space has a vanishing measure [13, 14].

Here we develop further the approach for rank distributions based on nonlinear iterated

maps near or at tangent bifurcations to reveal a global structure similar to that occurring in

critical phenomena, or, in the same way as that with central limit theorems, where there are

universality classes and borderline divergences. We uncover this structure by exhibiting links

with Number Theory (in particular the Natural and the Prime numbers for the class that corre-

sponds to the empirical Zipf law). The renormalization group (RG) fixed point map f�(x) for

the tangent bifurcation (tangent at x = 0 with non linearity z> 1) plays a central role in our

description [18], but also, for the first time, its extension to nonlinearity 0� Z = 2 − z� 1

(when f�(x) shows a cusp at x = 0 or it is off tangency). Beside signs, we have: i) The trajectories

of f�(x) initiated at x< −1 correspond to the size-rank distribution, while the sum of their posi-

tions (in a continuum limit the area under these trajectories) is the frequency-rank distribu-

tion, the inverse function of the size-rank distribution [15]. ii) The reciprocals (algebraic

inverses) of these trajectories are trajectories initiated at 0< x< 1 and they provide the values

of uniformly-distributed probabilities from which the maximum entropy property of the rank

functions is obtained [14]. This is described in the following Section 2. iii) The trajectories ini-

tiated at x = 1 (or at some other fixed number x> 1) are used to generate (in some cases

asymptotically) number sets: Fibonacci (z = 1), Naturals (z = 2), Primes (z = 2 with a
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logarithmic correction) and Factorials (z!1). iv) The reciprocals of these trajectories are

trajectories initiated at x> −1 and their sums define or relate to the Fibonacci z function (with

z = 1), the Harmonic numbers, the Riemann z function (with z = 1) and the exponential func-

tion. The convergence or divergence of their infinite sums define two different behaviors of

the trajectories of f�(x) according to whether the nonlinearity z is larger or smaller than z = 2.

This is described in Section 3.

The action of the attractors of dissipative nonlinear systems is to reduce the position space

available to trajectories, the configurational space in statistical-mechanical terms. The position

space dimension is unity for maps on an interval. Chaotic attractors do not change the dimen-

sion of this space, multifractal attractors reduce the dimension below unity, and periodic

attractors, like that at the tangent bifurcation, reduce the dimension to zero. The contraction

dimension for f�(x) is Z = 2 − z when 1< z< 2 and it vanishes for all z� 2 [15]. Likewise, the

series of reciprocals of the sets of Fibonacci and Factorial numbers converges and their f�(x)

have Z = z = 1, while those series for the Natural and Prime numbers diverge, slowly (logarith-

mically) for the Naturals and very slowly (logarithm of logarithm) for the Primes. The latter

case can be identified as a marginal case at which logarithmic corrections arise, as in critical

phenomena [19]. This is described in Section 4. For the classical Gutenberg-Richter and Zipf

laws we have z = 2 while the presence of logarithmic corrections are technically difficult to

detect. We present numerical results, also in Section 4, for large earthquake data sets where we

obtain a scaling property consistent with this borderline corrections. In the final Section 5 we

summarize and discuss our results.

Recall. Rank distributions via iterated maps at or near tangency

An upfront stochastic approach [17] to obtain theoretical size-rank functions N(k) considers

samples for the magnitudes N of unspecified kinds of data to be represented by sets of random

values generated by a parent or source distribution P(N). When P(N) is chosen to be the power

law P(N)� N−α, α> 1, one obtains [11, 17]

NðkÞ ¼ Nmax expa½� Na� 1
maxN

� 1k�; ð1Þ

where Nmax is the largest data value (with initial rank k = 0), N is the total number of data in

the sample, and expq(x)� [1 + (1 − q)x]1/1−q is the q-deformed exponential function. More-

over, when Nmax!1, a pure power-law decay follows, N(k)/ k1/1−α, α> 1. And when α = 2

it takes the ‘classical’ Zipf form N(k)/ k−1.

Now, a very different situation is the (longtime established nonlinear dynamical) problem

of determination of a functional-composition renormalization-group (RG) fixed-point map

for a transition to chaos such as, for example, the tangent bifurcation [18, 20]. This is to find

the function f�(x) (and the value of γ) that is the solution of f�(x) = γf�(x/γ), such that it also

complies with the generic form for a map at tangency when x is small, f�(x) = x + u|x|z + � � �,

z> 1. The solution is [18, 20]

f �ðxÞ ¼ x expzðujxj
z� 1sgnðxÞÞ; g ¼ 21=ð1� zÞ; ð2Þ

a map with the scaling property, that reflects into the fact that all its trajectories obey the form

[11]

xt ¼ x0 expzð� jx0j
z� 1utÞ; x0 < 0: ð3Þ

Eqs (1) and (3) are identical, one transforms into the other through the equivalences k = t,
N(k) = −xt, Nmax = −x0, α = z and N ¼ u� 1. Remarkably, size-rank distributions N(k) for all
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power-law exponents α can be reproduced by trajectories of the fixed-point map f�(x) [11].

And as it turns out also for α!1. More generally, N(k) for all source distributions P(N) can

be obtained from trajectories of the map x0 = x + u/P(−x) under the same scheme [16]. In the

continuum time limit the map becomes the differential equation dxt/dt = u/P(−x), that for the

choice P(−x) = |x|z its solution is the analytical expression in Eq (3) for the trajectories of f�(x).

In Fig 1 we show different decay rates z = α for P(N) that will be useful for our discussion

below. These are: A) factorial (exponential) decay, B) inverse square power decay with a fur-

ther logarithmic correction decrement, C) inverse square power decay, D) inverse single

power (hyperbolic) decay. Logarithmic decay is also shown in Fig 1. We have employed the

specific iterated maps f�(x) that reproduce ranked data N(k) for these four decay rates as trajec-

tories xt with Nmax = −x0. The N(k) are not normalized so that Nmax is generally a large positive

number and x0 << −1. In all cases trajectories start at the left of the point of tangency x = 0,

for which all positions xt< 0. We have reproduced real ranked data that match these choices:

A) Gun ownerships [16], B) earthquakes (see below), C) California forest-fire areas [13] and

USA city populations [16], D) infant mortality [16].

Therefore, the stochastic and the deterministic approaches are equivalent. This duality facil-

itates an explicit and quantitative distinction between size-rank N(k) —sizes of cities— and fre-

quency-rank F(k0) —word frequencies— distributions, as the former appears as a trajectory

while the latter is a sum of positions [15]. The frequency-rank distribution F(k0) turns out to

be the functional inverse of N(k) [15]. The frequency-rank distribution is the complementary

cumulative distribution of the parent distribution, while, technically, the size-rank distribution

is not a distribution but a quantile (cut points dividing the range of a probability distribution

into continuous intervals with equal probabilities). See Fig 2 in Ref. [15].

There is another significant property related to this topic that can be obtained from the

map at tangency. The reciprocals of N(k) provide uniformly-distributed probabilities pðkÞi ¼
pðkÞ ¼ 1=NðkÞ; i ¼ 0; :::; k (one set of k + 1 equal probabilities for each value of k, 0� k�

Fig 1. Different decay rates for the parent distribution P(N), left panel in semi-logarithmic scales, right panel in logarithmic scales.

https://doi.org/10.1371/journal.pone.0279448.g001
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kmax), that lead to extensive q-deformed entropies where system size is measured by sample

size kmax ¼ N [13, 14]. The expression for the q-deformed entropy, or Tsallis entropy, is

S2� q ¼
Xk

i¼0

pi ln2� q p
� 1

i ; ð4Þ

where the q-logarithm lnq(x)� [x1−q − 1]/(1 − q) is the functional inverse of expq(x). The

extensivity of the entropy in Eq (4) can be corroborated when considering that the system size

is given by kmax, the total number of data (minus one) in the sample of magnitudes N(k) We

have S2� qðkmaxÞ ¼ ln2� q½pðkmaxÞ=pðk¼0Þ� � N ; q ¼ z ¼ a [13, 14]. The numbers N(k), we recall,

were obtained from trajectories, with xt< −1, t = 0, 1, . . ., tmax, from the x< 0 branch of the

map. Therefore the probabilities p(k) can be obtained as trajectories, with 0< xt< 1, t = 0, 1,

. . ., tmax, tmax = kmax, from the x> 0 branch of the map [13, 14].

Finally, another noteworthy use of the nonlinear dynamical analogue for rank distributions

is that the necessary consideration of the finite size effect of real data is rightly and promptly

resolved by taking the matching map off tangency [16].

Universality classes and number theory

We have made use of trajectories from the left branch x< 0 of maps at tangency (particularly

f�(x)) with x0 < −1 and also of their reciprocals in the right branch x> 0 with x0 < 1. Large

ranked data sets N(k) headed by large leading magnitude Nmax are represented by trajectories

initiated far into the left branch of the map, so that the associated sets of (uniform) probabili-

ties p(k) = 1/N(k) (one set for each k) are represented by trajectories initiated close to x = 0 in

the right branch x> 0. We now make use of the remaining two map regions, the right branch

x> 0 with trajectories starting from x0� 1 and running towards xt!1, and their reciprocals

in the left branch x< 0 starting from x0� −1 and running towards xt! 0. Trajectories in the

right branch, starting and running now with xt� 1, t = 0, 1, . . ., can be used to generate the

Fig 2. Natural numbers. Left panel: In red the map x0 = x/(1 − x) (f�(x) with z = 2 and u = 1). In blue the trajectory xt = −1/(1 + t) initiated at x0 =

−1. Its positions are (minus) the reciprocals of Natural numbers. Right panel: In red the map x0 = x + 1 (f�(x) with Z = 0 and u = 1). In blue the

trajectory xt = 1 + t initiated at x0 = 1. Its positions are the Natural numbers. Identity lines in green.

https://doi.org/10.1371/journal.pone.0279448.g002
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most renowned sets of numbers (or increasingly better approximations of them). Fibonacci

numbers when z = 1, Natural numbers when z = 2, Prime numbers when z = 2 with logarith-

mic corrections, Factorial numbers when z!1. In turn, the negative reciprocal of these

numbers appear as trajectories from the x< 0 branch of the map with xt> −1, t = 0, . . .,1.

The series formed by these reciprocals converge for z> 2 but diverge for z� 2, in fact the bor-

derline for divergence manifests as z = 2 with logarithmic corrections, related to the known

bounds for the Prime numbers and the very slow divergence of the sum of their reciprocals.

This is reminiscent of borderline dimensionality and its logarithmic corrections in critical phe-

nomena. A note about notation: Besides sign and a constant factor (often unity), the trajectory

positions derived from the fixed-point map f�(x) in the right regions x> 0 are reciprocals of

those in the left region x< 0, and vice versa, and these positions are given by the deformed

exponential expression in Eq (3). We recall the algebraic inverse property 1/expq(x) =

expQ(−x), Q = 2 − q, so that we use the notation q = α = z for x< 0 and Q = α0 = Z = 2 − q = 2

− α = 2 − z for x> 0.

Natural numbers

The map that generates iteratively the natural numbers is very simple, it is the straight line, x0

= x + 1, parallel to the diagonal x0 = x. With the initial condition x0 = 1 this map produces the

trajectory xt = 1 + t. It is a (linear) particular case of the RG map f�(x) with Z = 0 and u = 1.

The map for the reciprocals of the natural numbers is x0 = x(1 − x)−1. With the initial condition

x0 = −1 we have xt = −(1 + t)−1. The RG map f�(x) with z = 2 and u = 1. The harmonic numbers

are obtained by the sum of positions Hn = −∑t xt* ln n that diverges as n!1. See Fig 2.

Prime numbers

The (logarithmic integral) upper bound for the number of Primes P(t) up to the Natural num-

ber t can be used to define a map with a trajectory that approximates asymptotically the Prime

numbers pt. The logarithmic integral function is LiðxÞ �
R x

2
1=lnðxÞdx, and the number of

Primes in [2, x] is PðxÞ ¼ LiðxÞ þ Oð
ffiffiffi
x
p

ln xÞ [21]. A map that generates iteratively numbers

that approximate asymptotically the Prime numbers pt is x0 = x + ln x, x> 0. With initial con-

dition x0 = 2 this produces a trajectory that approximates asymptotically the inverse of the Li

function. The map can be expressed as f�(x) with a logarithmic factor in the argument of the

deformed exponential, this is x0 = x expZ(uxZ−1 ln x) with Z = 0 and u = 1. The corresponding

map that approximates the reciprocals of the Prime numbers is x0 = x/(1 − x ln |x|), x< 0. The

trajectory with initial condition x0 = −1/2 approximates asymptotically xt = h−1(−t) where

hðxÞ �
R x
� 1=2

1=ðx2 ln xÞdx. Also for this case the map can be expressed as f�(x) with a logarith-

mic factor in the argument of the deformed exponential, x0 = x expz(uxz−1 ln x) with z = 2 and

u = 1. The sum of Prime reciprocals
P

tp
� 1
t � lnðln xÞ diverges (as known, very slowly,) when

n!1 as it does the sum of positions xt. See Fig 3.

Fibonacci numbers

The Fibonacci numbers Ft, t = 1, . . ., are given by the Binet formula Ft ¼ ð�
t
� c

t
Þ=ð� �

cÞ; � ¼ ð1þ
ffiffiffi
5
p
Þ=2 > 0;c ¼ ð1 �

ffiffiffi
5
p
Þ=2 < 0 [22], so that elimination of the term ψt in the

numerator of this formula yields an exponential approximation for Ft for large t. A linear map

that generates iteratively numbers that approximate asymptotically the Fibonacci numbers Ft
is x0 = x + (ln ϕ)x, x> 0. This map produces a trajectory that approximates asymptotically the

Fibonacci numbers as xt = x0 exp((ln ϕ)t) with x0 ¼ 1=
ffiffiffi
5
p

. The map can be expressed as f�(x)

with Z = 1 and u = ln ϕ. The linear map for the (negative) reciprocals numbers is x0 = x − (ln ϕ)
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x, x< 0, as its trajectory xt = x0 exp(−t) with x0 ¼ �
ffiffiffi
5
p

approximates asymptotically the (neg-

ative of the) reciprocals of the Fibonacci numbers. The map can be expressed as f�(x) with

z = 1 and u = ln ϕ. The sum of Fibonacci reciprocals
P

tF
� 1
t converges as t!1 as it does the

sum of positions xt. See Fig 4.

Factorial numbers

The Stirling approximation t! �
ffiffi
ð

p
2ptÞðt=eÞt for the factorial numbers t! can be used to

define a map to generate iteratively asymptotic approximations to these numbers as t!1.

Since here we are only interested in showing the general scheme we adopt a very crude approx-

imation. To this purpose we choose the map x0 = x + u exp(x), that produces trajectories that

approximate asymptotically (though slowly) the factorial numbers as xt = − ln[exp(−x0) + ut],
x0 = 1. This correponds to the fixed-point map f�(x) in the limit Z! −1. The map to be used

for the (negative) reciprocals of the factorial numbers is x0 = x + u exp(−x), as its trajectory xt =

ln[exp(x0) + ut], x0 = −1 approximates asymptotically the (negative) of the reciprocals of the

factorial numbers. The map can be expressed as f�(x) with z!1. The sum of the factorial

reciprocals ∑t(t!)−1 converges to the irrational number e as t!1 as it does the sum of posi-

tions xt. See Fig 5. Interestingly, the ordinary exponential (and its inverse the ordinary loga-

rithmic) behavior is obtained by both the maps with nonlinearity z = 1 (and Z = 1) and z!1
(and Z! −1). Other q-exponential (and its functional inverse q-logarithmic) behavior

(asymptotic power law behavior) occurs for 1< q = α = z<1.

In addition to the reproduction of the size-rank distributions N(k) of real data cases, the

four different decay rates (A, B, C and D) for the source distribution P(N) in Fig 1 described

above can be linked each to a well-known infinite set of numbers via the RG fixed-point map

f�(x) for the tangent bifurcation. The nonlinear maps have each a different tangency feature,

when z = 1 the map crosses the identity line, for z = 2 the map is tangent, and it is regular with

Fig 3. Prime numbers. Left panel: In red the map x0 = x/(1 − x ln x) (f�(x) = x expz(u|x|z−1 ln x) with z = 2 and u = 1). In blue the trajectory xt ¼
h� 1ð� tÞ; hðxÞ ¼

R x
� 1=2

dxð1=x2 ln jxjÞ initiated at x0 = −1/2. Its positions approximate asymptotically (minus) the reciprocals of Prime numbers.

Right panel: In red the map x0 = x + ln x (f�(x) = x expZ(u|x|Z−1 ln x) with Z = 0 and u = 1). In blue the trajectory xt ¼ Li� 1ðtÞ;LiðxÞ ¼
R x

2
dx1=ln jxj initiated at x0 = 2. Its positions approximate asymptotically the Prime numbers. Identity lines in green.

https://doi.org/10.1371/journal.pone.0279448.g003
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nonzero second derivative or curvature u> 0, in the limit α = z!1 the tangency point shifts

to infinity [16]. So, this is evidence that ranked data appear to belong to universality classes to

be distinguished by the above values for α = z. The infinite sets of number theory help charac-

terize the classes of rank functions but they also provide a statistical-mechanical insight. A

canonical partition function is the sum of terms formed by two factors, numbers of configura-

tions Wk and statistical weights ωk,

Zkmax
¼
Xkmax

k¼0

Wkok; ð5Þ

the growth of the numbers of configurations with the number of degrees of freedom (where

here the rank k or the iteration time t plays the role of energy in a thermal system) is compen-

sated by the decay of the statistical weights. The Wk can be identified with the N(k) or with the

magnitude of the numbers in number theory sets, while the weights ωk can be recognized as

the uniform probabilities pk or as the reciprocals of the numbers in the sets. The product Wkωk

is of order unity for all sizes of the system, here kmax ¼ N , including the thermodynamic limit

of infinite size, besides factors they are reciprocals of each other. This feature ensures the

extensivity of the thermodynamic potential. The ordinary (Boltzmann-Gibbs) case is repre-

sented by the decay rate A, the Factorial numbers and their reciprocals. In statistical-mechani-

cal terms decay rate cases B and C correspond to q-statistics with q = 2, the Natural and Prime

numbers and their reciprocals. The ordinary case is recovered for the decay rate D, the Fibo-

nacci numbers and their reciprocals, exponential growth and decay for Wk and ωk, respec-

tively, reappears as the map intersects the identity line. In the neighborhood of the intersection

the map approximates a straight line and q = 1.

Fig 4. Fibonacci numbers. Left panel: In red the map x0 = x − ux (f�(x) with z = 1 and u = ln ϕ with � ¼ ð1þ
ffiffiffi
5
p
Þ=2). In blue the trajectory xt =

x0 exp(−ut) initiated at x0 ¼ �
ffiffiffi
5
p

. Its positions approximate asymptotically (minus) the reciprocals of the Fibonacci numbers. Right panel: In red

the map x0 = x + ux (f�(x) with Z = 1 and u = ln ϕ). In blue the trajectory xt = x0 exp(ut) initiated at x0 ¼ 1=
ffiffiffi
5
p

. Its positions approximate

asymptotically the Fibonacci numbers. Identity lines in green.

https://doi.org/10.1371/journal.pone.0279448.g004
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Borderline dimensionality

As we have seen the expressions for the size-rank functions N(k) and their equivalent map tra-

jectories xt obtained from f�(x) are q-deformed exponentials. Also, their functional inverses,

the frequency-rank distributions F(k0) and their equivalent sums of trajectory positions are q-

deformed logarithms. When q = α = z = 1 the ordinary exponential (N(k)) and its functional

inverse the ordinary logarithm (F(k0)) are as different as they can be, separated by all power-

law decay functions. When q = α = z grows from unity the q-deformed exponential and loga-

rithmic functions develop a closer resemblance as they both acquire power-law decay. When

the value q = α = z = 2 is reached the power-law decay for both functions becomes identical

(explaining the common referral as Zipf law for both N(k) and F(k0)). There, Q = α0 = Z van-

ishes. The number Q = α0 = Z = 2 − q = 2 − α = 2 − z, with q = α = z� 2 has been shown to rep-

resent a ‘contraction’ dimension, an index that quantifies the reduction of phase space exerted

by an attractor [13, 14]. For a chaotic attractor Q = α0 = Z = 1, for a multifractal attractor Q =

α0 = Z< 1, and for a periodic attractor (including a tangency point) Q = α0 = Z = 0. Thus, for

all q = α = z> 2 the contraction dimension must remain zero. According to our formalism

Zipf law appears at a borderline dimension similar to those in critical phenomena, or in the

central limit theorems when the convergence or divergence of a second moment of symmetri-

cal distributions leads to the normal distribution or to the Levy distributions, respectively.

Interestingly, as we shall see, this edge appears to be represented by the set of Prime numbers.

In Fig 6 we show the fixed-point map f�(x) for various values of z. In the left panel we

observe tangency with the identity line when z> 1, when z* 1 the map is very flat but as z
grows acquires a more visible convexity, the special value z = 2 is included. The sums of trajec-

tory positions xt initiated with x0 < 0 diverge when z� 2 but converge when z> 2. The case

z = 2 with u = 1, x0 = −1 is illustrated by the (negative) Harmonic numbers. In the right panel

we observe a cusp instead of tangency as well as separation from tangency when the

Fig 5. Factorial numbers. Left panel: In red the map x0 = x + u exp(−x) (f�(x) with z =!1 and u = 0.1). In blue the trajectory xt = ln[exp x0 +

ut] initiated at x0 = −1. Its positions approximate asymptotically (minus) the reciprocals of the Factorial numbers. Right panel: In red the map x0
= x + u exp x (f�(x) with Z! −1, 0� u� 1). In blue the trajectory xt = −ln[exp(−x0) + ut] initiated at x0 = 1. Its positions approximate

asymptotically the Factorial numbers. Identity lines in green.

https://doi.org/10.1371/journal.pone.0279448.g005
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nonlinearity is given values Z = 2 − z< 1 that correspond to the reciprocal Q-exponential.

Two cases are noteworthy, the straight line cusp Z = 1 associated with the Fibonacci numbers

and the line parallel to the identity line associated with the Natural numbers Z = 0.

Logarithmic corrections are characteristic of marginal scenarios. We have noticed that

when q = 2 the limiting value for power-law decay is reached for convergence of the series of

reciprocals of the number sets. When q = 2 without logarithmic correction the series is diver-

gent and partial sums define the harmonics grow slowly as ln(n). This corresponds to the Nat-

ural Numbers (obtained with Q = 2 − q = 0). With the logarithmic correction the series is still

divergent and the partial sums are made (approximately) of Prime number reciprocals. These

sums grow even more slowly as ln(ln(n)). For simplicity we have placed a logarithmic correc-

tion into the decay of the parent distribution P(N) when α = q = 2 of the form P(N)* 1/(N2 ln

N). Besides a factor this is equivalent to the more general form P(N)* 1/(N2 ln Nβ), β 6¼ 1.

Likewise, we introduced a logarithmic correction into the deformed exponential argument for

f�(x), i.e. f�(x) = x expz(uxz − 1 ln x). This argument would only be rescaled in the more general

form f�(x) = x expz(uxz−1 ln xγ), γ 6¼ 1. Significantly, all the trajectories generated by the fixed-

point map f�(x) for any value of the deformation q = α = z are of the form in Eq (3), xt = x0

expz(−|x0|z−1ut). Therefore any pair of trajectories obtained from f�(x), say for the same q = α
= z, and possibly different number of iterations or different u, can be transformed into each

other by adjusting the initial condition x0 and the parameter u (the map curvature for z = 2).

That is, all trajectories are related to each other via simple rescaling. For example, a trajectory

made of tmax iterations initiated at x0 in a fixed-point map f�(x) with given z and u can be

transformed into another trajectory with the same number of iterations tmax initiated at x0
0

in a

map f�(x) with same z and u0 ¼ ðx0
0
=x0Þ

1� zu simply by rescaling the former by a factor

T ¼ x0
0
=x0. We use this property when considering logarithmic corrections.

Detection of logarithmic corrections in real ranked data sets that are known to obey Zipf

law would require sufficiently large entries so that the logarithm of the magnitudes or

Fig 6. Fixed-point map f�(x). Left panel: The fixed-point map f�(x) for several values of the nonlinearity z> 1, exhibiting tangency at x = 0.

Right panel: The fixed-point map f�(x) for several values of the nonlinearity Z< 1, exhibiting a cusp at x = 0 and then gradual separation from

the identity line.

https://doi.org/10.1371/journal.pone.0279448.g006
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frequencies manifest quantitatively. We have considered before California earthquake data

[23] to exhibit the relationship between size-rank N(k) and frequency-rank F(k0) already men-

tioned [15]. We make use again of these data sets [23] to probe the presence of logarithmic cor-

rections. In Fig 7 we show ranked magnitudes combining data for the two years 2015 and 2017

to obtain a data set with more than thirty thousand entries. The data is shown in blue in the

figure and in its two insets. Fitting this data with a trajectory from Eq (3) as shown in red in

inset (a) of Fig 7 in logarithmic scales yields q = α = z = 1.9303. Then we plot Eq (1), or equiva-

lently, Eq (3), by keeping q = α = z = 2 as it corresponds with our theoretical Zipf law value

and fixing Nmax = 39, 811 and N ¼ u� 1 ¼ 31; 919 in accordance with the data. Then we take

the map off tangency a small amount � = 6.68 × 10−5 (since the effect of finite size of real data

for large rank is obtained by taking the matching map off tangency [16]). The result is shown

by the magenta dash-dot curve in Fig 7 in semi-logarithmic scales and also in inset (b) of Fig 7

in logarithmic scales. As it can be observed, the curves runs mostly parallel to the data but way

down below it. We now rescale this theoretical result, a map f�(x) trajectory for z = 2, by a scale

factor T as described above, a shift in the logarithmic scales in Fig 7, and obtain, the red curves

in Fig 7 and in its inset (b), a quantitative match with the data. The value we used for the scale

factor is T = ln Nmax/2 = 5.2959 that falls within the logarithmic correction considered N! N
ln Nβ, β = 1/2. This is our preliminary exploration of the possible presence of logarithmic

Fig 7. Ranked earthquake magnitudes combining California data [23] for the two years 2015 and 2017 shown in blue. Inset (a) data is fitted

with a trajectory from Eq (3) with q = α = z = 1.9303 shown in red in logarithmic scales. Main panel: Magenta dashed-dotted curve shows a

trajectory from Eq (3) with q = α = z = 2 and a small shift from tangency � = 6.688 × 10−5 in semi-logarithmic scales. A vertical shift of a distance T
= (ln Nmax)/2 = 5.2959 results in the red curve that fits the data in blue quantitatively. Inset (b) Same as main panel but in logarithmic scales.

https://doi.org/10.1371/journal.pone.0279448.g007
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corrections associated with borderline contraction dimension in our formalism with applica-

tion to rank functions.

Via its scaling features RG universality provides direct answers about relevant properties

and behaviors of complex systems. Otherwise these solutions may be reached through long

and often cumbersome analysis that demands specific knowledge, mechanisms and facts about

the system or problem under consideration. We exemplified this circumstance for the particu-

lar case of earthquake magnitudes.

Summary and discussion

We have described a general theoretical formalism for rank distributions, both size-rank and

frequency-rank, based on a well-known area of nonlinear dynamics, that of the tangent bifur-

cation in simple low-dimensional iterated maps. The main quantity in the scheme is the func-

tional composition renormalization-group (RG) fixed-point map f�(x), first derived by Hu and

Rudnick. This map displays a closed-form analytical expression involving a deformed expo-

nential function expz(x) with arbitrary nonlinearity z> 1 [10–16]. The deterministic formal-

ism is equivalent [16] to a known stochastic approach [17] in which the entries of data samples

(to be ranked) are random variables generated by a source or parent distribution P(N). Our

approach reveals universality classes into which rank distributions can be clearly assigned [16],

and clarifies the formal differences between magnitude and frequencies often grouped together

in the Zipf law literature [15]. We have added a number theoretical aspect to our approach,

with reference to Factorial, Natural, Prime and Fibonacci numbers, that clarifies further the

nature of the mentioned universality classes. We have indicated the presence of borderline

behavior similar to the borderline dimension in critical phenomena and borderline modifica-

tion in central limit distributions. Lastly, we have made explicit a generalized statistical-

mechanical structure in the formalism.

The decay rate α of the source distribution P(N)* N−α (c.f. Fig 1) translates into the degree

of nonlinearity z of the fixed-point map f�(x) * x + u|x|z at tangency (c.f. Fig 6). The value of

α = z marks the universality class. The derivation of f�(x) from P(N) is detailed in Ref. [16].

The analytical closed-form expressions for f�(x), Eq (2), and for its trajectories, Eq (3), essen-

tially q-exponentials, facilitates visualization of the structure of the formalism. The algebraic

inverses of trajectories link the values of the size-rank distribution N(k) with their probabilities

pk, but also link the elements of the number sets (Factorials, Naturals, Primes, Fibonacci) to

their reciprocals. The functional inverses of trajectories, sums of position reciprocals, link the

size-rank distribution N(k) with the frequency-rank distribution F(k0), the quantile with the

cumulative distribution, but also link the infinite number sets with the series that measures

and differentiates, through the strength of their divergence or convergence, the number sets

infiniteness. The algebraic inverse of a q-exponential is the Q-exponential, Q = 2 − q. The func-

tional inverse of a q-exponential is the q-logarithm. Previously [16], we had identified four dif-

ferent size-rank universality classes, worked out their specific nonlinear maps, indicated their

tangency features, and found quantitative agreement with real data. Two of these correspond

to α = z = q!1 (exponential and Gaussian P(N)) and the other two with α = z = q = 2 (classi-

cal Zipf law when P(N)* 1/N2) and α = z = q = 1 (hyperbolic P(N)* 1/N). Here we have

found that these classes correspond, respectively, to the Factorial numbers (q!1), the Natu-

ral numbers (q = 2), and the Fibonacci numbers (q = 1).

For iterated maps in the interval, as it is the case here, trajectories can be initiated within a

real number set of dimension one. After an infinite number of iterations the attractor can

leave this dimension still equal to one or reduce it to a dimension less than one or even make it

vanish as its lower limit. We call this dimension the contraction dimension [14], and in the
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case of the fixed-point map f�(x) it is given by Z = 2 − z, z< 2 and Z = 0, z> 2 (or α0 = 2 − α, α
< 2 and α0 = 0, α> 2, in the notation for the rank functions N(k) and F(k0)). As we have seen,

when z = Z = 1 the map is a cusp formed by two lines. For a special value of the slopes and ini-

tial conditions the trajectories of this map approximate the Fibonacci numbers and their recip-

rocals, and the series of the latter converges. The rank functions N(k) and F(k0) for this case

differ the most, as they follow ordinary exponential and logarithmic functional forms, respec-

tively. When z grows above unity, the contraction dimension is Z< 1, the map exhibits first a

sharp cusp and then, when closer to z = 2, the cusp rounds and separates from the identity line

(see Fig 6). The rank functions N(k) and F(k0) differ less, as both functions follow power-law

decay. The contraction dimension first vanishes, Z = 0, when z = 2, the map (for Z) becomes a

line parallel to the identity, and for u = x0 = 1 the trajectory generates the Natural numbers.

Whereas for the map for z = 2 with u = 1 the sum of positions of the trajectory initiated at x0 =

−1 generates the (negative) Harmonic numbers. The series of Natural number reciprocals

diverges. The rank functions N(k) and F(k0) exhibit both the same power law decay, that for

the classical Zipf law. When z> 2 the map displays a tangent bifurcation with sharper depar-

tures from the identity line as z increases. The contraction dimension remains Z = 0 for al

z> 2. The rank functions N(k) and F(k0) exhibit both power law decay but now the deformed

exponential followed by N(k) decays more slowly than its inverse, the deformed logarithm fol-

lowed by F(k0). When z!1 tangency shifts to x!1 and, as shown, trajectories can be

tuned to approximate the Factorial numbers via Stirling approximation. Again the rank func-

tions N(k) and F(k0) differ the most but now ordinary exponential (F(k0)) and logarithmic (N
(k)) functional forms have been exchanged.

The trajectories xt with x0 > 0 from f�(x) scape form x = 0, while those of their (minus)

reciprocals −1/xt approach x = 0, at rates dependent on the nonlinearity z> 1. With choice val-

ues of z we have tuned the spacing out of consecutive xt (by adjusting the remaining parame-

ters) to reproduce (exactly or asymptotically) the Factorial, Natural and Fibonacci number

sets. A measure of the scape rate to infinity is the convergence or divergence of the series of

number reciprocals. We found that the series diverges for z = 2 (and presumably other z< 2

with contraction dimension Z 6¼ 0), while there is series convergence for all z> 2. This border-

line value z = 2 is similar to the divergence or convergence of the second moment distributions

of independent events and of the borderline dimension of critical exponents in continuous

phase transitions. We looked for the presence of logarithmic corrections that appear under

these circumstances and found that the set of Prime numbers can be accommodated (via the

known logarithmic integral function bound) at such boundary in our formalism, signalling the

edge for series convergence. We looked at real data to illustrate this circumstance and analyzed

the case of earthquake magnitudes as possible candidate. The outcome of our exploration

offered a positive answer.

The action of ranking data is performed by computing the (complementary) cumulative

distribution F(k0) from the parent distribution P(N), and the calculation of the quantile N(k)

involves determining the inverse function of F(k0) [15]. This task that eliminates existing corre-

lations in the original sample data sets, observable, for instance, when ordered in consecutive

time of occurrences or other real circumstance. Thus the action of ranking renders indepen-

dent outcomes, much like those for the known central limit distributions.
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