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Neurobiology of Disease

Intracellular Accumulation of a-Synuclein Aggregates
Promotes S-Nitrosylation of MAP1A Leading to Decreased
NMDAR-Evoked Calcium Influx and Loss of Mature

Synaptic Spines
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Cortical synucleinopathies, including dementia with Lewy bodies and Parkinson’s disease dementia, collectively known as Lewy
body dementia, are characterized by the aberrant aggregation of misfolded a-synuclein (a-syn) protein into large inclusions in cort-
ical tissue, leading to impairments in proteostasis and synaptic connectivity and eventually resulting in neurodegeneration. Here,
we show that male and female rat cortical neurons exposed to exogenous a-syn preformed fibrils accumulate large, detergent-insol-
uble, PS129-labeled deposits at synaptic terminals. Live-cell imaging of calcium dynamics coupled with assessment of network activ-
ity reveals that aberrant intracellular accumulation of a-syn inhibits synaptic response to glutamate through NMDARs, although
deficits manifest slowly over a 7 d period. Impairments in NMDAR activity temporally correlated with increased nitric oxide syn-
thesis and S-nitrosylation of the dendritic scaffold protein, microtubule-associated protein 1A. Inhibition of nitric oxide synthesis
via the nitric oxide synthase inhibitor L-NG-nitroarginine methyl ester blocked microtubule-associated protein 1A S-nitrosylation
and normalized NMDAR-dependent inward calcium transients and overall network activity. Collectively, these data suggest that
loss of synaptic function in Lewy body dementia may result from synucleinopathy-evoked nitrosative stress and subsequent
NMDAR dysfunction.
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Significance Statement

This work shows the importance of the redox state of microtubule-associated protein 1A in the maintenance of synaptic func-
tion through regulation of NMDAR. We show that a-syn preformed fibrils promote nitric oxide synthesis, which triggers S-
nitrosylation of microtubule-associated protein 1A, leading to impairment of NMDAR-dependent glutamate responses. This
offers insight into the mechanism of synaptic dysfunction in Lewy body dementia.

multiple cellular compartments, including the presynaptic (Iwai
et al., 1995; Withers et al, 1997; Kahle et al, 2000a, 2000b;
Kramer and Schulz-Schaeffer, 2007; Zhang et al., 2008; Colom-
Cadena et al.,, 2017) and postsynaptic terminals (Fortin et al.,
2004; Emanuele et al, 2016; Colom-Cadena et al, 2017;
Shrivastava et al., 2020). While the role of a-syn aggregation in
presynaptic dysfunction and altered synaptic vesicle release has
been extensively studied (for review, see Sulzer and Edwards,
2019), the role of a-syn aggregation in postsynaptic remains

Introduction

Intracellular accumulation of @-syn results in impaired proteo-
stasis and perturbations in neuronal function, including synaptic
and mitochondrial dysfunction (Wong and Krainc, 2017).
Sequestration of a-syn into aggregates has been reported in
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poorly understood. There is mounting evidence that aggregated
a-syn perturbs postsynaptic ion channels, which may further
exacerbate synaptic deficits. For instance, postsynaptic densities
may be particularly sensitive to pathologic accumulation of
a-syn as acute passive infusion of a-syn preformed fibrils (PFFs)
into hippocampal neurons inhibits mEPSCs within minutes (Wu
et al., 2019), suggesting that small amounts of oligomerized in-
tracellular a-syn at the postsynaptic terminus are sufficient to
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interfere with synaptic function. Several studies have sought to
determine the basis for pathologic a-syn-induced postsynaptic
dysfunction, and evidence suggests that the defect may relate to
NMDAR functionality (Chen et al., 2015; Yang et al., 2016;
Durante et al., 2019).

In addition to the effect of a-syn aggregates on ionotropic
glutamate receptors (iGluRs), we and others have shown that
prolonged a-syn accumulation leads to a time-dependent in-
crease in nitric oxide (NO) and other reactive nitrogen species
(RNS) (Cooper et al., 2006; Ryan et al., 2013; Kam et al., 2018;
Stykel et al., 2018). RNS has been widely implicated in the
pathogenesis of many neurodegenerative diseases, including
synucleinopathies (Hunot et al., 1996; Eve et al., 1998). NO can
react with the reactive oxygen species superoxide anion to pro-
duce the highly toxic peroxynitrite, an RNS capable of damag-
ing lipids through peroxidation and proteins through cysteine
oxidation (known as S-nitrosylation) and tyrosine nitration
(Lipton et al., 1993; Picon-Pages et al, 2019). Furthermore,
NO-related species can aberrantly S-nitrosylate and impair
function of many synaptic proteins (Nakamura et al., 2013).
Endogenous NO is typically maintained at low levels; how-
ever, NMDAR-dependent increases in intracellular calcium
can drive NO production through enhanced neuronal NO syn-
thase (nNOS) activity (Garthwaite et al., 1988; Hardingham
and Fox, 2006). NO-related species then act through a feedback
mechanism to reduce NMDAR hyperactivation by directly
modifying NMDAR activity through S-nitrosylation of cysteine
thiol groups on synaptic proteins, resulting in decreased ion
channel opening and spine retraction, thereby limiting further
calcium flux (Choi and Lipton, 2000). Thus, it is conceivable
that a-syn accumulation may result in an acute increase in
NMDAR activity and increased NO levels, subsequently result-
ing in S-nitrosylation of synaptic proteins and a long-term
decrease in postsynaptic activation, thereby providing a mech-
anism consistent with observations of both increased and de-
creased NMDAR function in response to accumulation of
a-syn aggregates (Volpicelli-Daley et al., 2011; Durante et al,,
2019).

To determine whether intracellular accumulation of a-syn
aggregates promotes NO-mediated loss of NMDAR activation
in cortical neurons, we used the PFF model of evoked synu-
cleinopathy that models fibrillogenesis (Mahul-Mellier et al.,
2020), contrasted against a monomer exposure paradigm where
fibrillogenesis is limited (Kim et al., 2019). Following exposure
of primary cortical neurons to a-syn-PFFs, we observed an in-
crease in pathologic a-syn deposits at synaptic terminals coupled
to decreased spontaneous network activity. Moreover, a-syn-PFFs
inhibited synaptic response to glutamate through NMDARs while
having no effect on AMPAR-mediated responses. The effect on
NMDAR activity was time-dependent, requiring up to 6d to
manifest and coincided with a loss of mature dendritic spines.
Impairment in NMDAR activity was preceded by increased NO
synthesis and S-nitrosylation of the dendritic scaffold, microtu-
bule-associated protein 1A (MAP1A), forming SNO-MAP1A.
Inhibition of NO synthesis via the NOS inhibitor L.-NG-nitroar-
ginine methyl ester (.-NAME) blocked SNO-MAPI1A forma-
tion, normalized NMDAR-dependent calcium transients and
spontaneous network activity, and rescued mature spine num-
ber. Collectively, these data offer a mechanism of a-syn-medi-
ated impairment of NMDAR function suggesting that exposure
to a-syn-aggregates leads first to NO generation that subse-
quently results in decreased NMDAR-activity and loss of syn-
aptic function.

Hallam, Buchner-Duby et al. ® a-Syn-Induced Synaptic Dysfunction by SNO-MAP1A

Materials and Methods

Chemicals. Chemicals used in this study were sourced from
MilliporeSigma unless otherwise specified below.

Cell isolation culture. Primary cortical neurons were harvested
from both male and female E18 Sprague Dawley rat embryos (Charles
River). Following dissection, pooled tissue was digested using filter-
sterilized 17 U/mg Papain (Sigma, P4762) solution and subjected to
mechanical dissociation. Cells were seeded onto plates coated the pre-
vious day (0.15mg/ml poly-D-lysine hydrobromide [Sigma, P0899]
in sterile tissue culture grade water at 37°C for 24 h) and incubated at
37°C, 7.5% CO, until time of analysis. Alternating every 4 and 3d, a
50% media change was performed using fresh primary culture media
[(2% B27 supplement (Invitrogen, 17504044), 1% antibiotic/antimycotic
(Cytiva, SV30079.01), 0.7% BSA Fraction V (Invitrogen, 50-121-5315),
0.1% B -mercaptoethanol (Invitrogen, 21985-023) in DMEM/F12 (Sigma,
D8437)]. If required, at day 7, in vitro cells were treated with 1 ug/ml
human a-syn PFFs, 1 ug/ml monomeric a-syn, or vehicle control
(PBS). For dendritic spine analysis, neurons were transduced with
with pLenti-Lifeact(Actin)-tdTomato (Addgene, 64048) at the time of
plating. SH-SY5Y cells (ATCC, CRL-2266) were maintained at a low
passage number (< 15) and free of mycoplasma contamination. Cells
were were maintained in growth media [DMEM/F12 (Sigma, D8437)
with 1% nonessential amino acids (HyClone SH30238.01), 1% pen/
strep (Invitrogen, 15140122), 1% sodium pyruvate (Invitrogen 11360-
070) containing 5% FBS (Atlanta Biologicals, $12450)]. SH-SY5Y dif-
ferentiation was induced by reducing FBS concentration to 1% and
adding 10 um all-trans-retinoic acid (Thermo Fisher Scientific, cat-
alog #AC207341000) for 7 d.

Formation of human recombinant a-syn preformed fibrils. Human
a-syn protein was isolated from BL21-CodonPlus (DE3)-RIPL com-
petent cells (Agilent, 230280) transformed with pET21a-a-synuclein
(Addgene, 51486) and purified by sequential ion exchange FPLC
and reversed-phase HPLC. Human «a-syn PFFs were then generated
as previously described (Volpicelli-Daley et al., 2011). Purified
a-syn (5mg/ml in PBS) was incubated at 37°C with constant shak-
ing for 7d, then aliquoted and stored at —80°C. Before use, PFFs
were thawed and diluted in PBS, then subjected to sonication (20%
amplitude, 30 s; 1 s on, 1 s off) and added to neuronal media for ex-
posure to neurons at a concentration of 1 ug/ml. Both fibrillar and
monomeric a-syn were analyzed by sedimentation assay to confirm
separation of monomers from fibrils before use.

Immunofluorescence. At time of fixation, cells were washed with PBS
and fixed with 4% PFA (Electron Microscopy Systems) in PBS for 5 min.
Following fixation, cells were washed 3 times and then blocked for 1 h at
room temperature with PBS + 3% BSA. Cells were then incubated over-
night with primary antibody in PBS + 3% BSA. Primary antibodies were
as follows: [Anti-PSD95 mouse monoclonal (Synaptic Systems catalog
#124011); Anti-Bassoon mouse monoclonal (Abcam catalog #ab82958),
Anti-Phosphoserine-129 (81A) rabbit monoclonal [EP1536Y] (Abcam
catalog #ab51253), Anti-Alpha-synuclein aggregate rabbit monoclonal
[MJFR-14-6-4-2] (Abcam catalog #ab209538)]. Cells were then washed 3
times with PBS, blocked with PBS + 3% BSA for 1 h at room tempera-
ture, and then incubated with AlexaFluor-conjugated secondary anti-
bodies for 1 h at room temperature at a dilution of 1:2000. Secondaries
were as follows: [Donkey anti-Mouse IgG (H&L) AlexaFluor-488 conju-
gate (Invitrogen, catalog #A21202); Donkey anti-Rabbit IgG (H&L)
AlexaFluor-555 conjugate (Invitrogen, catalog #A32794)]. Cells were
counterstained with DAPI (1:1000) and fluorescence imaging was per-
formed using an LSM880 Airyscan confocal microscope (Carl Zeiss).
Resolution was set at 140 nm laterally and 400 nm axially. Image acquisi-
tion was performed using ZEN version 2.6 (Carl Zeiss). The Pearson
coefficient of colocalization was calculated on super-resolution 2D con-
focal images sets using colocalization module of ZEN version 2.6 (Carl
Zeiss).

Dendritic spine analysis. Analysis of spine morphology and density
was performed on cortical neurons expressing Lifeact(Actin)-tdTomato
to identify spines from single neurons. Tracing was performed in
Neurolucida 360 (MBF Bioscience) in a semiautomated manner.
Experimenter input was primarily to resolve neurite intersections
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from two independent neurons that could not be distinguished in
an automated fashion. Four or five single neurons per field of ac-
quisition were chosen at random, 3 fields per coverslip, and 9 inde-
pendent experiments were analyzed. Experimenters were blind
to the treatment conditions. To be scored as a spine, the filipodia
required a minimum length of 2.5 pm. The morphology of dendri-
tic spines were then classified into four different types based on the
following parameters (set in Neurolucida360, MBF Bioscience):
thin (the length of the spine is greater than the head diameter by a
ratio >2.5:1 and the diameters of the head relative to the neck does
not exceed ratio of 1:1.1), mushroom (the diameter of the head is
greater than the diameter of the neck by a ratio of at least 3:1),
stubby (the diameter of the head is similar to the total length of the
spine (ratio <2.5:1), and branched (spines with two heads), in
keeping with previous dendritic spine analyses conducted in rats
(Chicurel and Harris, 1992; Harris et al., 1992; Bello-Medina et al.,
2016). Spines on neurites within 60 pm of the soma were binned as
proximal spines, while spines >60 pm from the soma were binned
as distal consistent with previous reports on the effects of PFFs on
spine density and synaptic activity in vitro (Wu et al., 2019).

Western blot analysis. Unless otherwise stated, all samples were lysed
in ice-cold RIPA buffer containing protease and phosphatase inhibitors
(10 mm PMSF, 1 mum aprotinin, 1 mm sodium orthovanadate, and 1 mum
sodium fluoride). Samples were homogenized with an 18G needle and
briefly centrifuged at 12,000 x g to remove cellular debris. The concen-
trations of the resulting protein lysates were determined using the Bio-
Rad DC Protein Assay Kit as per the manufacturer’s protocol. Proteins
were separated by SDS-PAGE and then transferred onto 0.2 wm nitrocel-
lulose membranes at 32 V overnight at 4°C. Blocking of membranes was
performed for 1 h in a blocking buffer (5% nonfat dry milk or 5% BSA
in PBS) with constant agitation. Primary antibodies were administered
in blocking buffer and incubated overnight at 4°C with constant agita-
tion. Primary antibodies were [mouse anti-a-syn (BD catalog #610787);
mouse anti human-a-syn clone 211 (Abcam catalog #ab80627); Anti-
Phosphoserine-129 (81A) rabbit monoclonal [EP1536Y] (Abcam catalog
#ab51253)]; rabbit anti-GAPDH (Santa Cruz Biotechnology catalog
#sc-25778); mouse anti-LC3B (Biolegend catalog #848802); rabbit anti-
MAPI1A (Abcam catalog #AB184349); rabbit anti-GRIN1 (Abcam cata-
log #ab109182); mouse anti-GRIN2B (BD catalog #610416); Rabbit
anti-DYNLL2 (Novus catalog #NBP1-54377)]. Membranes were
washed with PBS + 0.1% Tween 20, then blocked again with block-
ing buffer and probed with secondary antibody (dilution of 1:5000)
in blocking buffer +0.1% Tween 20 for 1 h at room temperature.
Secondary antibodies were as follows: [Goat anti-Mouse IgG (H + L)
Secondary Antibody, HRP (Thermo Fisher Scientific, catalog #31430);
Goat anti-Rabbit IgG (H + L) Secondary Antibody, HRP (Thermo
Fisher Scientific); LI-COR infrared-conjugated secondary/IRDye
800CW Donkey anti-Mouse IgG antibody (LI-COR Biosciences,
catalog #926-32212); LI-COR infrared-conjugated secondary/IRDye
680RD Donkey anti-Rabbit IgG antibody (LI-COR Biosciences cata-
log #926-68073)]. If HRP-conjugated secondary antibodies were used,
membranes were probed for 5min with Clarity Western enhanced
chemiluminescence blotting substrate (Bio-Rad) and visualized with
photosensitive film. For LI-COR secondary antibodies, membranes
were visualized with a LI-COR Odyssey Fc.

Detection of NO-related species by DAF-FM. Cells were loaded with
2.5 um DAF-FM (Thermo Fisher Scientific, catalog #D23844) in record-
ing buffer (in mm) as follows: 5 D-glucose, 10 HEPES, 135 NaCl, and
5 KCI. Briefly, cells were loaded with dye for 15 min at room temper-
ature to permit de-esterification, live cell analysis was performed to
track kinetics of NO synthesis by fluorescence imaging using an
Axio Observer Z1 (Carl Zeiss) widefield microscope. All images
were recorded at 30 s intervals. ROIs were drawn on each individual
cell, and analysis was performed using the MeanROI function (ZEN
version 2.6; Carl Zeiss) to determine the change in fluorescence over
time. All data were normalized using the following equation: AF/F0, where
FO=mean fluorescence intensity at baseline (Time 0), F1 =mean fluores-
cence intensity subsequent times of acquisition, and AF = change in fluores-
cence intensity. The AF/F0 values from each ROI were used to calculate a
mean AF/FO for each independent experiment.
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Bioinformatic analysis of NMDAR interactome. To identify known
binding partners of the NMDAR complex, a protein interaction
network analysis was performed using GeneMania 3.6.0 (accessed
on June 29, 2021) (Warde-Farley et al., 2010), which contrasts tar-
gets against databases of known pathways in BioGRID, Reactome,
and BioCyc, via PathwayCommons, and the resulting Homo sapi-
ens “Physical Interaction” network was weighted based on biological
process. Bait inputted was as follows: GRIN1, GRIN2A, GRIN2B, GRIN2C,
GRIN3A, and GRIN3B. The resulting network map was generated by
GeneMania 3.6.0.

Biotin switch assay. The biotin-switch assay is a modified immuno-
blot analysis used to detect the levels of S-nitrosylated proteins and has
been described previously (Ryan et al., 2013). Briefly, SH-SY5Y cell
lysates (500 pg to 1 mg) prepared in HENTS buffer (100 mm HEPES,
pH 7.4, 1 mm EDTA, 0.1 mm Neocuproine, 1% Triton X-100, 0.1%
SDS) or HENC buffer (250 mm HEPES, pH 7.4, 1 mm EDTA, 0.1 mm
Neocuproine, 1% Triton X-100, 0.1% SDS, or 0.4% CHAPS) were
mixed with blocking buffer (2.5% SDS, 10 mm methyl methane thiosul-
fonate [MMTS] in HEN buffer [250 mm HEPES, pH 7.4, 1 mm EDTA,
and 0.1 mM Neocuproine]) and incubated for 30 min at 50°C with fre-
quent vortexing to block free thiol groups. After removing excess
MMTS by acetone precipitation, S-nitrosothiols were reduced to thiol
with 20 mm ascorbate. Newly formed thiols were linked with the sulf-
hydryl-specific biotinylating reagent N-[6-(biotinamido)hexyl]-3"-(2'-
pyridyldithio) propionamide (biotin-HPDP). Unreacted biotin-HPDP
was removed and the pellet resuspended, neutralized, and centrifuged
to clear undissolved debris. Five to ten percent of the supernatant was
used as the input for the control blot, and biotinylated proteins pulled
down with Neutravidin-agarose beads (Pierce) from the remaining su-
pernatant. Beads were washed 5 times, eluted with glycine and resus-
pended in NuPAGE LDS sample buffer (Invitrogen), boiled at 95°C for
5 min, and analyzed by immunoblotting.

Soluble/insoluble a-syn fractionation. Primary cortical rat neurons
treated for 7 DIV with monomeric a-syn or a-syn PFFs were collected
in PBS and pelleted at 300 x g for 5min. The pellets were resuspended
in 1 ml of fractionation buffer (50 mm Tris-HCI, 750 mm NaCl, 10 mm
NaF, 5 mm EDTA, 30% sucrose (w/v), 1% Triton X-100, pH 7.4) and ho-
mogenized with an 18G needle. Samples were then placed on sample ro-
tator overnight at 4°C. The following day, samples were centrifuged at
100,000 x g for 30 min at 4°C to separate the soluble (supernatant) and
insoluble (pellet) fractions. After removing the soluble fraction, the in-
soluble fraction was resuspended in 1:1 (v:v) fractionation buffer con-
taining 8 M urea with 8% SDS (w/v) and analyzed by western blot.

Live-cell calcium imaging. To assess changes in calcium flux within
neurons, Fluo-4 AM (Thermo Fisher Scientific, catalog #F14201) was
used to visualize and quantify intracellular calcium concentrations.
Before imaging, 14 DIV (7d post-treatment) neurons on coverslips
were washed with calcium buffer (HBSS, 2 mm calcium chloride, 2 mm
glucose), loaded with 2.5 um Fluo-4 AM (dissolved in DMSO) in cal-
cium buffer, and incubated at room temperature in the dark for
30 min. Following dye loading, cells were washed twice with calcium
buffer and incubated in calcium buffer for another 30 min to allow for
de-esterification. Coverslips were then loaded into an imaging chamber
and live-imaged using an Axio Observer Z1 (Carl Zeiss) widefield
microscope at 37°C. Cells were allowed to stabilize for ~5min and
were then imaged for 2 min while in calcium buffer. All images were
recorded at 250 ms intervals (four images/s). After 2 min, cells were
then titrated with 10 ml of the various stimulants (20 um glutamate,
100 um NMDA, or 10 um AMPA) dissolved in calcium buffer at a flow
rate of ~0.5 ml/s with constant aspiration, and imaged for 1 min. ROIs
were drawn on each individual cell body, and analysis was performed
using the MeanROI function (ZEN version 2.6; Carl Zeiss) to deter-
mine the change in fluorescence over time. All data were normalized
using the following equation: AF/F0, where FO = mean fluorescence in-
tensity at baseline, F1=maximum fluorescence intensity following
stimulation, and AF = change in fluorescence intensity. The AF/F0 val-
ues from each ROI were used to calculate a mean AF/FO for each cover-
slip analyzed. Where indicated, pharmacological blockers were used to
assess the relative contribution(s) of different receptor types. At the de-
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esterification step, receptor blockers (1 mm MgCl,, 10 um MK-801, or
10 um NBQX) were added to the calcium buffer and incubated with
the cells for 30 min before analysis.

Multielectrode array recordings. Primary cortical neurons from E18
rat embryos were isolated as described above and seeded onto CytoView
MEA 24-well plates (Axion Biosystems). Initial analysis was performed
at 7 d after treatment with either a-syn monomers or PFFs using the
Maestro Edge (Axion Biosystems). Plates were loaded and equilibrated
for 5min at 37°C, and electrical activity was recorded for 10min.
Following the first round of data acquisition, cells were treated with 1
mwm L-NAME or vehicle and incubated for 24 h at 37°C and 7.5% CO.,.
After the 24 h of incubation, cells were recorded again, and neural activ-
ity data were processed and exported for analysis (AXIS software, Axion
Biosystems). Data from wells above the minimum threshold for activity,
defined as having 5 or more spikes per minute on any electrode, were aver-
aged; and the mean of all wells for each independent experiment was used
to calculate a final average and SEM for each metric analyzed. Individual
spikes, defined as an electrical signal exceeding the noise threshold set for
each electrode (6x SD), were recorded and plotted as average weighted
mean firing rate. Bursting was defined as a minimum of 5 spikes occurring
in rapid succession with an interspike interval of <100 ms. As a measure
for total synaptic connectivity, a mean synchrony index was calculated for
each well, averaged between replicates, and then averaged for independent
experiments (AxIS software, Axion Biosystems).

Experimental design and statistical analyses. All data are displayed as
mean + SEM of independent experiments, except in the case of DAF-
FM where data are expressed as mean * SEM. For experiments wherein
measurements were made on individual neurons (i.e., calcium imaging,
DAF-FM, electrophysiological experiments, and spine counts), data were
analyzed using a nested design whereby individual neurons were nested
within replicates, nested within independent experiments. Data were ana-
lyzed using a two-way Student’s ¢ test when two groups were compared, a
one-way ANOVA when three groups (or treatments) were compared, or
a two-way ANOVA when groups (or treatments) were multifactorial.
Statistical testing was performed using GraphPad Prism 9 (GraphPad
Software). When a statistically significant difference was identified by
ANOVA, post hoc Tukey’s or Sidak’s tests were performed where indicated.
Tukey’s test was used when differences between means of all groups were of
interest, whereas Sidak’s test was used when differences within groups from
a larger dataset were of interest, such as examining the effect of treatment
on spine number within each subclassification of spine. Degrees of statistical
significance used are as follows: *p < 0.05, **p < 0.01.

Results

PFFs promote accumulation of a-syn aggregates in
presynaptic and postsynaptic terminals

To evaluate the link between intracellular accumulation of a-syn
aggregates and aberrant NMDAR activation, we used the PFF
model of evoked synucleinopathy. The in-cell fibrilization of en-
dogenous a-syn has been previously demonstrated to occur on ex-
ogenous addition of a-syn-PFFs to both primary neurons in
culture (Luk et al., 2009; Volpicelli-Daley et al., 2014) and in vivo
inoculation of the rodent striatum (Luk et al., 2012). Moreover,
PFF evoked a-syn aggregation is dependent on endogenous a-syn
expression as SNCA-KO animals show no response to PFF expo-
sure (Luk et al,, 2012). Neurons derived from E18 rat cortex were
cultured for up to 14 DIV before being exposed to a-syn-PFFs, or
either monomeric a-syn or PBS vehicle control. Neurons were
tracked after PFF administration over a 15 d period. We found
that PFF exposure resulted in recruitment of endogenous rat
a-syn into multimeric aggregates at a rate significantly higher
than that of monomeric a-syn (Fig. 1A,B). While multimeric
a-syn levels peaked by 7d after treatment and decreased there-
after, levels of a-syn phosphorylation at serine 129 (PS129) con-
tinued to rise, suggesting that acute PFF exposure has long-lasting
effects on indices of a-syn pathology (Fig. 1A,C). Interestingly,
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monomeric exposure also impacted on the ratio of PS129 to total
a-syn, although the kinetics of this effect were significantly re-
duced relative to PFF-exposed neurons (Fig. 1A4,C). These effects
are not likely to be the result of the persistent presence of human
a-syn from exogenous exposure as the human a-syn added to cul-
tures was largely cleared by 5d after treatment in the case of
monomeric a-syn and 7d after treatment for a-syn-PFFs (Fig.
1A,D). To confirm that human a-syn was being degraded rapidly
after exposure, neurons were treated with either MG132 to inhibit
proteasomal clearance, choloroquine to inhibit lysosomal clearance,
or a combination of the two (Fig. 1E,F). Clearance of monomeric
a-syn was inhibited by both proteasomal and lysosomal inhibition,
while PFF clearance was inhibited by lysosomal inhibition alone,
consistent with reports that lysosomal degradation is the primary
system involved in clearance of aggregated proteins (Dikic, 2017).

Defining characteristics of pathologic a-syn include both deter-
gent insolubility and hyperphosphorylation (Volpicelli-Daley et al.,
2011). To determine the biochemical characteristics of the a-syn
aggregates present in cortical neurons, we performed a detergent-
soluble (Triton X-100) versus detergent-insoluble (urea) protein
fractionation on neurons 7 d after exposure to either PFFs or mono-
meric a-syn as this time point reflected minimal residual human
a-syn and maximal endogenous multimeric a-syn. Using high-
speed ultracentrifugation, the soluble and insoluble protein fractions
were separated and solubilized. The monomeric form of a-syn was
detected in both detergent-soluble and -insoluble fractions; whereas
in PFF-exposed neurons, a large amount of mutimeric a-syn was
detected in the detergent-insoluble fraction only (Fig. 1G,H). A
modest increase in PS129-labeled insoluble protein was also
observed (Fig. 1G,I). This demonstrates that PFF exposure results in
a major shift in a-syn solubility that is commonly associated with a
shift from soluble random coil or helical structures to aggregated 3
sheet. Despite the observed increase in total and PS129-labeled
a-syn levels, no detectable aggregates were formed when nonfibril-
lized monomeric a-syn is added to neurons in culture.

Glutamate-evoked calcium influx is inhibited after PFF
exposure

We next sought to determine the subcellular localization of these
deposits and whether they are present at the synapse. Cortical
neurons were transformed with LifeAct(Actin)-RFP, which per-
mits visualization of dendritic spines, and exposed to a-syn-PFFs,
or either monomeric a-syn or PBS vehicle controls. Seven day
post exposure cells were fixed and immunolabeled for aggregated
a-syn (Fig. 2A). We found that aggregated a-syn accumulated
exclusively in neurons exposed to PFFs (Fig. 2A,B) and could be
seen on dendritic spines. To confirm the synaptic localization of
a-syn pathology, we labeled neurons with (PSD95) as a marker of
the postsynaptic terminus or Bassoon as a marker of the presyn-
aptic membrane, as well as hyperphosphorylated a-syn (PS129)
as a marker of a-syn pathology a (PSD95) (Extended Data Fig.
2-1). We found that PFF-exposed neurons showed a dramatic
increase in PS129 reactivity relative to monomeric a-syn-exposed
neurons or PBS controls. Colocalization analysis indicated that
PS129 deposition was consistent with both a presynaptic and
postsynaptic localization (Extended Data Fig. 2-1A-C) 7 d after
exposure to a-syn-PFFs.

Conflicting reports on whether @-syn inclusions increase or
decrease NMDAR functionality led us to characterize the time-
dependent effect of accumulating a-syn aggregates on synaptic
function in glutamate responsive cortical neurons. Using Fluo-4
AM-based calcium imaging, we assessed spontaneous calcium
transients and synaptic responses to glutamate in neurons 7d
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Figure 1.  PFF exposure promotes accumulation of intracellular a-syn aggregates. A-D, Rat cortical neurons exposed to
a-syn-PFFs or a-syn monomers (A) showed increased accumulation of multimeric a-syn (B) and PS129 () relative to
monomer-exposed neurons. Data are mean + SEM. **p << 0.01 (two-way ANOVA with post hoc Sidak's test); n=9. D,
Ectopic human a-syn monomers and PFFs are cleared from neurons within 5 and 7 d after administration, respectively. Data
are mean + SEM. **p < 0.01 (two-way ANOVA with post hoc Dunnett’s test); n = 6. E, F, Ectopic human a-syn monomers
accumulate following MG132 (5 wum) and/or chloroquine (20 wum) exposure, whereas PFFs accumulated following chloroguine
exposure. Data are mean + SEM. *p << 0.05; **p << 0.01; two-way ANOVA with post hoc Tukey's test; n=6. G-I,
Fractionation of proteins based on Triton X-100 (soluble) versus urea (insoluble) solubility (G) showed increased insoluble
a-syn (H) and modestly increased insoluble PS129 a-syn (I) in PFFs exposed neurons relative to monomer (M) exposed.
Data are mean + SEM. **p < 0.01 (two-way ANOVA with post hoc Tukey's test); n = 4.
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after PFF exposure by quantifying increases
in intracellular calcium concentration fol-
lowing glutamate stimulation. We observed
a significant decrease in spontaneous cal-
cium bursts as a function of time in cortical
neurons 7d after PFF exposure relative to
monomer- or PBS-exposed cells (Fig. 2C,D),
indicative of impairments in network activ-
ity. Furthermore, a dramatic decrease in in-
tracellular calcium flux was observed
following glutamate stimulation in PFF-
exposed neurons relative to monomeric
a-syn control neurons (Fig. 2E-G).
Representative traces of calcium influx in
monomer-exposed neurons show strong
glutamate responsiveness compared with
baseline fluorescence, whereas PFF-treated
neurons show a modest change in intracel-
lular calcium fluorescence in response to
glutamate (Fig. 2F). Quantification of the
average fold change in calcium fluores-
cence over baseline and across multiple
replicate cultures shows that there is a con-
sistent and significant reduction in the
response elicited by 20 um glutamate 7d
after exposure to PFFs relative to PBS and
monomer-exposed neurons (Fig. 2G).

We next sought to determine when in-
hibition of calcium influx was first detecta-
ble. We exposed neurons to PFFs and
imaged immediately or at 24 h intervals af-
ter exposure. Immediately following PFF
exposure, the baseline and post stimula-
tion response to 20 uM glutamate were simi-
lar to those observed in monomer-exposed
or PBS control neurons (Fig. 3A-C). This
suggests that, under the conditions of this
experiment, exogenous PFFs do not impede
iGluR-mediated calcium influx following
glutamate stimulation in cortical neurons.
Tracking the response of these neurons to
glutamate exposure at 24 h intervals after
PFF exposure, we determined that PFF-
evoked impairment in glutamate response
was not evident until 6 d after exposure. This
was consistent with the time needed for the
levels of intracellular a-syn aggregates to pla-
teau and for significant levels of PS129-la-
beled a-syn to accumulate (Fig. 1A-C).
Collectively, these data argue that impaired
glutamate-evoked calcium responses result
from accumulation of intracellular PS129-la-
beled a-syn aggregates.

PFF exposure impairs calcium influx via
NMDARs coincident with loss of
mature dendritic spines

To characterize the observed deficit in gluta-
mate-evoked synaptic responses, we focused
on NMDAR and AMPAR, given the poten-
tial pleiotropic effects of a-syn inclusions
with respect to activation of these receptors.
We assessed specific iGluR-dependent
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calcium influx, first through stimulation
with either NMDA or AMPA 7d after
PFF exposure (Fig. 4A,E). Similar to
the response observed following gluta-
mate application, selective receptor
stimulation with NMDA in the ab-
sence of Mg®" showed reduced intra-
cellular calcium concentrations in
neurons after PFF exposure, relative
to monomeric or PBS vehicle con-
trols (Fig. 4A-C). Following selective
AMPA stimulation, no significant dif-
ference in intracellular calcium flux
was observed in any exposure para-
digm (Fig. 4E-G), suggesting that the
deficit was restricted to NMDAR-de-
pendent signaling. To confirm this
observation, neurons were stimula-
ted with glutamate following selec-
tive NMDAR or AMPAR inhibition,
to elicit calcium flux in the absence
of target receptor activity. PFF-ex-
posed neurons were stimulated with
glutamate following a 30 min incu-
bation with either an NMDAR-spe-
cific antagonist (MK-801), or an
AMPAR-specific antagonist (NBQX),
and subsequent calcium influx was
monitored. Glutamate stimulation in
the presence of MK-801 yielded a simi-
lar level of inhibition across all exposure
paradigms (Fig. 4D), again suggesting
these deficits are related to NMDAR
activation. By contrast, NBQX inhibition
of AMPARs did not alter responses
under any exposure relative to gluta-
mate alone (Fig. 4H), suggesting that
AMPAR-mediated calcium influx is
not altered by PFF exposure under
these experimental conditions. Together,
these results demonstrate that the per-
turbation of glutamate-evoked calcium
flux is dependent on the inhibition of
NMDAR function, while AMPAR func-
tion appears relatively unchanged. To
assess whether synaptic dysfunction was
related to anatomic changes in neuronal
architecture, we next assessed the density
of dendritic spines based on their mor-
phologic classification over 7d of expo-
sure to either monomeric a-syn or PFFs.
Primary cortical neurons were exposed
to PFFs for up to 7d, and the density of
multiple morphologic classifications of
dendritic spines was quantified at 24 h
intervals. We observed a loss of mush-
room-shaped dendritic spines following
PFF exposure in both proximal and distal
regions of the dendrite at 7d after PFF
exposure (Fig. 5A,B). Mushroom spines
are generally thought to represent stable,
mature synaptic connections, and are
therefore critical to cognitive function
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a-syn exposure (C). A significant reduction in the average number of intracellular calcium spikes per minute is observed after PFF exposure
relative to control groups (D). Data are mean + SEM. **p < 0.01 (two-way ANOVA with post hoc Tukey); n =9 independent experi-
ments. D-F, Heatmap of representative micrographs depicts Fluo-4 AM fluorescence intensity in cortical neurons 7d after PBS, PFF, or
monomeric ce-syn exposure, before and after stimulation with 20 um glutamate (E). Representative traces of calcum transients show
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(Hayashi and Majewska, 2005). Moreover, monomeric a-syn ex-
posure led to an increase in proximal stubby spines (Fig. 5B)
within 5d of exposure. These are predominant in early synapse
formation and may be indicative monomeric a-syn induced
changes in spine dynamics (Hering and Sheng, 2001).
Collectively, these data suggest that the accumulation of a-syn
pathology in synaptic regions leads to impaired NMDAR activa-
tion coupled with the loss of mature synaptic connections.

PFF exposure promotes NO accumulation and
S-nitrosylation of MAP1A

To establish a mechanistic link between a-syn pathology and
loss of synaptic function, we tested whether the kinetics of NO
synthesis were altered by intracellular a-syn aggregation. a-Syn-
PFF treatment has been previously reported to increase NO lev-
els in primary cortical neurons (Kam et al,, 2018). We therefore
asked whether increased NO may relate to the observed deficits
in cortico-synaptic function. Neurons were exposed to PFFs for
24 h, coincident with the first observation of intracellular accu-
mulation of multimeric a-syn. We then loaded cells with the
NO-reactive dye DAF-FM and measured the kinetics of NO
accumulation over a 30 min period. The rate of NO synthesis
was far greater in PFF exposure neurons than in vehicle control
(Fig. 6A-C). This effect was specifically observed in neuritic
extensions (Fig. 6A, arrows). To determine whether increased
kinetics of NO synthesis results in synaptic dysfunction following
PFF exposure, we sought to determine whether any member of
the NMDAR complex, or any known protein binding partner
that has been ascribed a role in regulating NMDAR function,
was specifically modified by NO. NO-related species can react

with critical cysteine residues to affect functional activity of many
proteins via protein S-nitrosylation (forming SNO proteins)
(Stamler et al., 1992; Lipton et al., 1993). Using Genemania, we
performed a bioinformatic screen of known NMDAR subunit
protein interactors. We identified 21 known protein interactors
of the 6 major NMDAR subunits (GRIN1, GRIN2A, GRIN2B,
GRIN2C, GRIN3A, GRIN3B). We then contrasted this list against
published SNO-proteomic datasets (Hao et al., 2006; Doulias et
al,, 2013; Zahid et al., 2014; Zareba-Koziot et al., 2014; Seneviratne
et al., 2016; Mnatsakanyan et al., 2019) that evaluated S-nitrosyla-
tion of proteins in samples of neural origin (Extended Data Fig. 6-
1). This analysis identified four proteins critical to the function of
the NMDAR complex that are SNO-modified in various physio-
logical settings (DYNLL2, GRIN1, GRIN2B, and MAP1A) (Fig.
6D; Extended Data Fig. 6-1). We next sought to determine
whether any of the identified protein-candidates were SNO-modi-
fied in response to PFF exposure. Using the biotin switch method
to label SNO-modified cysteines with biotin for subsequent
capture, we exposed neural cells to PFFs or a-syn monomers to
determine whether DYNLL2, GRIN1, GRIN2B, and MAP1A were
S-nitrosylated 7 d after exposure. The physiological NO-donor S-
nitrosocysteine was used as a control for the ability of each protein
to be nitrosylated in this system. Silver stain of biotin labeled pro-
teins showed increase SNO proteins in cells 7 d after exposure to
PFFs, relative to monomeric a-syn (Fig. 6E). Following subse-
quent biotin capture, only MAP1A was found to be S-nitrosylated
in response to PFF exposure. The observed increase in SNO-
MAPI1A following exposure to PFFs was reversed by 24 h treat-
ment with the NO synthase (NOS) inhibitor .-NAME (Fig. 6F),
while the detection of SNO-MAPIA was completely abolished in
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Figure 4.  PFF exposure impairs calcium influx via NMDARs. A-C, Heatmap of representative micrographs depicts Fluo-4 AM fluorescence intensity in cortical neurons hefore and after stimu-
lation with 100 um NMDA in the absence of Mg>™ (). Representative traces of calcium transients show reduced calcium influx in response to 100 zm NMDA in the absence of Mg®* in neu-
rons 7 d after PFF exposure (B). Quantification of average intracellular NMDA-evoked calcium flux shows a significant decrease in PFF-exposed neurons relative to PBS and monomeric cv-syn
controls (€). Data are mean + SEM. *p << 0.05; **p << 0.01; ANOVA with post hoc Tukey; n =11 or 12 replicate experiments. D, Quantification of intracellular calcium flux in primary cortical
neurons in response to glutamate with and without a 30 min preblock with 10 um MK-801 by live-cell Fluo-4 AM imaging. Data are mean + SEM. **p << 0.01 (two-way ANOVA with post
hoc Sidak's test); n =7 independent experiments. E-G, Heatmap of representative micrographs depicts Fluo-4 AM fluorescence intensity in cortical neurons before and after stimulation with
10 um AMPA in the absence of Mg>" (E). Representative traces of calcium transients show no change in calcium influx in response to 10 zu AMPA in the absence of Mg®™ in neurons 7 d af-
ter PFF exposure (F). Quantification of average intracellular AMPA-evoked calcium flux shows no change in PFF-exposed neurons relative to PBS and monomeric c-syn controls (G). Data are
mean + SEM. n.s., Not significant (ANOVA with post hoc Tukey); n =7-10 independent experiments. H, Quantification of intracellular calcium flux in response to glutamate following 30 min
preblocking with AMPA-specific antagonist NBQX. Data are mean + SEM. **p < 0.01 (ANOVA with post hoc Tukey); n = 8 replicate experiments.

the absence of ascorbate reduction (Fig. 6G), confirming that the
increase in SNO-MAP1A was a specific response to PFF-induced
NOS activity.

by PFF exposure, we treated cortical neurons with .--NAME for
24 h, 6 d after PFF exposure. This timing was chosen to coincide
with the first observed deficit in glutamate evoke response (Fig.
3D). .I-NAME treatment rescued PFF-evoked loss of mature

Preventing NO generation rescues PFF-evoked synaptic
deficits

To determine whether blocking NO synthesis, and subsequent S-
nitrosylation of MAP1A, normalized the synaptic deficits evoked

(mushroom) spines in both the proximal (Fig. 7A) and distal
(Fig. 7B) dendritic regions. Interestingly, .-NAME also seemed
to alter the effect of monomeric @-syn on spine dynamics,
increasing the number of thin spines observed in distal dendrites
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exposed to a-syn monomers. Moreover, L-NAME treatment
abolished PFF-induced deficits in glutamate-evoked calcium
influx (Fig. 7C-E). Collectively, these findings strongly suggest
that accumulation of intracellular a-syn aggregates triggers syn-
aptic dysfunction in an NO-dependent manner. In our final set
of experiments, we sought to evaluate whether lowering the
steady-state levels of NO restored network activity in PFF-
exposed cortical cultures. Primary cortical neurons were seeded
onto MEA plates and treated with .-NAME or vehicle for 24 h
6 d after PFF or monomeric a-syn exposure and spontaneous ac-
tivity was recorded (Fig. 8A4). We then quantitatively assessed the
mean firing rate, bursting activity, and synchrony index across
all conditions (Fig. 8B-D). We found that PFF exposure signifi-
cantly inhibited all network activity parameters and that treat-
ment with .-NAME significantly rescued these deficits (Fig. 8)B-
D. These data collectively suggest that, by normalizing gluta-
mate-evoked NMDAR activation, L-NAME restores the deficits
in cortical network activity induced by intracellular a-syn aggre-
gates. We therefore propose a model in which, intercellular
a-syn oligomer binding-coincident with deposition of intracellu-
lar a-syn aggregates stimulates NO synthesis through nNOS
(Fig. 9A,B). The increase in dendritic NO-related species leads
to S-nitrosylation of MAP1A and the destabilization of mature
dendritic spines, resulting in inhibition of glutamate-evoked
NMDAR responses and impairments in cortical network

activity (Fig. 9C). NO-mediated post-translational modifica-
tion to synaptic proteins may consequently represent a critical
mediator of cortical dysfunction in synucleinopathies.

Discussion

In the current study, we demonstrated that intracellular accumu-
lation of a-syn pathology results in increased NO synthesis and
S-nitrosylation of the MAP1A scaffold protein. This in turn led
to inhibition of NMDAR activity and loss of dendritic spines.
Excess NO has been implicated in multiple aspects of PD patho-
genesis. Postmortem analysis of midbrain samples from PD
patients has revealed that nNOS expression is increased in this
brain region relative to controls (Eve et al., 1998). nNOS activity
is also upregulated in MPTP rodent models of PD (Watanabe et
al., 2008; Joniec et al., 2009). Elevated levels of inducible NOS
(iNOS), by contrast, have been found in postmortem brain sam-
ples from multiple brain regions of persons with Parkinsonian
disorders (Hunot et al, 1996). In support of this observation,
there is also increased iNOS expression in multiple animal mod-
els of PD, including 6-OHDA (Broom et al.,, 2011), MPTP (Zhu
et al., 2020), and a@-syn-oligomer evoked models (Tapias et al.,
2017), whereas mice lacking iNOS are resistant to many toxin-
evoked PD-inducing paradigms (Dehmer et al., 2000). nNOS
contains a PDZ domain that confers binding capacity to many
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ing, SNO proteins were captured with Neutravidin and lysates probed for MAPTA, GRINT, GRIN2B, or DYNLL2. Only MAP1A was found to be S-nitrosylated in response to PFF exposure. F, Biotin
switch-capture in the presence of -NAME reversed of SNO modification of MAP1A. G, Biotin switch in the absence of ascorbate reduction abolished SNO-MAP1A.

postsynaptic density proteins (including PSD93 and PSD95)
and is therefore regionally distributed along synaptic spines
(Brenman et al., 1996). This localization is key to its canonical
role in promoting NO-mediated second messenger signaling.
The guanylate kinase domain of PSD-95 directly binds to the
GMP-binding sequence in the C-terminus of MAP1A (Reese
et al., 2007), whereas the second PDZ domain of PSD-95 binds
to the seven-amino acid C-terminal domain of NMDAR, com-
mon to NR2 subunits and certain NR1 splice forms (Kornau
et al., 1995). Thus, these proteins resolve into a single complex
that is a master effector of NMDAR signal transduction. Mapla
KO mice exhibit NMDAR-dependent learning disabilities,

characterized by reduced EPSCs and a concomitant decrease
in LTP and LTD (Takei et al., 2015), supporting the notion
that MAPIA is an effector of NMDAR signaling. Moreover,
targeted deletion of the Mapla gene leads to abnormal focal
swellings of dendritic shafts and disruptions in axon initial
segment morphology, leading to neurodegeneration (Liu et
al., 2015). Loss of synaptic localization of NR2A and NR2B
subunits are suggested to be responsible for altered synaptic
function in neurons lacking MAP1A (Takei et al, 2015).
These data suggest that tethering of NMDAR:s to the cytoskeleton
through MAP1A is fundamental for receptor localization and
function. Indeed, the conserved C-terminal MAP1 homology
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Figure 7. .-NAME rescues PFF-induced deficits in glutamate response and spine morphology. A, B, Quantification of spines of each morphologic type (characterized as Thin, Mushroom

[Mush], Stubby [Stub], or Branched [Br]) that resided <<60 pm from the soma (proximal) (4) or >60 wm from the soma (distal) (B). Data are mean + SEM. *p << 0.05; **p << 0.01; two-
way ANOVA with post hoc Sidak’s test; n =9 independent experiments. (—E, Heatmap of representative micrographs represent Fluo-4 AM fluorescence intensity in cortical neurons 7 d after
PBS, PFF, or monomeric a-syn exposure. Neurons were treated with 1 mm L-NAME before stimulation with 20 um glutamate. Pictures represent before and after stimulation (C).
Representative traces of calcium transients show L-NAME rescued calcium influx in response to 20 um glutamate in neurons 7 d after PFF exposure (D). Quantification of average intracellular
glutamate-evoked calcium flux in PFF-exposed neurons relative to PBS and monomeric cv-syn controls, with and without L-NAME (E). Data are mean + SEM. *p << 0.05; **p << 0.01; two-

way ANOVA with post hoc Sidak’s test; n=10-14 independent experiments.

domain present in all MAP1 family members has been shown to
bind the intracellular C-terminus of human NR3A and NRI1
directly (Eriksson et al., 2007), thus supporting our observations
that MAP1A is critical for stabilizing NMDAR function.

The effect of a-syn on NMDAR function seems dependent,
in part, on the brain region studied. In the hippocampus, expo-
sure to aggregated a-syn seems to increase NMDAR activity. For

instance, exposure of hippocampal neurons to a-syn oligom-
ers for 90 min increases basal synaptic transmission through
NMDAR activation, coupled to enhanced signaling through
calcium-permeable AMPARs (Diogenes et al., 2012). Similarly,
acute exposure to extracellular a-syn-PFFs is reported to increase
astrocytic release of glutamate in the hippocampus while increas-
ing extrasynaptic NMDAR and AMPAR activity (Trudler et al,
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Figure 8.

1-NAME rescues PFF-induced deficits in neuronal network activity. 4, Representative continuous waveform plots recorded from cortical neurons 7 d after exposure to PFFs or mono-

meric ce-syn. Twenty-four hours before recording, cells were treated with 1 mum -NAME 1 or vehicle. Spontaneous neuronal spiking is observed when the electrical signal exceeds the electrode’s
noise threshold (cross bars) measured by multielectrode array. B-D, Quantification of neural metrics recorded by multielectrode array for 10 min in culture medium at 37°C. The weighted
mean firing rate (B) and average number of bursts (C) for each independent well were used to calculate the mean and SEM for each condition. Average synchrony index (D) is shown as a mea-
sure of the degree of synaptic connectivity in each condition. Data are mean + SEM. **p << 0.01 (two-way ANOVA with post hoc Tukey's test); n =9 independent experiments.
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Figure 9.

Model of PFF-evoked synaptic dysfunction. A-C, Healthy neuron depicted (A). Intercellular a-syn oligomer binding-coincident with deposition of intracellular aggregates stimulates

NO synthesis through nNOS (B). The increase in dendritic NO leads to S-nitrosylation of MAP1A and the destabilization of mature dendritic spines, resulting in inhibition of glutamate-evoked
NMDAR responses and impairments in cortical network activity (C). Schematic was generated using www.BioRender.com.

2021). In cortical regions, by contrast, incubation of cortico-
striatal slice cultures for 1 h with a-syn oligomers was shown to
reduce NMDAR-mediated synaptic currents and impair LTP
through physical interaction with NR2A subunits (Durante et
al,, 2019). This is consistent with reports from prolonged PFF
exposure that have been associated with impairments in neuro-
nal excitability and connectivity in primary cortical neu-
rons, wherein decreased synaptic function was associated
with decreased numbers of mature (mushroom) spines (Volpicelli-

Daley et al., 2011). Seemingly paradoxically, the same group dem-
onstrated in a follow-up study that hippocampal neurons exhibit
the opposite effect to that seen in cortical neurons (i.e., an increase
in mEPSCs frequency rather than a decrease) when exposed to
PFFs for 7 d. This was nonetheless accompanied by a reduction in
postsynaptic spine density (Froula et al., 2018). The authors went
on to show that the reduction in spine density occurred only in
WT primary neurons exposed to PFFs and not in neurons from
SNCA-KO mice exposed to PFFs, suggesting that the changes in


http://www.BioRender.com

Hallam, Buchner-Duby et al. ® a-Syn-Induced Synaptic Dysfunction by SNO-MAP1A

spine morphology result from fibril-induced corruption of endoge-
nously expressed a-syn (Froula et al, 2018). The deposition of
a-syn inclusions following in vivo PFF inoculation has also been
shown to occur only in WT animals and not in SNCA-KO animals
inoculated with PFFs, further supporting that loss of synaptic func-
tion is a consequence of a-syn aggregation. Indeed, long-term in
vivo imaging of apical dendrites performed in mice overexpressing
WT human a-synuclein coupled with intracranial injection of pre-
formed a-synuclein fibrils both show decreased spine density and
abnormalities in spine dynamics (i.e., loss of mushroom spines) in
an age-dependent manner (Blumenstock et al.,, 2017). We therefore
propose a model in which the effects of a-syn-PFFs on NMDAR
activity are a function both the kinetics of fibrilization and subcellu-
lar localization (Fig. 9). Low concentration of extracellular a-syn
micro-aggregates may increase iGluR activity that is associated with
increased nNOS activation and NO synthesis. As these micro-
aggregates are internalized and seed further intracellular a-syn
aggregation, the subsequent increase in RNS acts to deactivate the
NMDAR complex and reduce further calcium influx, creating a
negative feedback loop. The accumulation of a-syn inclusions at
the postsynaptic terminus coupled to elevated NO levels alters the
stability of mature synaptic spines, in part, although S-nitrosylation
of the synaptic scaffold protein MAP1A.

In contrast to the effect of a-syn fibrilization after PFF expo-
sure, we also find that prolonged monomer exposure has a mod-
est impact on synaptic spine morphology in association with
increased soluble a-syn-PS129 levels. These effects are likely in-
dependent of @-syn fibrilization as PS129 labeling is known to
occur on soluble, nonaggregated, or membrane-associated pro-
tein (Nuber et al., 2018; Imberdis et al., 2019), and we observe no
deposition of insoluble a-syn or aggregated a-syn accumulation
following monomer exposure. Thus, the effects of monomer ex-
posure are likely because of a-syn protein accumulation and
PS129 post-translational modification and not a-syn fibrilization
per se. It may therefore stand to reason that nitrosative stress is a
specific consequence of the fibrilization event.

A number of aberrantly S-nitrosylated proteins have been
implicated in neurodegenerative disorders and may contribute to
specific disease pathology (Nakamura et al., 2013). In support of
this notion in PD, gene ontology clustering after genetic profiling
of patient-derived PD neurons relative to control neurons
showed aberrations in biological processes related to metabolism
of nitrogen-containing compounds (Ryan et al., 2013; Czaniecki
et al,, 2019). We show that blocking NO synthesis via L-NAME
prevents MAP1A S-nitrosylation and normalizes synaptic func-
tion. While not subject to S-nitrosylation, given the absence of
cysteine residues, tyrosine nitration of a-syn can potentiate
a-syn-oligomer formation. Exposure of a-syn to NO can en-
courage 0,0’ -dityrosine crosslinking between the N-terminal and
C-terminal tyrosines to generate a-syn-dimers that enhance
oligomer deposition (Krishnan et al., 2003; Hodara et al., 2004;
Danielson et al., 2009; Burai et al., 2015). Additionally, tyrosines
play an important role in a-syn-vesicle binding, whereas nitra-
tion impairs this interaction by altering the charge at the N-ter-
minal domain and/or causing a conformational change at the C-
terminal domain. By decreasing the amount of a-syn present in
a vesicle bound a-helical conformation, oligomer formation is
thereby potentiated (Hodara et al, 2004; Sevcsik et al., 2011;
Burai et al., 2015). The observed accumulation of NO in PFF-
exposed neurons and the propensity of nitrated a-syn to pro-
mote the seeding of a-syn pathology (Musgrove et al., 2019) may
explain why we see the accumulation of PS129-modifed a-syn at
synaptic terminals.
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Evidence suggests that nitration of @-syn can also potentiate
fibril formation. In cells exposed to peroxynitrite, aggregation of
a-syn is dependent on nitro-tyrosine adduct formation (Paxinou
etal, 2001). Indeed, nitrated a-syn is almost exclusively found in
the insoluble protein fraction, making it more resistant to degra-
dation, more compact, and more stable (Norris et al, 2003;
Uversky et al., 2005). It is therefore interesting to speculate as to
whether NO-modified proteins may serve as markers for prog-
nostication in PD or Lewy body dementia. That NO-modified
proteins of multiple types represent viable clinical targets in synuclei-
nopathies is supported by recent clinical trials using N-acetylcysteine
(NAC). NAC represents a stable reduced form of cysteine that, on
cleavage of the acetyl group, reveals reduced Cys, which is available
for incorporation into the highly abundant intracellular antioxidant,
glutathione (Rushworth and Megson, 2014). Glutathione in turn has
a major role in antioxidant protection to protein thiolation and can
specifically reduce S-nitrosylation, among other thiol oxidation types
(Lipton et al, 1993; Clementi et al., 1998). Clinical evaluation has
shown that NAC increases dopamine levels with a concomitant
improvement in the Universal Parkinson’s Disease Rating Scale total
scores in patients with PD receiving intravenous NAC supplemented
by oral NAC between infusions (Holmay et al., 2013; Monti et al,,
2019). Moreover, both the motor and nonmotor subcomponents of
the Universal Parkinson’s Disease Rating Scale showed improve-
ment. Collectively, this work suggests that SNO-cysteine thiols may
be viable targets against synaptic dysfunction in multiple synucleino-
pathies. Thus, reducing or controlling RNS accumulation early in
disease etiology may have multimodal benefits to people with Lewy
body dementia.
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