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analysis
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Abstract 
Multiple sclerosis (MS) is a chronic inflammatory disease of central nervous system leading to demyelination followed by neurological 
symptoms. Ferroptosis is a newly discovered pathogenic hallmark important for the progression of MS. However, the gene markers 
of ferroptosis in MS are still uncertain. In this study, mRNA expression profiles and clinical data of MS samples were retrieved 
from Gene Expression Omnibus database. Weighted gene co-expression network analysis and receiver operating characteristic 
curve analysis were utilized to identify ferroptosis-related gene (FRG) signatures of MS. Gene set enrichment analysis and gene 
set variation analysis were performed to explore the biological functions of single FRG signature. HMOX1, LPCAT3 and RPL8 
were firstly identified as FRG signatures of MS with the predictive capacity confirmed. Gene set enrichment analysis and gene 
set variation analyses revealed that metabolism-related, immune and inflammation-related, microglia-related, oxidation-related, 
and mitochondria-related biological functions were enriched, providing implications of the mechanisms underlying ferroptosis in 
MS. This study presented a systematic analysis of FRG in MS and explored the potential ferroptosis targets for new interventional 
strategies in MS.

Abbreviations: AUC = areas under the curve, CI = confidence interval, CIS = clinically isolated syndrome, DEGs = differentially 
expressed genes, FRG = ferroptosis-related gene, GEO = gene expression omnibus, GO = gene ontology, GS = gene significance, 
GSEA = gene set enrichment analysis, GSVA = gene set variation analysis, KEGG = Kyoto encyclopedia of genes and genomes, 
MS = multiple sclerosis, NC = normal control, PPI = protein–protein interaction, PPMS = primary progressive multiple sclerosis, 
ROC = receiver operating characteristic, RRMS = relapsing remitting multiple sclerosis, SPMS = secondary progressive multiple 
sclerosis, STRING = search tool for the retrieval of interacting genes, WGCNA = weighted gene co-expression network analysis.
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1. Introduction

Multiple sclerosis (MS) is a chronic multifactorial inflamma-
tory disease of the human central nervous system, which is 
characterized by perivascular inflammation, demyelination, 
oligodendrocyte death, and axonal and neuronal degeneration, 
eventually causing neurological symptoms with increased dis-
ability.[1] Approximately 85% of MS patients initially present 
with clinically isolated syndrome (CIS) or relapsing remitting 
MS (RRMS) course and the majority of them evolve to a sec-
ondary progressive MS (SPMS) course after 15 to 20 years. 10 

to 15% of the patients experience a primary progressive MS 
(PPMS) course with slow and continuous deterioration with-
out definable relapses.[2,3] The literature has confirmed several 
pathogenic mechanisms driving the progression of MS including 
continued compartmentalized inflammation by T-lymphocytes 
and B-lymphocytes and cells of innate immunity, mitochondrial 
damage, intense focal microglia activation, and oxidative stress, 
altogether leading to neurodegeneration with accumulation of 
disability.[4–6] While pathogenic mechanisms involved in progres-
sive MS has helped to design more specific and precise therapeu-
tic approaches such as the B-cell targeting monoclonal antibody 
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ocrelizumab and sphingosine-1-receptor modulator siponimod, 
the treatment of progressive MS is relatively unsatisfactory.[7,8] 
One reason was the more intact blood-brain-barrier, more pro-
nounced neurodegenerative aspects, and the more common 
representation of B-cell follicular structures underneath the 
meninges in progressive cases.[9,10] Moreover, the whole patho-
logic features of MS remain to be elucidated. Thus, novel thera-
peutic approaches need to target new divers of MS progression, 
combining anti-inflammatory strategies, remyelination promot-
ing therapies, and neuroprotective medications simultaneously.

The literature has confirmed that another pathogenic hall-
mark important for the progression of MS might ferroptosis.[11] 
Ferroptosis is an iron-dependent form of programmed cell death 
driven by the lethal accumulation of lipid peroxidation, which 
is different from apoptosis, necroptosis, and autophagic cell 
death.[12,13] In MS, researchers have reported that ferroptosis 
amplifies inflammation, exacerbates mitochondrial dysfunction 
and oxidative stress, concomitant with immune cell infiltration 
and intense focal microglia activation, eventually leading to neu-
rodegeneration in MS.[14] In recent years, researchers have identi-
fied that targeting ferroptosis might play an important role in MS 
treatment. For example, Clomipramine was reported to amelio-
rate clinical signs of acute and chronic phases with strong efficacy 
of reducing iron mediated neurotoxicity.[15] Numerous ferropto-
sis-related genes (FRGs) have been identified as modulators or 
markers of ferroptosis. As an inhibitor of ferroptosis, GPX4 was 
reported to be central to the prevention of ferroptotic damage in 
inflammatory demyelinating disorders such as experimental auto-
immune encephalomyelitis.[16] However, there is a lack of system-
atic studies on the FRGs tightly linked with MS.[13,17–19]

In the present study, we determined FRG signatures associated 
with MS and investigated their enriched pathways and biolog-
ical functions. We used 5 independent gene expression datasets 
from the gene expression omnibus database (GEO, www.ncbi.
nlm.nih.gov/geo) and identified differentially expressed genes 
(DEGs). Gene Ontology (GO) enrichment and Kyoto encyclope-
dia of genes and genomes (KEGG) pathway analyses were further 
utilized to identify possible functions of the DEGs. These DEGs 
were then used to find FRGs associated with MS by weighted 
gene co-expression network analysis (WGCNA). Subsequently, 
the expression levels of these FRGs associated with MS were 
further assessed in GEO datasets for verification of FRG signa-
tures in MS. Furthermore, gene set enrichment analysis (GSEA), 
and gene set variation analysis (GSVA) were utilized to explore 
potential biological functions of these FRG signatures. The pro-
tein–protein interaction (PPI) network based on the search tool 
for the retrieval of interacting genes (STRING) database and 
Cytoscape software were used to identify core genes interacted 
with FRG signatures. Overall, this work will provide further 
insight into FRGs associated with MS and should be helpful 
for further investigations of ferroptosis-related molecular mech-
anisms and therapy development of MS.

2. Materials and Methods

2.1. Microarray data

Figure 1 showed the overall workflow of this study. All microar-
ray datasets were downloaded from GEO. We searched the GEO 
database for microarray datasets using the keyword “multiple 
sclerosis.” Datasets were included if they met the following cri-
teria: Were from humans; Included blood expression data from 
MS and non-MS control samples; The number of rows in each 
platform was > 10,000; The number of MS samples was ≥ 10, 
the number of control samples was ≥ 10; and There were no 
repeated samples among datasets. After a careful review, 5 data-
sets (GSE136411,[20] GSE141804 [www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE141804], GSE13732,[21] GSE21942,[22] 
and GSE17048[23,24] were selected. Detailed information for 
these datasets was recorded and shown in Table 1.

2.2. Identification of DEGs

Considering that dataset GSE136411 contained far more sam-
ples (60 CIS samples, 35 PPMS samples, 121 RRMS samples, 
26 SPMS samples, 67 normal control [NC] samples, and 27 
other neurological disease samples) than the other 4 datasets, 
GSE136411 was applied for identification of DEGs. The R 
package “limma” was utilized to conduct data normality by 
log2 transformation and perform the differentiation analysis 
of DEGs between the MS samples versus the control samples 
following the following criteria: (I) |log fold change (FC)| > 2 
and (II) adjusted P value < 0.05 (adjusted by the false discovery 
rate [FDR] method).[25] The R package “OmicCircos” was used 
to visualize the expression patterns and chromosomal locations 
of the top 100 DEGs (top 50 up-regulated genes and top 50 
down-regulated genes) from the differentiation analysis.[26]

2.3. Functional enrichment analysis of DEGs

To reveal potential biological functions of DEGs, we conducted 
Gene Ontology (GO) enrichment including the potential biolog-
ical process, molecular function, and cellular component, and 
KEGG pathway analyses of the DEGs between 2 groups using 
the R package “clusterprofiler”.[27] GO terms or KEGG path-
ways with adjusted P < .05 were considered statistically signifi-
cant and visualized by the R package “GOplot”.[28]

Figure 1.  Study workflow. MS = multiple sclerosis, GSE = gene expression 
omnibus series, GO = gene ontology, KEGG = Kyoto encyclopedia of genes 
and genomes, WGCNA = weighted gene co-expression network analysis, 
FRG = ferroptosis-related gene, PPI = protein–protein interaction, GSEA = 
gene set enrichment analysis, GSVA = gene set variation analysis.

www.ncbi.nlm.nih.gov/geo
www.ncbi.nlm.nih.gov/geo
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE141804
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE141804
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2.4. WGCNA

The co-expression module is a collection of genes with high 
topological overlap similarity. Genes in the same module often 
have a higher degree of co-expression. We extracted all DEGs 
with expression data retrieved from GSE136411 and used the 
R package “WGCNA” to construct a gene co-expression net-
work for clinical trait–related modules and hub genes among 
the DEGs.[29] A matrix of similarity was constructed by calculat-
ing the correlations of all pairs of genes. Then, an appropriate 
soft-thresholding power β was selected by using the integrated 
function (pickSoftThreshold) in the WGCNA package. With 
this soft-thresholding power, the co-expression similarity was 
raised to achieve scale-free topology. In this study, we chose the 
soft-threshold β = 6 (scale-free R2 = 0.85). Subsequently, we 
transformed the adjacency matrix into a topological overlap 
matrix. The topological overlap matrix matrix is a method to 
quantitatively describe the similarity in nodes by comparing the 
weighted correlation between 2 nodes and other nodes. Next, 
we performed hierarchical clustering to identify modules, each 
containing at least 6 genes (minModuleSize = 6). The module 
eigengene, which was the first principal component of each 
module’s gene expression matrix, was obtained by the WGCNA 
to represent the expression profiles of module genes. Some 
highly similar modules with the height of module eigengene in 
the clustering lower than 0.25 were merged together. A clus-
tering dendrogram was used to display the results of dynamic 
tree cut and merge. Gene significance (GS), as the mediator P 
value (GS = lg P) for each gene, represented the degree of linear 
correlation between gene expression of the module and clinical 
traits. Key modules highly correlated with CIS, RRMS, PPMS, 
or SPMS which were of higher GS values were extracted.

2.5. Identification of FRG signatures for ms

60 FRGs, which were reported and investigated to be involved 
in ferroptosis were retrieved from the previous literature 
and were provided in Supplemental Digital Content,[13,17–19] 
http://links.lww.com/MD/I124. Overlapping genes from key 
MS-related modules in WGCNA and 60 FRGs were identified 
as FRG signatures associated with MS in the current study and 
were selected for further analysis. To identify FRG signatures 
associated with MS, we applied Venn diagrams, which were 
constructed using http://bioinformatics.psb.ugent.be/webtools/
Venn.

2.6. Validation of FRG signatures for MS in GEO datasets

Expression data of selected FRGs associated with MS 
were extracted from datasets GSE141804, GSE13732, and 
GSE21942, which were utilized to validate the differential 

expression of these FRGs in the blood of MS and NC sam-
ples. Significantly down-regulated or up-regulated FRGs in 
GSE141804, GSE13732, and GSE21942 were identified as FRG 
signatures for MS and were selected to measure their diagnostic 
values for MS. Plots in this section were all generated using the 
R package “ggpubr”.[30] Using the 3 datasets, receiver operating 
characteristic (ROC) curves were plotted and the areas under 
the curves (AUCs) were further calculated to assess the predic-
tive accuracy of these ferroptosis specific markers for MS with 
the R package “rms” and “pROC” [31–33].

2.7. PPI

To systematically predict the protein association and PPI of 
FRG signatures for MS with other genes, the Spearman coeffi-
cients of expression of DEGs in GSE136411 dataset and each 
FRG signature were calculated, whilst the expression genes 
with P value < 0.05 were defined as FRG-signature-related 
genes. The top 100 related genes of each FRG signature 
according to P value were mapped into the online search tool 
STRING database (STRING, V11.0; https://string-db.org).[34] 
A combined score ≥ 0.7 of PPI pairs was considered significant. 
The results of STRING analysis were imported into Cytoscape 
software (http://www.cytoscape.org, version 3.7.1; Institute 
for Systems Biology, Seattle, WA) and the cluster analysis of 
FRG signatures was conducted using molecular complex 
detection plug-in, with all the parameters set as defaults.[35]

2.8. GSEA and GSVA

We utilized the R package “clusterprofiler” to perform GSEA 
of FRG signatures for MS on GSE17048 dataset. In addition, 
the “GSVA” R package was used to find the pathways most 
associated with FRG signatures for MS.[36] Based on the median 
expression of each FRG signature, 99 MS samples were divided 
into 2 groups (high expression vs low expression). P < .05 was 
regarded as statistically significant. The gene set “c2.cp.kegg.
v7.1.symbols.gmt,” downloaded from the Molecular Signature 
Database (MSigDB, http://software.broadinstitute.org/gsea/
msigdb/index.jsp), was selected as the reference gene set.

2.9. Statistical analysis

The Shapiro–Wilk statistic was used to test the normality of 
the distribution of data. Comparisons were analyzed with use 
of Student’s t tests or Wilcoxon’s rank-sum tests for continu-
ous data. Multivariable stepwise logistic regression was used to 
identify prediction value of FRG signatures for MS. We com-
puted the AUC with a 95% confidence interval (CI) by using 
1000 bootstrap resampling.[37] All statistical tests were 2-tailed 

Table 1

Characteristics of the included datasets.

Dataset ID Country No. of samples in the dataset GPL ID Usage in the current study 

GSE136411 Italy 60 CIS, 35 PPMS, 121 RRMS, 26 SPMS, 67 NC, 
and 27 OND

GPL10558 Identification of DEGs, WGCNA, KEGG 
and GO analyses, and PPI construction

GSE141804 Israel 33 MS, and 10 NC GPL571, GPL96 Validation of FRG signatures for MS
GSE13732 United States 73 CIS, and 40 NC GPL570 Validation of FRG signatures for MS
GSE21942 United Kingdom 14 MS, and 15 NC GPL570 Validation of FRG signatures for MS
GSE17048 Australia 43 PPMS, 36 RRMS, 20 SPMS, and 45 NC GPL6947 GSEA, and GSVA

GSE136411 was used for identification of differentially expressed genes (DEGs), weighted gene co-expression network analysis (WGCNA), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, Gene 
Ontology (GO) analysis, and protein–protein interaction (PPI) network construction. GSE141804, GSE13732, and GSE21942 were used for validating the differential expression of FRG signatures for MS. 
GSE17048 was used for Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA).
MS = multiple sclerosis, CIS = clinically isolated syndrome, FRG = ferroptosis-related gene, PPMS = primary progressive multiple sclerosis, RRMS = relapsing remitting multiple sclerosis, SPMS = 
secondary progressive multiple sclerosis; OND = other neurological disease, NC = normal control, GSE = Gene Expression Omnibus Series, GPL = Gene Expression Omnibus Platform, DEGs = differentially 
expressed genes, WGCNA = weighted gene co-expression network analysis, KEGG = Kyoto Encyclopedia of Genes and Genomes analysis, GO = Gene Ontology analysis, PPI = protein–protein interaction, 
GSEA = Gene Set Enrichment Analysis, GSVA = Gene Set Variation Analysis.

http://links.lww.com/MD/I124
http://bioinformatics.psb.ugent.be/webtools/Venn
http://bioinformatics.psb.ugent.be/webtools/Venn
https://string-db.org
http://www.cytoscape.org
http://software.broadinstitute.org/gsea/msigdb/index.jsp
http://software.broadinstitute.org/gsea/msigdb/index.jsp
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with a 5% level of statistical significance. Statistical analyses 
were conducted by using R software version 3.3.3 (Institute for 
Statistics and Mathematics, Vienna, Austria; https://www.r-proj-
ect.org).

3. Results

3.1. Identification of DEGs

According to the sample information and data matrix of 
GSE136411, 3017 DEGs (1602 up-regulated and 1415 
down-regulated) were identified (included in Supplemental 
Digital Content, http://links.lww.com/MD/I125). The polarity of 
genes described as “up-regulated” or “down- regulated” in this 
article is with respect to MS versus NC. The top 100 DEGs were 
chosen to visualize their chromosomal locations and expression 

patterns, as well as their logarithmic adjusted P values shown 
in the inner layer (Fig. 2). The top 5 up-regulated genes were 
NRCAM, CERKL, FASLG, ID3, and CNTNAP2, whereas the 
top 5 down-regulated genes were CAMP, S100P, HBD, C1QB, 
and HBG1 (Fig. 2).

3.2. Functional enrichment analysis of DEGs

All DEGs were utilized to perform GO and KEGG analyses, 
and the top 5 of these terms based on their adjusted P val-
ues were shown in chord plots (Fig.  3). The top 5 molecular 
function terms for GO analysis were magnesium ion binding, 
GTPase binding, phosphatase activity, protein antigen bind-
ing, ubiquitin activating enzyme activity (Fig.  3A). The top 5 
biological process terms for GO analysis were mitochondrial 
translation, positive regulation of DNA binding, mRNA splice 

Figure 2.  Circos plot of expression patterns and chromosomal positions of top 100 differentially expressed genes. The outer circle represented chromosomes, 
and lines coming from each gene point to their specific chromosomal locations. The multiple sclerosis microarray dataset from GSE136411 was represented in 
the inner circular heatmap. The red lines in the inner layer indicated -log10 (adjusted P value) of each gene. According to |log2 fold change|, the top five up-reg-
ulated genes (red) and the top five down-regulated genes (green) were connected with lines in the center of the Circos plot.

https://www.r-project.org
https://www.r-project.org
http://links.lww.com/MD/I125
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site selection, vesicle docking involved in exocytosis, toll-like 
receptor signaling pathway (Fig. 3B). The top 5 cellular compo-
nent terms for GO analysis were endocytic vesicle, cytoplasmic 
exosome (RNase complex), pericentriolar material, proteasome 
regulatory particle, microtubule organizing center (Fig. 3C). For 
KEGG pathway analysis, DEGs were mostly enriched in mis-
match repair, DNA replication, base excision repair, cysteine 
and methionine metabolism, amino sugar and nucleotide sugar 
metabolism (Fig. 3D).

3.3. WGCNA and FRGs associated with ms

To find the key modules most associated with MS clinical traits, 
expression data of 3017 DEGs were extracted from GSE136411 
was used to conduct WGCNA (Fig. 4). By setting soft-thresh-
olding power as 6 (scale free R2 = 0.85) and cut height as 0.25, 
we eventually identified 15 modules (Fig.  4A–4D). From the 
heatmap of module–trait correlations, we found that the yellow 

and green-yellow modules were highly correlated with clinical 
traits, especially RR and CIS (yellow module for RR, correla-
tion coefficient = 0.27, P < .001; yellow module for CIS, correla-
tion coefficient = 0.22, P = .001; green-yellow module for RR, 
correlation coefficient = 0.26, P < .001, green-yellow module 
for CIS, correlation coefficient = 0.15, P = .006; Fig.  4E). The 
yellow module contained 4 FRGs: HMOX1, GOT1, LPCAT3, 
and SLC1A5, while the green-yellow module contained 1 IRG: 
RPL8 (Fig. 4F). Here, we found the following 5 FRGs associated 
with MS from the yellow and green-yellow modules: HMOX1, 
GOT1, LPCAT3, SLC1A5, and RPL8.

3.4. FRG signatures for ms

All 5 FRGs associated with MS underwent expression validation in 
GSE141804, GSE13732, and GSE21942 datasets. The expressions 
of HMOX1, LPCAT3, and RPL8 were significantly different from 
NC in MS samples in 3 datasets (Fig. 5A–5C), while no significant 

Figure 3.  Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of all differentially expressed genes. Chord plots indicate 
enrichment analysis of genes. (A) Molecular function of GO analysis. (B) Biological process of GO analysis. (C) Cellular component of GO analysis. (D) KEGG 
pathways. GO = gene ontology, KEGG = Kyoto encyclopedia of genes and genomes.
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difference in the expressions of SLC1A5 and GOT1 between MS 
and NC was noted in in GSE13732 and GSE21942. HMOX1 

was significantly down-regulated in MS from all 3 datasets. 
LPCAT3 was significantly up-regulated in MS from GSE141804, 

Figure 4.  Key module correlated with multiple sclerosis (MS) identified by weighted gene co-expression network analysis (WGCNA). (A) Clustering of samples to 
detect outliers. (B) Scale-free topology model (left) and mean connectivity (right) for finding the soft-thresholding power. The power selected is 6. (C) Clustering 
of all modules. The red line indicates the height cutoff (0.25). (D) Cluster dendrogram of genes. (E) Heatmap showed the relationships between different mod-
ules and clinical traits. (F) Venn diagram was used to pick up the intersection of green-yellow module genes and 60 FRGs. (G) Venn diagram was used to pick 
up the intersection of yellow module genes and 60 FRGs. FRG = ferroptosis-related gene, MS = multiple sclerosis, WGCNA = weighted gene co-expression 
network analysis.
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with significantly down-regulated in MS in GSE13732 and 
GSE21942. RPL8 was significantly down-regulated in MS from 
GSE141804 and GSE13732, with significantly up-regulated in MS 
in GSE21942. The ROC curves were plotted to illustrate the sen-
sitivities and specificities of these 3 FRGs differentiating MS from 
NC. HMOX1, LPCAT3, and RPL8 exhibited striking diagnostic 
validity in the 3 datasets (Fig. 5D). In GSE141804, AUC for dif-
ferentiating MS and NC samples is 0.76 (95% CI = 0.62–0.91). In 
GSE13732, AUC for differentiating MS and NC samples is 0.90 
(95% CI = 0.85–0.96). In GSE21942, AUC for differentiating MS 
and NC samples is 0.99 (95% CI = 0.95–1.00). These results indi-
cated that the following 3 FRGs: HMOX1, LPCAT3, and RPL8 
were reliable ferroptosis specific markers in MS patients. The gene 
symbols, full names, and implications of these 3 FRG signatures 
for MS were shown in Table 2.[38–40]

3.5. PPI network

In order to screen out the core genes interacted with FRG sig-
natures in MS samples, top 100 HMOX1-related genes, top 
100 LPCAT3-related genes, and top 100 RPL8-related genes 
were uploaded to the STRING and PPI networks of FRG sig-
natures and FRG-signature-related genes were constructed 
based on the STRING database. Clusters of HMOX1, 
LPCAT3, and RPL8 analyzed by molecular complex detec-
tion were visualized by Cytoscape, which were determined 
from the PPI networks (Fig. 6). A total of 53 genes were iden-
tified as core genes of HMOX1 (n = 13), LPCAT3 (n = 23), 
and RPL8 (n = 17), which might play significant key roles in 
biological function interaction with FRG signatures during 
the progress of MS.

Figure 5.  Validation of HMOX1, LPCAT3, and RPL8 in the Gene Expression Omnibus (GEO) datasets. (A) HMOX1, LPCAT3, and RPL8 gene expression differ-
ences between multiple sclerosis (MS) samples and normal control (NC) samples in GSE141804. (B) HMOX1, LPCAT3, and RPL8 gene expression differences 
between MS samples and NC samples in GSE13732. (C) HMOX1, LPCAT3, and RPL8 gene expression differences between MS samples and NC samples 
in GSE21942. The green box indicated MS samples, and the orange box indicated NC group. (D) Receiver operating characteristic (ROC) curves of HMOX1, 
LPCAT3, and RPL8 predicting MS. ROC curves showed the sensitivities and specificities of differentiating MS from NC with three ferroptosis-related gene 
(FRG) signatures in GSE141804, GSE13732, and GSE21942. The black line indicated GSE141804. The red line indicated GSE13732. The green line indicated 
GSE21942. ∆P < .05; ∆∆P < .01; ∆∆∆P < .001. FRG = ferroptosis-related gene, GEO = gene expression omnibus, GSE = gene expression omnibus series, CIS = 
clinically isolated syndrome, MS = multiple sclerosis, NC = normal control, ROC = receiver operating characteristic.
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3.6. GSEA and GSVA results

To further investigate the potential functions of HMOX1, 
LPCAT3, and RPL8 in MS, we performed GSEA and GSVA on 
the GSE17048 dataset. As shown in Figure 7, the top 5 enriched 
GSEA GO terms of high expression groups of HMOX1, 
LPCAT3, and RPL8 were “antigen processing and presenta-
tion,” “TCA cycle,” “fatty acid elongation,” “other glycan deg-
radation,” and “primary immunodeficiency” (Fig. 7A, 7C, and 
7E). Genes in high expression groups of HMOX1, LPCAT3, 
and RPL8 were all enriched in “mRNA transport,” “ribonuc-
leoprotein complex export from nucleus,” “ribonucleoprotein 
complex localization,” “RNA export from nucleus,” and “RNA 
transport” KEGG pathways (Fig. 7B, 7D, and 7F).

Also, many metabolism-related, immune and inflamma-
tion-related, microglia-related, oxidation-related, and mitochon-
dria-related KEGG pathways such as amino acid and glutathione 
metabolism, lipid metabolism, pyruvate metabolism, JAK STAT 
signaling, oxidative phosphorylation, RNA degradation, and 

DNA replication pathways were enriched in the high-expression 
groups of these FRG signatures for MS in GSVA results, suggest-
ing the contribution of ferroptosis in MS (Fig. 8).

4. Discussion
Increasing evidence has shown that ferroptosis, a recently dis-
covered programmed cell death, plays a crucial role in progres-
sion of MS. However, profiling of it regulars across MS has yet 
to be clarified. In the current study, we systematically investi-
gated FRGs associated with MS on the basis of WGCNA and 
3 FRG signatures for MS were firstly constructed. The core 
genes interacted with each FRG signature were analyzed in PPI. 
Functional analyses revealed that biological functions related to 
metabolism, inflammation and immunity, microglia activation, 
oxidation, and mitochondria were enriched.

Previous studies demonstrated that ferroptotic cell death 
resulted from fatal lipid peroxidation.[22] In this regard, the 

Table 2

Implications of three FRG signatures for MS.

Gene 
symbol Full name Implication Location 

HMOX1 Heme oxygenase 1 HMOX1 may play a significant role in the maintenance of immune homeostasis which is disrupted in 
autoimmune disorders, such as MS.

Chromosome 
22

LPCAT3 Lysophosphatidylcholine 
acyltransferase 3

Lysophospholipid acyltransferases (LPLATs) regulate the diversification of fatty acid composition in biologi-
cal membranes. LPCATs are members of the LPLATs that play a role in inflammatory responses.

Chromosome 
12

RPL8 Ribosomal protein L8 Neuronal ferroptosis occurs during the acute phase of intracerebral hemorrhage in brain areas distant from 
the hematoma and that inhibition of ferroptosis by Fer-1 exerted a long-term cerebroprotective effect.

Chromosome 
8

MS = multiple sclerosis, FRG = ferroptosis-related gene.

Figure 6.  The Protein-Protein Interaction (PPI) networks downloaded from the STRING database indicated the interactions of single ferroptosis-related gene 
(FRG) signature among FRG-signature-related genes. FRG = ferroptosis-related gene, PPI = protein–protein interaction, search tool for the retrieval of interacting 
gene, STRING = search tool for the retrieval of interacting genes.
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accumulation of intracellular iron caused by the depletion of 
ferritin or iron transporters and subsequent peroxidation are 
fundamental mechanisms that lead to the accumulation of lipid 
peroxides and ferroptosis. Among the 3 identified FRG signa-
tures, HMOX1 is a phase II enzyme which is widely recognized 
to metabolize heme into biliverdin/bilirubin, carbon monoxide, 
and ferrous iron, and it has been suggested to demonstrate cyto-
protective effects or govern ferroptotic progression depends on 

the degree of ROS production and following oxidative damage 
in response to stimulatory cues.[38] LPCAT3, a trans-acylase, 
is one of important factors in ferroptosis. It was reported to 
participate in the maintenance of sufficient levels of oxidation 
substrates which is a significant required constituent of the fer-
roptotic program. On the other hand, LPCAT3 was also cru-
cial in M1/M2-macrophage polarization by promoting M2 
polarization.[39] In the previous rare studies, RPL8 encoded a 

Figure 7.  Gene set enrichment analysis (GSEA) of ferroptosis-related gene (FRG) signatures for multiple sclerosis (MS) in GSE17048 dataset. (A) Top five Gene 
Ontology (GO) terms (according to GSEA enrichment score) enriched in the high-expression group of HMOX1. (B) Top five Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways (according to GSEA enrichment score) enriched in the high-expression group of HMOX1. (C) Top five GO terms enriched in the 
high-expression group of LPCAT3. (D) Top five KEGG pathways (according to GSEA enrichment score) enriched in the high-expression group of LPCAT3. (E) 
Top five GO terms enriched in the high-expression group of RPL8. (F) Top five KEGG pathways enriched in the high-expression group of RPL8. FRG = ferro-
ptosis-related gene, GO = gene ontology, GSEA = gene set enrichment analysis, KEGG = Kyoto encyclopedia of genes and genomes, MS = multiple sclerosis.
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component of the 60S ribosomal subunit presumably regulat-
ing mitochondrial fatty-acid metabolism and translation, which 
might be a specifically required gene for ferroptosis.[40] It was 
noteworthy that HMOX1 was significantly down-regulated in 
MS, and LPCAT3, RPL8 were expressed significantly differ-
ently from NC but similarly undetermined in MS in the present 
study. And there might be 3-fold main implications existing in 
the expressions of these 3 genes. First, the down-regulation of 
HMOX1 and uncertainty of LPCAT3 and RPL8 in MS approx-
imately adhered to their bright and dark sides in ferroptosis. 
Second, the mentioned consistency additionally provided robust 
evidence that ferroptosis played a critical role in the progres-
sion of MS. Third, the current study further demonstrated that 
the ROC curve generated using these 3 FRGs accurately pre-
dicted MS with AUC of 0.76, 0.90, and 0.99. The coexistence 
of HMOX1, LPCAT3 and RPL8 might trigger ferroptosis, high-
lighting the pivotal roles of these FRGs in MS, and the poten-
tial of HMOX1-based, LPCAT3-based and RPL8-baesd MS 
therapy.

Although the mechanisms underlying MS progression to fer-
roptosis have been an intense area of research in the past few 
years, the whole and specific modulation between ferroptosis and 
MS remains elusive. GO and KEGG analyses of DEGs between 
MS and NC indicated that the DEGs corresponding to biologi-
cal functions were closely related to inflammation and immunity 
such as protein antigen binding, mitochondrial dysfunction such 
as mitochondrial translation, microglia activation such as toll-
like receptor signaling pathway, oxidation such as phosphatase 
activity, which was strongly consistent with aforementioned 
pathogenic mechanisms of MS. Based on 3 identified FRG signa-
tures, we performed GSEA and GSVA analyses and interestingly 
discovered that the immunity and inflammation-related biolog-
ical function such as primary immunodeficiency, microglia acti-
vation-related biological function such as JAK STAT signaling 
pathway, oxidation-related biological function such as oxida-
tive phosphorylation pathway, mitochondria-related biological 
function such as DNA replication pathway were enriched in 
the high-expression groups of these FRG, which meant that 
ferroptosis was indeed closely related to MS and shared com-
mon pathways with MS in gene aspects. Remarkablely, this 
study demonstrated that many metabolism-related biological 
functions such as glycolysis gluconeogenesis, amino sugar and 
nucleotide sugar metabolism, pyruvate metabolism, and fatty 
acid elongation were significantly enriched in high expression 
of HMOX1, LPCAT3 and RPL8 groups in this study. As the 
understanding of complex biological processes of ferroptosis 

increases, it has been revealed that the initiation and execution 
of ferroptosis is not only closely connected with metal ions dys-
function, but also crosslinks with energy metabolism including 
amino acid, fatty acid, pyruvate, glutathione, phospholipids, 
and NADPH.[13] Moreover, the imbalance between energy pro-
duction and consumption has been observed in demyelination 
during MS lesions including the activation of aerobic glycolysis, 
the increase of aerobic glycolysis and lactate production, and 
the decrease of pyruvate dehydrogenase activity.[41] Based on the 
enrichment and PPI results of 3 FRG signatures in the present 
study, 1 possible speculation is that the role of ferroptosis in 
myelin breakdown might not only be neurotoxicity concomi-
tant with central nervous system inflammation, mitochondrial 
dysfunction, oxidative stress, and microglia activation, but also 
be a direct and important regulator of metabolism in demye-
lination in MS. And it is reasonable to assume that HMOX1, 
LPCAT3 and RPL8, as FRGs, are likely to be correlated with 
pathogenic mechanisms of metabolism, inflammation and 
immunity, mitochondrial dysfunction, oxidation, and microg-
lia activation in MS. In addition, the core genes of HMOX1, 
LPCAT3, and RPL8 during the progress of MS were investi-
gated in PPI, which further provided insights into the potential 
of FRG-based MS therapies.

There are several limitations of this study. First, 3 FRG signa-
tures were all constructed and validated with retrospective data 
from GEO. We lack clinical data related to HMOX1, LPCAT3, 
and RPL8 in MS patients in the real world, which are warranted 
in future research. Future research with relatively large sample 
size will be necessary to detect a clinically meaningful effect of 
HMOX1, LPCAT3, and RPL8 in MS. Second, since current data 
only provide RNA-level quantifications for FRGs, whereas the 
ferroptosis process relies on proteins, there could be a variety 
of inaccuracies. Third, the detailed molecular mechanisms for 
ferroptosis are still unclear, and currently, the identified FRGs 
potential have various other functions; thus, the clinical utility 
of FRG signature might be limited and needs further evaluation.

5. Conclusion
In summary, this study was the first to investigate FRG signa-
tures of MS, which proved to exhibit potential as a biomarker 
of MS patients in both the derivation and validation cohorts. 
HMOX1, LPCAT3 and RPL8 provided implications of the 
mechanisms underlying ferroptosis in MS, which might combine 
energy metabolism, inflammation and immunity, mitochondrial 
dysfunction, oxidative stress, as well as microglia activation. 

Figure 8.  Gene Set Variation Analysis (GSVA)-derived clustering heatmaps of differentially expressed pathways for single ferroptosis-related gene (FRG) signa-
tures. (A) HMOX1; (B) LPCAT3; (C) RPL8. FRG = ferroptosis-related gene, GSVA = gene set variation analysis.
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Future medications targeting HMOX1, LPCAT3 and RPL8 
might eventually lead to personalized progressive MS therapy, a 
hopeful scenario for patients and treating neurologists.
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