
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Journal of Thermal Biology 112 (2023) 103444

Available online 28 December 2022
0306-4565/© 2022 Elsevier Ltd. All rights reserved.

Infrared image method for possible COVID-19 detection through febrile and 
subfebrile people screening☆ 

Marcos Leal Brioschi a, Carlos Dalmaso Neto a,b,*, Marcos de Toledo a, Eduardo Borba Neves c, 
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d Neurology and Neurosurgery Department, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo – HCFMUSP, São Paulo, SP, 01246-903, 
Brazil   

A R T I C L E  I N F O   

Keywords: 
Infrared imaging 
Artificial intelligence 
Convolutional neural network 

A B S T R A C T   

This study proposed an infrared image-based method for febrile and subfebrile people screening to comply with 
the society need for alternative, quick response, and effective methods for COVID-19 contagious people 
screening. The methodology consisted of: (i) Developing a method based on facial infrared imaging for possible 
COVID-19 early detection in people with and without fever (subfebrile state); (ii) Using 1206 emergency room 
(ER) patients to develop an algorithm for general application of the method, and (iii) Testing the method and 
algorithm effectiveness in 2558 cases (RT-qPCR tested for COVID-19) from 227,261 workers evaluations in five 
different countries. Artificial intelligence was used through a convolutional neural network (CNN) to develop the 
algorithm that took facial infrared images as input and classified the tested individuals in three groups: fever 
(high risk), subfebrile (medium risk), and no fever (low risk). The results showed that suspicious and confirmed 
COVID-19 (+) cases characterized by temperatures below the 37.5 ◦C fever threshold were identified. Also, 
average forehead and eye temperatures greater than 37.5 ◦C were not enough to detect fever similarly to the 
proposed CNN algorithm. Most RT-qPCR confirmed COVID-19 (+) cases found in the 2558 cases sample (17 
cases/89.5%) belonged to the CNN selected subfebrile group. The COVID-19 (+) main risk factor was to be in the 
subfebrile group, in comparison to age, diabetes, high blood pressure, smoking and others. In sum, the proposed 
method was shown to be a potentially important new tool for COVID-19 (+) people screening for air travel and 
public places in general.   

1. Introduction 

Fever is one of the most important clinical signs for infection 
recognition (Chiappini et al., 2011; Liu et al., 2004; Ng, 2012; Shi et al., 
2020; Teran et al., 2012). Thermal infrared method detection for fever 
screening, image associated or not, is currently in use worldwide to 
control people for air travel and access to public places, aiming at 
COVID-19 spread containment (Chiappini et al., 2011; Chiu et al., 2005; 
Ghassemi et al., 2018; Goeijenbier et al., 2014; Huang et al., 2020; Liu 
et al., 2004; Ng, 2012; Ng and Acharya, 2009; Ng and Kee, 2008; 
Nishiura and Kamiya, 2011; Shi et al., 2020; Teran et al., 2012; Yang 

et al., 2020). 
Although questionable, the use of infrared has become popular 

because it is a highly sensitive and noninvasive method (Martinez-Ji-
menez et al., 2021; Ng et al., 2006; Nguyen et al., 2010; Nishiura and 
Kamiya, 2011; Ring and Ng, 2012) and high precision non-contact 
infrared thermometers are simple to operate. Infrared thermometers 
are innocuous and contagious risk-free by not having direct contact with 
the measuring instrument and are thus, appropriate for handling crowds 
in places with heavy human traffic. However, their accuracy and 
effectiveness in controlling the pandemic effects have been questioned 
(International Electrotechnical Commission & International Organiza-
tion for Standardization, 2017; International Organization for 
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Standardization, 2017; Mouchtouri et al., 2019; Ng and Chong, 2006). 
As a result, the United States Food and Drug Administration (FDA) 
established guidelines for COVID-19 control infrared imaging ther-
mography (IT) correct use (International Electrotechnical Commission 
& International Organization for Standardization, 2017; International 
Organization for Standardization, 2017; U.S. Department of Health and 
Human Services et al., 2020). 

Several aspects of the method are still debatable, and no consensus 
has been achieved to date. Not only is the most appropriate temperature 
recording site under discussion, i.e., forehead (Antabak et al., 2016; 
Chan et al., 2006; Chiang et al., 2008; Chiu et al., 2005; Hewlett et al., 
2011; Ng et al., 2004, 2005; Sun et al., 2017), tympanic (Bernardo et al., 
1999), eyes (Fitriyah et al., 2017; Mercer and Ring, 2003; Vardasca 
et al., 2019), temporal (Center for Disease Control and Prevention, 
2020a; Cruz-Albarran et al., 2020; Teran et al., 2012; Zhou et al., 2020), 
but also the effect of the surroundings on the measurement accuracy 
(Dagdanpurev et al., 2018; Zhou et al., 2020), as well as the ceiling 
normal temperature for the general population fever tracking 
(Biomedical and Health Standards Committee, 2020a, 2020b; Childs, 
2018; Gomolin et al., 2005; Zhou et al., 2020). Furthermore, the method 
might be proven ineffective in controlling COVID-19 spread caused by 
the coronavirus SARS-CoV-2, since it has been found that more than 
70% of the people who contracted the virus do not even present fever in 
the initial stages of the disease (Bhat et al., 2020; Li et al., 2020; 
Michelen et al., 2020; Ng and Kaw, n. d.; Zhou et al., 2020). 

Recently, humanity faced the so called severe acute respiratory 
syndrome (SARS), which is a respiratory contagious illness and some-
times lethal. For SARS, the number of cases that were identified due to 
fever detection was very low, thus major investments to allow for pop-
ulation fever screening were not justifiable (Ng, 2004). Another difficult 
hurdle was the impracticability of individually evaluating people in 
congested places (e.g., airports, stadiums) (Bitar et al., 2009; Cheung 
et al., 2012; Hay et al., 2004; Selent et al., 2013). The alternative of 
health-oriented forms to be filled out by travelers was also found inef-
fective for viral spread containment (Quilty et al., 2020). 

Regarding the swine flu, caused by the H1N1 influenza virus, which 
is a nose, throat, and lungs infection, Brioschi et al. analyzed several 
febrile patients’ facial thermal distribution. The study showed that facial 
infrared imaging had better potential than a fever indication tempera-
ture point value for early contagious people identification (Brioschi 
et al., 2010). A plausible physical explanation for such finding relies 
upon viral pathogenesis that occurs in various stages: (i) virus host 

exposure and system entry, (ii) host internal propagation, (iii) host 
response to the virus external stimulus (tropism), (iv) virus degree of 
pathogenicity (virulence), (v) viral infection and disease patterns, (vi) 
host factors, and (vii) host defense. More specifically, in stage (v) in-
flammatory abnormalities are triggered, the immune system is acti-
vated, generating systemic vasodilation and vasoconstriction in 
extremities before the patient develops clinical fever (Arons et al., 2020; 
Atkins and Bodel, 1972; Bai et al., 2020; Biomedical and Health Stan-
dards Committee, 2020b; Blatteis, 2007; Brioschi et al., 2010; Conti, 
2004; Gowen et al., 2010; Michelen et al., 2020; Ng, 2004; Ng and Kaw, 
n. d.; Quilty et al., 2020; Saper, 1998). Hence, facial abnormal vaso-
motor behavior could be identified as an early sign of viral infection 
before the individual fever development. 

1.1. Objective of the paper 

Based on the bibliographic review and the questionable effectiveness 
of fever indication temperature point value for early COVID-19 conta-
gious people identification, the general objective of this work was to 
propose an infrared image method for febrile and subfebrile COVID-19 
patients screening. To achieve the general objective, the following 
specific objectives were devised: (i) Elaborate a methodology for uti-
lizing facial infrared imaging as a noninvasive screening exam for 
possible COVID-19 early detection in people with and without fever 
(subfebrile state); (ii) Conceive and implement a computational algo-
rithm for general application of the method considering multiple facial 
temperature points measurements, based on the analysis of a large 
number of selected emergency room patients, and (iii) Test the devel-
oped method and algorithm effectiveness for COVID-19 early detection 
in a large number of individuals of the general population in five 
different countries. 

2. Materials and methods 

2.1. Study design and participants 

A convolutional neural network (CNN) was selected as the method to 
conduct the COVID-19 early detection in people with and without fever 
(subfebrile state) using facial infrared imaging. The method consists of a 
deep neural network (DNN), which is usually applied to visual imagery 
analyses. Convolutional neural networks are recognized as a remarkable 
tool in pattern recognition (NG et al., 2005; Valueva et al., 2020). 

Nomenclature 

CDC Center of Diseases Control 
CNN convolutional neural network 
DNN deep neural network 
ICA image classification algorithm 
h0 null hypothesis 
N number of people 
NIST National Institute of Standards and Technology 
p probability 
ReLU rectified linear unit 
ROI region of interest 
Rt-qPCR quantitative reverse transcription PCR 
SaO2 oxygen saturation, % 
SP Science Partner 
T temperature, ◦C 
v velocity, m s− 1 

Greek letters 
ε emissivity 

φ relative humidity, % 

Subscripts 
air air 
avg average 
eye eye 
f fever 
fh forehead 
fth fever threshold 
ic inner canthus area 
ip image pixel 
max maximum 
ti tested individuals 
tot total 
ty tympanic 
∞ ambient 

Superscript 
− mean value  
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The DNN includes multiple layers between the input and output 
layers. The components are neurons, synapses, weights, biases, and 
functions, which operate similarly to the human mind, forming multi-
layer algorithms that could be trained. 

The basic concept is that the DNN should be trained to recognize 
different patterns in a particular image and determine the probability 
that the image belongs to one of the patterns. An example would be the 
recognition of cattle breeds from cattle images, in which the DNN cal-
culates the probability of an animal in the image to belong to a specific 
breed. In the current study, CNN was applied to select people with and 
without fever (subfebrile state) using facial infrared imaging. Then, the 
results were reviewed and the probabilities the network displayed 
(within pre-established limits) were selected, and the label was 
returned. A layer is defined by each mathematical manipulation, so that 
complex DNN depict many layers, namely deep networks. 

The study was designed in two phases so that the CNN algorithm 
could be executed. In phase 1, a substantial sample of people allowed for 
building a standard facial infrared images data bank in two folders: no 
fever (1) and fever (2) cases. Phase 2 consisted of using the same arti-
ficial intelligence algorithm to analyze the facial images of a much larger 
number of individuals than in phase 1, for comparing to the standard 
data bank, and for creating a new algorithm that classified the cases in 
fever (1), intermediate or subfebrile (2), and no fever (3). Alternatively, 
such classification could be interpreted as high (1), medium (2), and low 
(3) risk to be a COVID-19 bearer, respectively. 

2.2. Infrared camera calibration and precision assessment 

Regarding camera calibration, the detector consisted of a focal plane 
array, uncooled microbolometer 320 × 240 pixels with a thermal 
sensitivity of 0.08 ◦C at 30 ◦C, spectral range of 7.5–13 μm, and mea-
surement accuracy at ±1% of the real-time reading. The focal length 
from subject to scanner was 1 m. 

All equipment were carefully calibrated by utilizing a blackbody 
source with an expanded uncertainty less than 0.1 ◦C (level of confi-
dence of approximately 95%) before data collection, so that a good 
reading reproducibility capability could be achieved. Calibration was 
limited specifically to the human face. For that, the screening thermo-
graph required that the operator framed the facial image in the workable 
target plane. 

The thermal imager was tested against multiple high-end black 
bodies sources whose radiance temperature was calibrated with an 
expanded uncertainty not greater than 0.1 ◦C (level of confidence of 
approximately 95%), and stability better than ±0.002 ◦C. The calibra-
tions were performed by a calibration laboratory competent in radiation 
thermometric calibrations, traceable to international measurement 
standard. For that, the service centers were certified according to ISO 
9001, and temperature reference standards were traceable to the SP 
Technical Research Institute of Sweden, or the National Institute of 
Standards and Technology (NIST). The calibration of the camera was 
carried out using radiation sources that were traceable to National 
Standards at RISE, Research Institutes of Sweden and to NIST, National 
Institute of Standards and Technology (USA). The blackbody source had 
a radiance temperature range and control interval sufficient for the 
laboratory testing in accordance with this standard. The blackbody 
source had a known emissivity greater than 0.995. The diameter of the 
blackbody source aperture was sufficiently large so that the thermal 
imager’s temperature measurement was not affected by it and to allow a 
clear identification of colour change at the workable plane. 

In sum, the cameras used in this study were engineered and cali-
brated with automatic ambient drift compensation that eliminated the 
need for a black body reference all the time. Reasons for this include: i) 
Camera calibration was part of the production process and was based on 
multiple high-end black bodies sources; ii) The cameras integrated in-
ternal temperature sensors that compensated for possible calibration 
shifts; iii) A shutter between the camera detector and the lens was used 

as a reference to perform non-uniformity corrections when the camera 
environment changed; iv) Such proprietary mix of technologies ensured 
the thermal camera measurements remained stable and constant 
meeting the standard set forth in IEC 80601-2-59:2017, which states 
thermal cameras “may use self-corrections to maintain the drift within 
acceptable limits … to allow for substitution of the calibration source”. 

The permissible drift of a screening thermograph (i.e., infrared 
camera system) is less than or equal to 0.2 ◦C, over an interval of 14 
days. Therefore, the herein utilized screening thermograph used self- 
corrections to maintain the drift within acceptable limits. Note also 
that thermography is understood as a tracking measurement, thus the 
focus from the epidemiologic point of view was to separate as many 
suspicious cases as possible, although several false positive cases could 
appear. 

2.3. Standard data bank construction (phase 1) 

Thermal images of the anterior face occupying 75% of the visual 
framework were obtained with an infrared thermal imager (320 × 240 
pixels, T530sc, FLIR, TermoCam, Brazil; with a selected emissivity, ε =

0.98) with the standing individual looking directly at the sensor lens 
with a 90◦ angle, at a 0.3 m distance, after staying in the 22–23 ◦C 
temperature controlled examination room for 15 min, no air flow (vair <

0.2 m s− 1 - surrounding air speed) and controlled air relative humidity 
φ < 0.6 (60%). The subject was asked to remove all facial obstructions 
(e.g., glasses, front hair fringe, garments). Then the average tympanic 
temperature, Tty, was measured in both ear canals, using a Braun 
Thermoscan TIV 3520+, which has a reported accuracy by the manu-
facturer of ±0.2 ◦C for the range 36 ◦C–39 ◦C, and outside this range 

±0.3 ◦C. However, there are pros and cons of using such devices, 
therefore, to comply with the necessity of having to measure body 
temperature to identify patients with fever, not only tympanic temper-
ature was utilized, but also infrared image camera facial temperature as 
described in the next paragraph. In this way, body temperature mea-
surements were double checked. 

For phase 1, individuals were selected from patients who were 
admitted to the emergency unit of São Paulo University Medicine School 
Hospital of Clinics. Data were recorded from all admitted patients that 
were submitted to facial thermal imaging and tympanic temperature, 
Tty, measurement, between 3 and 68 years old, in the period from 2018 
to 2019. The criterion to identify patients with fever was when Tty >

Tfth = 37.5 oC or Tip > Tfth = 37.5 oC, in which Tfth is the assumed fever 
threshold temperature, and Tip is the temperature measured by the 
infrared camera at any image pixel (or position) “ip” on the face. 
Therefore, for the cases where Tty ≤ 37.5 oC, but in some image pixel, 
Tip > 37.5 oC, even a single one, the patient was classified in the fever 
group. 

A decision was made to consider only fever cases with viral or bac-
terial infection contagious lung diseases, previously confirmed by lab-
oratory or imaging exams. All other fever cases were excluded. Then, a 
second measurement was taken fifteen days after fever treatment. 
Additionally, cases hospitalized for more than 24 h or undergoing any 
type of surgical intervention were excluded, as were those with vascular 
or cutaneous facial disease. In this way, an attempt was made to restrict 
the group to only individuals with fever originated by respiratory dis-
eases, which is the main characteristic of COVID-19 infections. 

Based on the described criteria, the recorded thermal images were 
classified either in the fever or no fever group and stored in the computer 
in two folders. In this way, the standard data bank was constructed and 
made available as input to the CNN algorithm. 

2.4. CNN algorithm 

As discussed in section 2.2, based on a standard data bank built in 
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phase 1 of the study, a convolutional neural network (CNN) was used to 
create three different groups: fever (1), intermediate or subfebrile (2), 
and no fever (3). For that, an algorithm was devised based on the 
schematic diagram shown in Fig. 1. The algorithm consisted of splitting 
the no fever group into two new groups based on the probability of the 
individual recorded thermal facial image, pf , to belong to the fever 
group (1). When pf > 0.5 (50%), the individual was classified in the 
intermediate or subfebrile group (2), and in the no fever group (3) 
otherwise. 

Fig. 1 shows how the CNN is a layer-based structure, each layer with 
multiple nodes and each node performing a specific operation, for 
example, convolution, grouping, loss calculation (Hesamian et al., 
2019). The process is composed by an input layer, hidden layers, and an 
output layer. The hidden layers include layers such as the ones shown in 
Fig. 1 (feature maps, activation maps, and max pooling) that execute 
convolutions. The image input goes through a convolutional layer, 
which converts the visual information to a feature map. The activation 
layer does multiplication or other dot product, with an activation 
function, the rectified linear unit (ReLU). The ReLU eliminates negative 
values from an activation map by attributing zero to them. Next, a 
pooling step, executes a non-linear down-sampling, which reduces data 
dimensions through the combination of neuron clusters outputs at one 
layer into a next layer single neuron. Such step is essential for the CNN to 
learn features and classify data for images. Two possible ways of doing 
that are: max and average. In this study, max pooling was utilized, which 
consists of using each cluster maximum value of neurons at the previous 
layer. 

The nodes of one layer feed the next one with their values. The nodes 
of the last layer of a neural network represent the output, and the nodes 
of the first layer the input. In this study, the output is the probability that 
an image belonged to a certain group, and the input was the image itself. 

During the training process, CNN is provided with sample images of 
each group. As a result, the connection weights for these nodes are 
adjusted repeatedly to adjust the known output through a back propa-
gation process. 

The entries were composed by the facial thermal image, automati-
cally located within the captured image. Hundreds of pixels included the 
classic maximum skin temperature of the inner canthus area of the eye 
(Tic,eye), average and maximum forehead temperature (Tfh), average face 
temperature, and all possible temperature readings for each pixel on the 

face and their combination of regions of interest (ROI) from hot and cold 
areas. 

The algorithm started with the infrared image input, facial identifi-
cation within the image, ROI identification, and ROI temperatures 
comparison with the fever threshold temperature, as shown in Fig. 2. 
The process then proceeded with an evaluation step by verifying if the 
maximum facial temperatures (Tf,max) which comprise all described 
measured temperatures in the previous paragraph were greater or less/ 
equal than the fever threshold temperature (Tfth), primarily identifying 
fever or no fever groups, respectively. When the subjects did not exceed 
the fever threshold temperature, i.e., they did not have a fever indica-
tion, the image classification algorithm (ICA) classified the thermal 
image within two fever probability groups: subfebrile (2) if 
pf > 0.5 (50%), and no fever (3) otherwise, i.e., pf ≤ 0.5 (50%). In this 
way, the method aims at providing an active thermal feature and 
perhaps new thermograms analysis approach that is expected to be 
helpful in detecting asymptomatic subjects and those who have inten-
tion in suppressing high fever, assuming that ICA could identify 
abnormal facial vascularization patterns in individuals that did not 
exceed the fever threshold temperature. 

2.5. Prospective study (phase 2) 

Phase 2, from April 9 to July 21, 2020, during the COVID-19 
pandemic, studied a prospective multicenter population using the 
herein proposed CNN algorithm to classify the tested subjects as high 
(1), medium (2), and low (3) risk to be a COVID-19 bearer. The daily 

Fig. 1. The layers of the convolutional neural network (CNN) utilized in 
the study. 

Fig. 2. The CNN algorithm for classification in the fever, subfebrile or no fever 
group, using the facial infrared image (II). ROI: regions of interest; MFT: 
maximum facial temperature, and ICA: image classification algorithm. 
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arrival to work of the tested population was monitored in 73 companies, 
distributed in Brazil, USA, Mexico, the Netherlands and Lebanon. The 
image capturing procedure was carried out in the same way as in phase 1 
(the retrospective study) but using a rapid infrared image sampling 
system that was set up in an external, non-thermally controlled envi-
ronment at the entrance of all selected companies, as shown in Fig. 3 
(top). Therefore, it is reasonable to state that the plan could be replicated 
anywhere in the world due to the simplicity of the hardware required to 
conduct the tests. The doctor took the facial image with the infrared 
camera from a window in a separate room, which was then directly 
processed by the computer with the CNN algorithm to produce the re-
sults as shown in Fig. 3 (bottom), either with a green OK to classify the 
individual in the no fever group or with a red EVALUATE to classify the 
individual in the fever or subfebrile group. In this way, it is reasonable to 
state that the method provided a proof of concept of an established 
active (instead of passive or static) thermal screening method to detect 
asymptomatic patients and patients who have intention in suppressing 
high fever, since the subfebrile group was expected to include such in-
dividuals. For each subject, the procedure took less than 3 s, with no 
waiting time, to start the algorithm shown in Fig. 2. 

Next, according to the algorithm of Fig. 2, worker admission was 
granted when the result was low risk (no fever); the worker was guided 
to clinical evaluation and separation when necessary, in the case of 
medium risk (intermediate or subfebrile), and the worker was also 
guided to clinical evaluation followed by separation and isolation when 
fever was detected (high risk or fever group). In the clinical evaluation, 
the Center for Diseases Control (CDC) criteria were used to classify the 
cases as COVID-19 clinically suspicious (fever or chills, cough, shortness 
of breath or difficulty breathing, fatigue, muscle or body pain, headache, 
recent loss of taste or smell, sore throat, congested or runny nose, nausea 

or vomiting, diarrhea) (Center for Disease Control and Prevention, 
2020b). Clinical information such as demographic data, smoking history 
and previous illnesses were recorded. The final diagnosis of COVID-19 
was made by real-time reverse transcription polymerase chain reac-
tion (Taylor et al., 2010) (RT-qPCR) using nasopharyngeal swabs. 

Only cases with clinical evaluation at the time of image capturing 
were separated for analysis, with medical follow-up for at least 3 
months. Conversely, the following cases were excluded from the anal-
ysis: i) Cases with poor image quality; ii) Cases in which clinical infor-
mation or tympanic temperature measurements were not obtained, and 
iii) People who were sweaty or whose face was hot from previous 
exposure to excessive heat from the environment or from transportation 
vehicles. 

2.6. Statistical analysis 

Data were treated as mean and standard deviation or proportions for 
continuous or categorical data, respectively. The analysis was performed 
using the True Epistat statistical software adopting a 95% confidence 
interval. To estimate the sample size to obtain results with p < 0.05, 
power of at least 80% was considered. Sensitivity/specificity was 
calculated based on the algorithm’s ROC (receiver operating charac-
teristic) curve (Fawcett, 2006) in HCFMUSP cases, which is a graph with 
the diagnostic ability of a binary classifier system (patient with disease 
or not) based on the variation of the discrimination threshold. Excel 
software was also used for COVID-19 suspicious and confirmed clinical 
data in an external environment. It was assumed a null hypothesis (h0) 
that there was no association of COVID-19 positive people or clinically 
suspicious cases with a subfebrile group. The differences between 
healthy volunteers and patients with and without COVID-19 confirmed 
infection were analyzed by one-way ANOVA (Analysis of variance), 
followed by Tukey’s post hoc tests or chi-square tests (van Belle, 2008). 
Subsequently, a random machine learning model was used to perform 
multivariate analysis of all variables and to categorize patients as posi-
tive or negative COVID-19 to identify other factors associated with 
infrared image in the classification of COVID-19 suspicious cases, 
considering p < 0.05. 

3. Results 

Phase 1 utilized a total of 1206 selected patients who were admitted 
to the emergency room, from which 630 were men (52.2%), 32 ± 12 
years old. In the sample, 156 were fever cases of pulmonary origin 
(15%), from which 78 were men, 20 ± 7 years old, with Tty =

38.90 ± 0.68 oC, who were eligible. All of them recovered from fever 
within 2 weeks, registering Tty = 36.12 ± 0.49 oC, and served as control 
for the development of the CNN algorithm. The ROC curve showed 97.8 
and 98% sensitivity and specificity, respectively, due to the substantial 
temperature differences between the fever and no fever groups. 

After the creation of the CNN algorithm, phase 2 carried out 227,261 
workers evaluations during the daily arrival to work at the entrance of 
73 companies in 23 cities in 5 countries, lasting 103 days. The com-
panies’ distribution per countries was: 51.5% in Brazil, 39% in Mexico, 
9% in the USA, 0.2% in Lebanon and 0.02% in the Netherlands. The 
companies were in 8 states in Brazil (south, southeast, midwest and 
north regions). There was an average of 3113 tests per company. 

Based on the methodology described in section 2, using the standard 
data bank built in phase 1, phase 2 results allowed for the classification 
of the tested individuals in three groups to identify possible COVID-19 
bearers: 1) fever (high risk); 2) intermediate or subfebrile (medium 
risk), and 3) no fever (low risk). In sum, 7605 fever (high risk) cases 
(3.3%) and 31,173 subfebrile/intermediate (medium risk) cases 
(13.7%) were identified. The remaining subjects were classified with no 
fever (low risk), i.e., thermally normal. The distribution pattern was 
approximately the same, with no significant difference in incidence 
between countries or even over the 103 days (p > 0.05), as summarized 

Fig. 3. Typical rapid infrared image sampling system that was set up in an 
external, non-thermally controlled environment at the entrance of all selected 
companies (top). At the bottom 2 examples of the utilized facial infrared images 
CNN algorithm results are shown either with a green OK (left image) to classify 
the individual in the no fever group or with a red EVALUATE (right image) to 
classify the individual in the fever or subfebrile group. 
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graphically in Fig. 4. 
The CNN algorithm was capable of clearly distinguishing three 

groups based on facial infrared images temperature distribution differ-
ences. However, using the three-group classification obtained with the 
CNN algorithm for the set of 227,261 tested individuals, it was possible 
to demonstrate that based only on the comparison between maximum 
skin temperature of the inner canthus area of the eye, Tic,eye,max, and 
average forehead temperature, Tfh,avg, or both, it was not possible to 
classify the same tested individuals in the three groups. Indeed, with 
Tic,eye,max and Tfh,avg there were no significant differences in the in-
dividuals measured temperatures comparison, i.e., the measured tem-
perature ranges overlapped in the three groups (p > 0.05). Fig. 5 shows 
the results of the analysis as follows: i) The bars indicate the number of 
cases in each temperature interval; ii) The solid lines represent the bars 
normal distributions; iii) The vertical axis indicates the number of tested 
individuals, Nti, from the total of tested individuals, Nti,tot = 227,761, 
and iv) The horizontal axis shows a graded temperature scale (1 ◦C in-
tervals) that depicts Tfh,avg and Tic,eye,max in Fig. 5a and b, respectively. 
Therefore, Fig. 5 shows graphically the statistical test results that 
allowed for the conclusion that based only on the measured Tfh,avg and 
Tic,eye,max it was not possible to classify the tested individuals in fever, 
subfebrile and no fever groups since p > 0.05 (Pearson p-value test) (van 
Belle, 2008). 

In the examination sites, the external (ambient) temperature, T∞, 
varied from − 3.4 ◦C to + 35.9 ◦C, so that T∞ ± 2σT∞ = 20.40± 6.02 oC, 
and the relative humidity, φ ± 2σφ = 68.70 ± 10.50%. The statistical 
analysis allowed for concluding that there was no relationship between 
ambient temperature (maximum, average, minimum), relative humidity 
or wind speed with the maximum eye temperature, average forehead 
temperature, or risk classification by the algorithm (p > 0.05). Only the 
average skin temperature was weakly affected by the minimum external 
temperature (p = 0.316). All other relationships were negligible. Hence, 
there was no need to correlate facial infrared image temperature values 
to those of the local weather for data analysis. Neither sensitivity nor 
specificity had significant differences with respect to the tested 
environment. 

After the initial infrared image exams with 227,261 tested in-
dividuals, only a total of 2558 complete cases were eligible to be 
analyzed with an average follow-up of 3.5 months (3–6 months varia-
tion), from the 73 companies that participated of the study. The no fever 
group amounted to 2283 cases (89.2%), the subfebrile group 264 cases 
(10.3%) and the fever group 11 cases (0.43%). The reason for not using 

the other tested individuals in the original sample was that clinical or 
laboratory follow-up with RT-qPCR or subsequent contact was not 
possible since the workers could not be reached because they were only 
visiting the company or were referred to other medical services. Most 
eligible cases were men in the three groups (92.8%) with a 31-year-old 
mean with an age range from 18 to 71 years old. In the group, 56 sus-
pected cases that had any of the COVID-19 symptoms, including fever or 
not (80.3% subfebrile, 45 cases) were found, 19 of which were 
confirmed with RT-qPCR for COVID-19, who were directed to isolation 
for 14 days. In the subfebrile (intermediate) group, Table 1 shows two 
cases that had to be hospitalized in severe condition for 8 and 10 days 
due to low saturation (SaO2 < 88%), with pulmonary sequelae in 25 and 
50% of the lung area (tomography), respectively. There were no deaths 
among the COVID-19 confirmed cases. 

As stated in the previous paragraph, the complete evaluation was 
undertaken with 2558 individuals. From the 45 subfebrile cases selected 
by the CNN algorithm, 17 subjects were confirmed with RT-qPCR for 
COVID-19, as it is shown in Table 1. 

Table 2 shows that the addition of the subfebrile to the fever group to 
establish the COVID-19 suspicious cases increased the screening 

Fig. 4. Percentage comparison of no fever, subfebrile and fever cases in Brazil, 
Mexico, USA, Lebanon and The Netherlands, for 103 days. 

Fig. 5. Distribution of temperatures in the no fever, subfebrile and fever groups 
for 103 days; a) average forehead temperature, and b) maximum eye temper-
ature. The bars indicate the number of cases in each temperature interval; ii) 
The solid lines represent the bars normal distributions; iii) The vertical axis 
indicates the number of tested individuals (Nti). 
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sensitivity from 0.1053 (fever group) to 1.000 (fever + subfebrile 
group), taking the lower limit of the confidence interval. Note that the 
fever group was formed with screening based only on temperature 
greater than 37.5 ◦C (fever group), as presented in section 2.3. Hence, 
the CNN algorithm could detect substantially more confirmed COVID-19 
cases than the fever screening criterion based on the temperature 
threshold only. Indeed, the fever + subfebrile group included all 19 
confirmed COVID-19 cases in the sample. 

Regarding associated signs and symptoms to COVID-19, according to 
the CDC (Center for Disease Control and Prevention, 2020b), Table 3 
shows that in the subfebrile group substantially more signs and symp-
toms were found than in the fever group, either in the COVID-19 (− ) or 
COVID-19 (+) individuals. Remarkably, in the subfebrile group, the 
COVID-19 CDC criteria symptoms were prevalent in the COVID-19 (− ) 
cases, which in the current study were caused by other simple flu con-
ditions and related illnesses. Therefore, COVID-19 characteristic symp-
tomatic cases were more detected in the COVID-19 (− ) than in the 
COVID-19 (+) evaluated subjects in the subfebrile group. 

Additionally, in the fever group, the 2 COVID-19 (+) cases did not 
present symptoms other than fever itself, but the 9 COVID-19 (− ) cases 
showed a total of 3 occurrences of COVID-19 CDC criteria symptoms 
(Center for Disease Control and Prevention, 2020b). 

In Table 3, it should be noted that some individuals were poly-
symptomatic, i.e., presented one or more symptoms, and others no 
symptoms at all. The last row shows the total number of occurrences of 
signs/symptoms in each group. For example, 123 occurrences of signs or 
symptoms were detected in the 28 COVID-19 (− ) subfebrile cases. Note 
also that cough was the most common symptom in the 17 COVID-19 (+) 
subfebrile cases (29.4%). 

Table 4 shows the 56 symptomatic cases classified either as COVID- 
19 (− ) or COVID-19 (+). For that, the 45 symptomatic cases that 
belonged to the subfebrile group (264 cases) and the 11 cases of the 
fever group were combined. The total number of occurrences of symp-
toms in each column shows that 19 COVID-19 (+) and 37 COVID-19 (− ) 
individuals had 20 and 135 types of symptoms, respectively, now 
including fever, which is one of the COVID-19 CDC criteria symptoms 
(Center for Disease Control and Prevention, 2020b). The main reason for 
presenting Table 4 results is the observation that polysymptomatic in-
dividuals appeared more in the COVID-19 (− ) cases than in the 
COVID-19 (+) cases, thus allowing to discard the occurrence of 

Table 1 
Compilation of COVID-19 free, symptomatic, RT-qPCR confirmed, and hospi-
talized cases.  

Group N (%) Symptomatic RT-qPCR 
confirmed 

Hospitalized 
cases 

No fever 2283 
(89.3%) 

0 0 0 

Subfebrile 264 
(10.3%) 

45 (80.4%) * 17 (89.5%) * 2 (100%) * 

Fever 11 (0.4%) 11 (19.6%) 2 (10.5%) 0 

Total 2558 56 19 2 

*p < 0.01. 

Table 2 
Statistical parameters of the COVID-19 diagnosis CNN algorithm.  

Group Parameter RT-qPCR 
positive 

RT-qPCR 
negative 

Fever Group (N ¼ 11) Fever Algorithm 2 9 
No fever Algorithm 17 2530 
Sensitivity: 0.1053 CI: 0.0294 to 

0.3139 
Specificity: 0.9965 CI: 0.9933 to 

0.9981 
Accuracy: 98.98% 
PPV 18.18% 
VPN 99.33% 

Subfebrile Group (N ¼
264) 

Subfebrile 
Algorithm 

17 247 

Non-Subfebrile 
Algorithm 

2 2292 

Sensitivity: 0.8947 CI: 0.6861 to 
0.9706 

Specificity: 0.9027 CI: 0.8906 to 
0.9136 

Accuracy: 90.27% 
PPV 6.44% 
NPV 99.91% 

Subfebrile þ Fever 
Groups (N ¼ 275) 

Fever or Subfebrile 
Algorithm 

19 256 

No fever Algorithm 0 2283 
Sensitivity: 1.0000 CI: 0.8318 to 

1.0000 
Specificity: 0.8992 CI: 0.8869 to 

0.9103 
Accuracy: 89.99% 
PPV 6.90% 
NPV 100.00% 

CI: Confidence Interval, PPV: Positive Predictive Value, NPV: Negative Predic-
tive Value. 

Table 3 
Signs and symptoms in the fever and subfebrile groups.  

Associated Signs 
and Symptoms55 

Subfebrile (N = 45) Fever (N = 11) 

COVID-19 
(− ) (N = 28) 

COVID-19 
(+) (N = 17) 

COVID-19 
(− ) (N = 9) 

COVID-19 
(+) (N = 2) 

Anosmia 3 (6.6%) 1 (5.9%) 0 0 
Coryza 18 (40%) 3 (17.6%) 0 0 
Headache 15 (33.3%) 0 1 (9%) 0 
Odynophagia 9 (20%) 2 (11.8%) 0 0 
Myalgia 14 (31.1%) 0 0 0 
Diarrhea 3 (6.6%) 1 (5.9%) 0 0 
Cough 6 (13.3%) 5 (29.4%) 0 0 
Fatigue 2 (4.4%) 1 (5.9%) 0 0 
Nausea/vomiting 3 (6.6%) 2 (11.8%) 0 0 
Tachycardia >100 

bpm 
16 (35.5%) 0 1 (9%) 0 

Bradycardia <50 
bpm 

3 (6.65%) 1 (5.9%) 0 0 

Sun exposure a 15 (33.3%) 2 (11.8%) 0 0 
Sleep deprivation 16 (35.5%) 0 1 (9%) 0 

Total number of 
occurrences 

123 18 3 0  

a Exposed to sun irradiation all day long outdoors. 

Table 4 
Symptoms comparison between COVID-19 (+) and COVID-19 (− ) individuals.  

Associated Symptoms COVID-19 (+) N = 19 COVID-19 (− ) N = 37 

Fever (N = 11) 2 (10.5%) 9 (24.3%) 
Subfebrile (N = 45) 17 (89.4%) 28 (75.6%) 

Anosmia 1 (5.3%) 3 (8.1%) 
Coryza 3 (15.8%) 18 (48.6%) * 
Headache 0 16 (43.2%) * 
Odynophagia 2 (10.5%) 9 (24.3%) ** 
Myalgias 0 14 (37.8%) * 
Diarrhea 1 (5.3%) 3 (8.1%) 
Cough 5 (26.3%) 6 (16.2%) 
Fatigue 1 (5.3%) 2 (5.4%) 
Nausea/vomiting 2 (10.5%) 3 (8.1%) 
Tachycardia >100 bpm 0 17 (45.9%) * 
Bradycardia <50 bpm 1 (5.3%) 3 (8.1%) 
Sun exposure *** 2 (10.5%) 15 (40.5%) ** 
Sleep deprivation 0 17 (45.9%) * 
Fever 2 (10.5%) 9 (24.3%) 

Total number of occurrences 20 135 

*p < 0.01, **p < 0.05, *** exposed to sun irradiation all day long outdoors. 
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simultaneous symptoms as a clear indication of COVID-19 infection, at 
least in the sample herein analyzed. 

The fever and subfebrile groups’ results were combined to depict a 
global picture of the 2558 complete cases in terms of clinical signs such 
as runny nose, tachycardia, headache, myalgia and odynophagia and 
sun exposure. The signs/symptoms were not exclusive to the confirmed 
cases of COVID-19. However, they were significantly present only in the 
56 individuals clinically suspect group that was analyzed through the 
results shown in Tables 3 and 4 Furthermore, the 19 COVID-19 (+) cases 
were all symptomatic in the 2558-case tested sample. Hence, no 
asymptomatic COVID-19 (+) cases were detected in the sample. 

The study proceeded with the demographic comparison between 
COVID-19 (+) and COVID-19 (− ) individuals shown in Table 5. The 
results investigate the correlation between age, and several other sus-
pected associated factors with COVID-19 (+) cases in the 2558-case 
tested sample. Clearly, older individuals were more affected than 
younger ones. Indeed, the COVID-19 (+) group averaged 45.3 years old 
whereas the COVID-19 (− ) group averaged 30.55 years old, i.e., 48.3% 
older than the COVID-19 (− ) group. Therefore, age was confirmed as a 
high-risk factor for COVID-19 infection. Most other investigated condi-
tions (obesity, overweight, normal weight, diabetes, no fever, subfebrile, 
fever, smoker, asthma/chronic obstructive pulmonary disease – COPD, 
systemic arterial hypertension – SAH, pregnant, and heart disease) 
appear not to be of major importance for increased COVID-19 (+) risk, 
from the number of cases listed in Table 5, except for the subfebrile 
condition that was found to be related to 17 of the 19 COVID-19 (+) 
cases identified in the sample. Hence, it is reasonable to state that 
Table 5 results clearly indicate that the subfebrile condition detected by 
the herein proposed CNN algorithm was shown to be of great impor-
tance for possible COVID-19 (+) individuals screening. 

4. Discussion 

In this study, it was possible to identify, by means of mass screening, 
a subfebrile (intermediate) group that was shown to be related to 
COVID-19 (+) cases through the evaluation of 2558 cases through the 
combination of infrared imaging and a herein proposed CNN algorithm, 
and use it as an unprecedented screening variable. Ideally, a screening 
method should be simple, fast, and overly sensitive, characteristics that 
have been obtained with the herein proposed methodology through 
experimental results. 

A final and precise diagnosis is not what is sought by a screening 
technique. However, the method needs to be shown useful in separating 

suspicious cases in large crowds, so that disease spread, and contagion 
are avoided. Although thermography has been widely utilized for 
COVID-19 screening for air travel and access to public places, the 
method has not been soundly effective in identifying suspicious COVID- 
19 (+) individuals, as shown by the technical literature (Chiang et al., 
2008; Ng and Acharya, 2009; Ng and Kee, 2008; Zhou et al., 2020), 
which motivates the development of viable alternatives to improve 
effectiveness of the method. Towards that goal, the herein proposed 
methodology is the first to propose the separation and analysis of a 
subfebrile group during people infrared screening. For that, the group 
characteristics, incidence, and clinical importance had to be assessed 
and experimentally related to COVID-19 (+) individuals, which was 
done for the first time through infrared imaging and COVID-19 RT-qPCR 
tests. 

A subfebrile state is quite difficult to be defined, since there is no 
consensus on fever threshold, which varies according to the place and 
means of assessment (Coats et al., 2018; Jessen, 1985; Nishiura and 
Kamiya, 2011; Sun et al., 2017; Tan and Knight, 2018). In this study, the 
subfebrile state was defined as cases with a facial temperature <37.5 ◦C 
and more than 50% probability of being fever according to the facial 
CNN algorithm. In this way, the thermographic analysis considered the 
facial temperature distribution by evaluating multiple thermal points, 
and not just a single point as it is common practice. Most published 
articles use maximum skin temperature of the inner canthus of the eye 
temperature or average forehead temperature, i.e., always with one or a 
few points of analysis (Center for Disease Control and Prevention, 
2020b; Fawcett, 2006; Fitriyah et al., 2017; Hesamian et al., 2019; 
Hewlett et al., 2011; Liu et al., 2004, 2020; NG et al., 2005; Ng and Kee, 
2008; Nguyen et al., 2010; Taylor et al., 2010; U.S. Department of 
Health and Human Services et al., 2020). Within the knowledge of the 
authors, this is the first study to assess all facial thermal points simul-
taneously. The herein obtained results showed a clear overlap of the 
normal, subfebrile, and fever classification when using fixed tempera-
ture values, which decreases the sensitivity of screening specificity. 

The clear overlap of the normal, subfebrile, and fever classification 
using only the maximum skin temperature of the inner canthus of the 
eye temperature or average forehead temperature was shown in Fig. 5. A 
possible physical explanation for the results of Fig. 5 is that since an 
individual should be included in the fever group when even one 
Tip > 37.5 oC, if Tic,eye,max is utilized, one possible Tip > 37.5 oC could be 
missed because the MFT does not need to be specifically in the eye. Such 
point could be in other facial point, which does not go “unnoticed” with 
the CNN algorithm, that includes all facial points. Hence, the objective 
of showing the results of Fig. 5 was to demonstrate that using only 
measurements of Tfh,avg and Tic,eye,max would not be enough to produce 
the same group classification obtained with the herein proposed CNN 
algorithm. 

As stated in the proposed methodology, the fever cases were iden-
tified in this study by the feverish face characterized by a thermal 
signature (based on the facial temperature distribution) automatically 
by artificial intelligence. The change with respect to the expected 
normal facial temperature distribution may be related to a systemic 
inflammatory condition by interleukin IL-6 and ultrasensitive C-reactive 
protein (hs-PCR) caused by viral or bacterial pyrogens (Alheim et al., 
1997; Benarroch, 2007; Blatteis, 2006; Coomes and Haghbayan, 2020; 
Liu et al., 2020; McGonagle et al., 2020; Rodríguez-Medina, 2018), 
generating an increase in the flow of vascular springs – supraorbital 
region – angular and labial) and vasoconstriction in the extremities 
(nose, cheeks and chin) (Blatteis, 2006; Cruz-Albarran et al., 2020; 
Rodríguez-Medina, 2018). Fever happens when the hypothalamus de-
tects pyrogens and then increases the set point. The course of typical 
fever can be divided into three stages. When the fever starts, the body 
tries to increase its temperature, but vasoconstriction occurs to prevent 
heat loss through the skin. For this reason, some individuals in this fever 
stage (in the upward slope and immediately after the onset of the fever 

Table 5 
Demographic comparison between COVID-19 (+) and COVID-19 (− ) 
individuals.  

Variable COVID-19 (− ) (N =
2549) 

COVID-19 (+) (N =
19) 

a ± 2σa (95% of the population) 30.55 ± 28.46 45.30 ± 27.08 
Gender (%) M = 2319 (91.2%), M = 15 (81.2%), 

F = 220 (8.64%) F = 4 (18.8%) 

Obesity (BMI ≥ 35) 139 (5.46%) 2 (10.5%) 
Overweight (25 ≤ BMI < 35) 383 (15.04%) 1 (5.2%) 
Normal BMI (18 ≤ BMI < 25) 522 (20.49%) 3 (15.7%) 
Diabetes 24 (0.9%) 1 (5.2%) 
No fever 2283 (89.63%) * 0 
Subfebrile 28 (1.1%) 17 (89.5%) * 
Fever 9 (0.35%) 2 (10.5%) * 
Smoker 179 (7.03%) 3 (1.17%) 
Asthma/COPD 128 (5.03%) 0 
Systemic arterial hypertension 

(SAH) 
281 (11.03%) 1 (5.2%) 

Pregnant 3 (0.12%) 0 
Heart disease 102 (4.00%) 0 

*p < 0.01, BMI: body mass index, COPD: Chronic obstructive pulmonary disease, 
M: male, F: female. 
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or in the downward slope after the onset of the fever) will not be 
detected by conventional thermography (Ng et al., 2006). The mea-
surement of these inflammatory proteins should be better studied to 
understand their influence on thermographic evaluation. 

A multicenter, observational, cohort study (without intervention) 
was carried out in two stages — hospital and population, respectively — 
in which it was possible to assess regions of different climates and lo-
cations, and the demographic profile of those evaluated was similar to 
that studied in most previously published studies (Boehmer et al., 2020; 
Omori et al., 2020; Venkatesan, 2020; Wedderburn et al., 2020). The 
herein obtained experimental results, as in the technical literature, 
showed a low fever incidence, which was less than 1–3% (Canadian 
Agency for Drugs and Technologies in Health, 2014; Ring et al., 2013). 
The algorithm could be used both indoors and outdoors. Although the 
study was based on measurements taken in a controlled environment, 
unlike the literature, any significant interference of the ambient tem-
perature in the analysis of the results was not detected. A possible 
physical explanation to that fact is that the dynamic balance of heat 
production, transfer and loss of various locations of the head in living 
human beings is a complex process (even more so, with extra work by 
the moving subject) in which the physiological mechanisms are 
continuously in action to maintain body temperature (Ng et al., 2006; 
Pascoe, 2010). 

The proposed CNN algorithm enhanced infrared imaging procedure 
would allow for creating a database and a real time information control 
center that could pinpoint locations at high risk (e.g., places with high 
incidence of fever or subfebrile cases), so that other public restrictive 
measures would be guided and taken in the population exposed to the 
virus, and even priority vaccination measures. A 3-day mobile mean 
could be utilized to create an alert tracking of possible increase in cases, 
before RT-qPCR tests are available, and also symptomatic cases. The 
greater the number of thermographic alerts for fever and subfebrile 
cases, the greater the viral exposure during the epidemic period and, 
therefore, the greater contagion risk would be expected in each com-
pany. Such assertion was made on solid ground, i.e., based on the results 
of this study, in which 19 of 275 cases (6.9%) screened from a sample of 
2558 cases belonged to the fever (11 cases) and subfebrile groups (264 
cases), and were COVID-19 (+). Noteworthy is that all 19 COVID-19 (+) 
cases detected in the 2558 individuals’ sample (0.7% ~ 1%) by RT-qPCR 
tests were among the screened individuals as part of the fever and 
subfebrile groups. 

The herein proposed method is therefore an inexpensive and easy 
method to be implemented for the COVID-19 general population mass 
evaluation that probably would not miss positive cases without fever, 
which has been the case with conventional thermography. In this study, 
the subfebrile group brought 264 people for further investigation who 
would undergo conventional thermal screening without clinical evalu-
ation, from which 17 were confirmed COVID-19 (+) (6.4%), thus the 
method increased the noninvasive identification of COVID-19 (+) cases, 
and in fact was capable of screening all COVID-19 (+) cases present in 
the sample that were later confirmed by RT-qPCR tests. 

The standard data bank construction (Phase 1) was based on 1206 
hospital emergency unit selected patients, which was a sample size 
sufficient to build the algorithm, representative and homogeneous. For 
the prospective study (Phase 2), although the tests were carried out in a 
multicenter study, they were targeted to an active workers population, 
not in isolation, and predominantly middle-aged men. In addition, the 
authors were rigorous in selecting the cases, excluding many that clin-
ical follow-up was not possible. 

Since the tests were not a comparative study between locations with 
and without the use of the algorithm, it is not possible to state that they 
could restrict a pandemic, but based on the obtained results, it is 
reasonable to state that they were more effective than just screening 
people with fever. The multi-point thermography of the face was also 
demonstrated to be more effective than the analysis of the maximum 
temperature of the eyes or forehead, used in conventional 

thermography. 
The medical costs both to employers and the medical health systems 

associated with leave of absence from work and hospitalization can be 
very high. For example, in Brazil, each employee on leave costs more 
than US$1100 and when hospitalized more than US$3500 to the 
employer. In this study, employees identified as subfebrile were active 
on their way to work but were immediately removed for treatment 
without the need for hospitalization after early clinical confirmation. 
Therefore, it is reasonable to state that, potentially, the methodology 
would lead to a cost reduction of more than US$3500 per hospitalized 
person identified early by the algorithm as subfebrile. Only 2 of 17 in the 
subfebrile group (12%) were hospitalized. In addition, none of the 11 
fever patients required hospitalization (mild/moderate infection). 

Some limitations of the study could be pointed out. Since it was a 
population screening study, it was not possible to previously separate 
other pre-existing clinical conditions or use of medications. Therefore, 
many of the results classified as subfebrile may be related not only to 
other non-viral infectious diseases, but also to systemic diseases such as 
hypertension, allergy, facial acne, and extrinsic factors such as heat 
stroke, sleep deprivation, alcohol or use of vasoactive medications. 
However, all such variables could be quickly assessed in the initial 
clinical approach after thermal alert. Furthermore, since COVID-19 (+) 
asymptomatic cases were not detected in the 2558 sample tested in this 
study, it was not possible to verify the sensitivity of the subfebrile group 
screening to detect possible COVID-19 (+) asymptomatic cases. 

This study contributed to COVID-19 subclinical screening and 
possibly other communicable viruses. The study dealt with the unprec-
edented evaluation of subfebrile cases with COVID-19, by means of 
multicentric mass tracking in different countries, using infrared imaging 
coupled to an artificial intelligence algorithm for the selection of 
potentially COVID-19 infected non-febrile individuals. Currently, there 
is great global public interest in the topic of finding novel, alternative 
and affordable methodologies for effective pandemics control. In that 
sense, the study brought to light a more specific possibility regarding the 
tracking of fever and subfebrile cases that had not yet been reported in 
the technical literature, and that stimulates new research and ideas for 
the scientific community to proceed in this line of investigation. Despite 
this study’s promising results, exercising caution is needed when issuing 
a final recommendation. The predictive value of infrared imaging is 
likely to vary depending on the natural course of the disease and a va-
riety of other environmental factors. Therefore, more extensive studies 
are needed to confirm the findings of this study, and possible validation 
by other authors. One possible direction would be to test the algorithm 
with only confirmed COVID-19 (+) cases, with and without fever. 

5. Conclusion 

The key conclusions of this study were.  

1. It was possible to identify suspicious and confirmed COVID-19 (+) 
cases characterized by temperatures below the 37.5 ◦C fever 
threshold by means of a CNN algorithm enhanced infrared imaging 
procedure to evaluate multiple thermal points on the face.  

2. It was shown that only measurements of Tfh,avg and Teye,max greater 
than 37.5 ◦C, which is the traditional thermography method for fever 
classification, would not be enough to produce the fever group 
classification obtained with the herein proposed CNN algorithm, 
since the MFT could be in a facial point neither in the eye nor in the 
forehead.  

3. The incidence of fever in the 227,261 screening at the entrance of the 
subjects’ place of work was low (3.3%), but most of 19 COVID-19 (+) 
cases found in a 2558 cases sample, including hospitalization, 
belonged to the subfebrile group (17 cases/89.5%) and not to the 
fever group.  

4. Regarding RT-qPCR confirmed COVID-19 (+) cases, the main risk 
factor was found to be part of the screened subfebrile group, followed 
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by age, with had a 45.3-year-old mean in comparison to a 30.55- 
year-old mean for COVID-19 (− ) cases (48.3% higher). Other risk 
factors were investigated and found to be much less significant than 
the two main risk factors, such as diabetes, high blood pressure and 
smoking.  

5. Clinical signs of runny nose, tachycardia, headache, myalgia and 
odynophagia, although present in the suspicious cases, were not 
exclusive to the COVID-19 (+) group;  

6. The subfebrile and fever groups screened by the herein proposed 
CNN algorithm was shown to be of great importance for possible 
COVID-19 (+) individuals screening, since all 19 COVID-19 (+) cases 
detected in this study for the 2558 individuals’ sample (0.7% ~ 1%) 
by RT-qPCR tests were among the screened individuals as part of the 
fever and subfebrile groups.  

7. Follow-up studies are needed to confirm the findings of this study, 
and possible validation by other authors. One possible direction 
would be to test the algorithm with only confirmed COVID-19 (+) 
cases, with and without fever. 
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