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f Dipartimento di Oncologia ed Emato-Oncologia, Università Degli Studi Di Milano, Via Festa del Perdono, Milano, Italy 
g Laboratory of Translatonal Neurosciences, European School of Molecular Medicine, CEINGE Biotecnologie Avanzate S.c.a.rl.Via Gaetano Salvatore, Naples, Italy 
h Stem cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran 
i Tissue Engineering and Applied Cell Sciences Division, Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran 
j Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran   

A R T I C L E  I N F O   

Keywords: 
DNA methylation 
Neurological disorders 
Alzheimer’s 
Depression 
ADHD 
Rett syndrome 

A B S T R A C T   

Genome-wide studies related to neurological disorders and neurodegenerative diseases have pointed to the role 
of epigenetic changes such as DNA methylation, histone modification, and noncoding RNAs. DNA methylation 
machinery controls the dynamic regulation of methylation patterns in discrete brain regions. 
Objective: This review aims to describe the role of DNA methylation in inhibiting and progressing neurological 
and neurodegenerative disorders and therapeutic approaches. 
Methods: A Systematic search of PubMed, Web of Science, and Cochrane Library was conducted for all qualified 
studies from 2000 to 2022. 
Results: For the current need of time, we have focused on the DNA methylation role in neurological and 
neurodegenerative diseases and the expression of genes involved in neurodegeneration such as Alzheimer’s, 
Depression, and Rett Syndrome. Finally, it appears that the various epigenetic changes do not occur separately 
and that DNA methylation and histone modification changes occur side by side and affect each other. We focused 
on the role of modification of DNA methylation in several genes associated with depression (NR3C1, NR3C2, 
CRHR1, SLC6A4, BDNF, and FKBP5), Rett syndrome (MECP2), Alzheimer’s, depression (APP, BACE1, BIN1 or 
ANK1) and Parkinson’s disease (SNCA), as well as the co-occurring modifications to histones and expression of 
non-coding RNAs. Understanding these epigenetic changes and their interactions will lead to better treatment 
strategies. 
Conclusion: This review captures the state of understanding of the epigenetics of neurological and neurodegen-
erative diseases. With new epigenetic mechanisms and targets undoubtedly on the horizon, pharmacological 
modulation and regulation of epigenetic processes in the brain holds great promise for therapy.   

1. Introduction 

The neurological and neurodegenerative disorders, including many 
sporadic and hereditary disorders, are characterized by the progressive 
loss of neurons’ structure and function, often associated with neuronal 

death. The causes of neurological and neurodegenerative diseases are 
complicated and related to many factors, such as age, heredity, lifestyle, 
and environmental factors (Gilmore et al., 2008; Re et al., 2012). 

Among epigenetic components, DNA methylation could be a signif-
icant epigenetic marker that has been most broadly examined (Lu et al., 
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2013a). DNA methylation is a post-replication alteration that frequently 
happens in cytosines of the CpG dinucleotide sequence, leading to the 
exchange of a methyl group from S-adenyl methionine to a cytosine (Jin 
and Liu, 2018). When DNA is symmetrically methylated, the methyl 
groups alter DNA structure. The main consequence of methyl alteration 
is that a variety of transcription factors cannot recognize the DNA and 
hence induce repression of transcription (Prokhortchouk and Defossez, 
2008). DNA methylation in the mammalian nervous system regulates 
neural stem cell fate, brain development native function, neuro-
developmental disorders, and neurodegenerative diseases (Hirabayashi 
and Gotoh, 2010; Urdinguio et al., 2009; Xu and Li, 2012). DNA 
methylation is also associated with memoryand ischemia-induced 
damage (Xu and Li, 2012). Recent studies reported that DNA methyl-
ation changes are associated with cancer and neurological disorders (Lu 
et al., 2013a; Xu and Li, 2012). These epigenetic modifications regulate 
the networks of essential genes that mediate physiological processes and 
represent a simple and rational method to prevent or even treat these 
disorders (Landgrave-Gómez et al., 2015). New evidence suggests that 
altering metabolism through exercise or a variety of diets such as 
ketogenic diets, low-carbohydrate diets, and intermittent fasting can 
change the concentrations of various metabolites, some of which may 
modulate the activity of proteins that causes epigenetic modifications 
(Shimazu et al., 2013; Shyh-Chang et al., 2013). 

In this brief overview, we accompanied the emergence of a new 
understanding of DNA methylation mechanisms and their implications 
for CNS function and dysfunction. Research in the previous two decades 
discovered an emerging outline of the relationship between numerous 
epigenetic pathways and neurological or neurodegenerative disorders. 
We will begin by outlining the epigenetics and DNA methylation, then 
focus intensively on recent progress made in the study of DNA methyl-
ation in major neurological disorders such as schizophrenia, depression, 
attention deficit hyperactivity disorder (ADHD), Alzheimer’s disease 
(AD), and Rett syndrome, as well as the role of DNA methylation in 
therapeutic approaches for the treatment of these disorders. 

2. Epigenetics and DNA methylation 

Epigenetics refers to mechanisms that regulate gene expression 
without altering the primary DNA sequence. Epigenetic changes affect 

gene activation in response to environmental cues, which is essential for 
the primary cell and tissue differentiation (Iridoy Zulet et al., 2017; Abdi 
et al., 2018). According to epigenetic theory, the genome and the 
environment can work together to influence regulatory mechanisms that 
control gene expression by modifying epigenetic DNA marks that can 
persist for a lifetime (Weinhold, 2006; Kanherkar et al., 2014). 
Furthermore, the stochastic accumulation of epigenetic changes is 
linked to aging (Huidobro et al., 2013) as well as sporadic neurological 
disorders (Wang et al., 2008), for which aging is currently recognized as 
a significant risk factor (Nussbaum and Ellis, 2003). Human cells un-
dergo epigenetic changes throughout their lives, as previously stated. In 
identical twins with the same hereditary load, diverse epigenetic pat-
terns are accumulated depending on the environmental factors they are 
exposed to, for example, diet, tobacco, or exercise. This causes 
discernible differences in the phenotypes of both twins, indicating 
different susceptibilities to disease or disease outcomes (Fraga et al., 
2005). DNA methylation, histone modification, and noncoding RNA 
action are all critical epigenetic mechanisms (Fig. 1). DNA methylation 
is the most studied epigenetic mark, and its relationship to disease 
development has been extensively researched (Iridoy Zulet et al., 2017). 
The DNA methylation process is a reversible mechanism wherein methyl 
groups (–CH3) are delivered to cytosines positioned in CpG 
(5′-Cytosine-phosphate-guanosine-3′) nucleotides turning these cyto-
sines into 5-methylcytosines (5mC) (Martínez-Iglesias et al., 2020; Ali-
pour et al., 2020). DNA methylation is catalyzed by specific enzymes 
known as de novo DNA methyltransferases (DNMTs), and it occurs at the 
expense of ATP and S-adenosylmethionine as methyl donors (Moore 
et al., 2013). 

DNA methylation is an essential part of the epigenetic system, which 
organizes changes in numerous genes and helps control the expression of 
genes in all vertebrates (Altuna et al., 2019a). Most cytosine methylation 
occurs in cytosine phosphate guanine (CpG) islands, which are found in 
both eukaryotes and prokaryotes. Currently, five states of the cytosine 
base are known: 5-carboxylcytosine (5cC), 5-formylcytosine (5fC), 
5-Hydroxymethylcytosine (5hmC), 5-methylcytosine (5mC), and un-
modified cytosine (C). After the unaltered form, the most prevalent state 
of cytosine in the brains is 5mC, which is mainly found in the CpG di-
nucleotides. CpG islands are found in more than 60% of mammalian 
gene promoters (Prasad and Jho, 2019). 5mC was assumed to be related 

Fig. 1. Schematic diagram of Epigenetics Modification.  
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to the suppression of gene expression, while 5hmC, which causes DNA 
demethylation, was associated with enhanced gene expression. As more 
study is done, the role of methylation in gene expression depends on the 
CpG region in the genome. Most of the time, methylation at the gene’s 
promoter is negatively associated with gene expression (Ogino et al., 
2009; Aziz et al., 2020). 

DNMTs are tissue- and cell-specifically expressed during neural 
development as well as in active neurogenesis (Feng et al., 2007) and 
adult stem cell niches (Kang, 2011), where they have been implicated in 
neural plasticity and survival (Ooi et al., 2007). Once methylation is 
established, proteins from the methyl-CpG-binding domain (MBD) 
family are recruited in methylated loci to stimulate the recruitment of 
histone modulatory variables (Jones and Takai, 2001; Klose and Bird, 
2004), indicating a synergistic modulation of numerous epigenetic 
marks (Mehler, 2008). 

The MBD proteins are also recruited in brain development functions 
in adults (Chahrour et al., 2008). The most common consequence of 
DNA methylation is the silencing of genes and noncoding genomic re-
gions, mainly when gene promoters are influenced (Chahrour et al., 
2008; Yasui et al., 2007). 

This epigenetic process is widespread in brain cells. The results of 
previous studies indicated that 5hmC is distinctly different from 5mC in 
its chromatin dependence during neural stem cell (NSC) development. 
5-hydroxymethylcytosine (5hmC) has been proposed that it is both an 
intermediate state in the demethylation process and a significant 
epigenetic impact on neurological disorders (Chen et al., 2014; Cheng 
et al., 2015). But in general, the process of DNA demethylation and the 
enzymes that catalyze this reaction, although DNA demethylases such as 
cytidine deaminase caused by activation, are only partially understood 
after the past decade (Bhutani et al., 2010) or the DNA demethylating 
activity of TET1 (a member of TETs) (Tahiliani et al., 2009) have been 
identified. 

Evidence demonstrates the critical role of DNA methylation in 
common diseases. Researchers have attempted to use DNA methylation 
as a biomarker to distinguish epigenetic changes related to disease sta-
tus, including neurological disorders (Jin and Liu, 2018). In neurons and 
the nervous system, the overall balance between DNA methylation, 
demethylation and hydroxymethylation creates different neural pat-
terns in processes such as learning or memory, and their dysregulation 
may be associated with neurological disorders (Wang et al., 2008). 

2.1. DNA methylation in neurological disorders 

Epigenetic modifications form long-lasting cellular memories in the 
brain, which are used to translate the mechanisms and responses to 
environmental stimuli (Akyürek et al., 2021; Kim and Kaang, 2017). 
Microglia, a type of immune cells, populate the central nervous system 
(CNS) during early fetal development and can self-renew locally. They 
remain in the CNS microenvironment throughout life, accounting for 
10–15% of all CNS cells (Li and Barres, 2018). There are generally 
accepted classifications of these cells in the brain in response to infection 
or tissue injury, pro-inflammatory phenotype (M1-phenotype), and in 
response to neurodegenerative diseases, the anti-inflammatory pheno-
type (M2-phenotype) (Nimmerjahn et al., 2005; Xu et al., 2015). 
Neuron-microglia crosstalk in the CNS affects homeostasis and neuronal 
function in the healthy brain, so the differentiation of specific pheno-
types and activation states of these phenotypes play an essential role in 
CNS health and disease (Esteller, 2008; Petralla et al., 2021). As a result 
of neuronal stimulation, several transcription factors cause epigenetic 
revolutions in microglia, followed by chromatin remodeling and the 
formation of a distinct microglial phenotype, which may have implica-
tions for neuronal activity, maturation, and synaptic networks. Inflam-
matory status and tissue-specific Transcription Factors such as PU.1, 
CEBP, IRF8, SMAD2/3, and SALL1 (Holtman et al., 2017) are examples 
that promote the expression of IL-6 and tumor necrosis factor (TNF), 
NF-κB, NF-AT, and STAT1/3 and cause the histone H3 

K4monomethylated (H3K4me1) and histone H3 K9lysine acetylation 
(H3K9ac). So this procedure is responsible for gene expression en-
hancers and chromatin being modified (Holtman et al., 2017; Ver-
emeyko et al., 2019). 

Abnormal DNA methylation patterns are associated with a wide 
range of human neurological diseases, including several neuropsychi-
atric illnesses (schizophrenia, depression, ADHD), neurodevelopmental 
disorder (Rett syndrome), neurodegenerative disease (Alzheimer’s dis-
ease), and cognitive impairment (Qureshi and Mehler, 2013; Weng 
et al., 2013). 

Recent research has revealed a link between DNA methyltransferases 
and pain processing. Following a peripheral nerve injury, the level of 
DNA methyltransferases, DNMT3a and DNMT1, increased in the dorsal 
root ganglia (DRG). By stimulating DRG, these enzymes can promote the 
gene Kcna2, which influences the voltage-gated potassium channel, 
resulting in spinal cord sensitization and neuropathic pain symptoms 
(Sun et al., 2019; Zhao et al., 2017). A decrease in DNA methyl-
transferases has been detected in various CNS disorders, affecting the 
BDNF DNA methylation status in the hippocampus, which modulates 
learning and memory (Guo et al., 2011; Nguyen et al., 2007). 
Post-mitotic neurons and glial cells make up a large portion of the 
brain’s cells, both of which have a limited ability to divide. Mature 
neurons have DNMT1 and DNMT3A expressions. In both development 
and disease, DNMT3B is required for the dynamic programming of 
epigenetic regulation (Gao et al., 2020; Ng et al., 1999). 

Mutations in DNMT1 have been identified in hereditary sensory and 
autonomic neuropathy type 1 (HSAN1) syndrome, with other neurop-
athies and autosomal dominant cerebellar ataxia, deafness, and narco-
lepsy (ADCA-DN) (Sun et al., 2014; Kernohan et al., 2016). DNMT1 
activity is critical for maintaining DNA methylation, chromatin stability, 
and gene regulation. Thus, the mutation of DNMT1 impairs DNA 
methyltransferase activity and decreases heterochromatin binding in the 
G2 cell cycle stage, resulting in extensive hypomethylation and local 
hypermethylation (Jin and Robertson, 2013). This may explain its 
complex pathogenesis in the nervous system. In addition, the decline in 
the DNMT3a2 expression in the hippocampus has been associated with 
intellectual and cognitive disorders indicating the essential role of 
DNMT3a2 in memory formation and mental function (Klein et al., 
2011). The results of one study determined that the process of amyo-
trophic lateral sclerosis- mesenchymal stromal cells (ALS-MSCs) can be 
modulated by inhibiting overexpressed DNMTs. This approach may 
provide better efficacy in stem cell therapy (Oh et al., 2016). Another 
study also showed that methyltransferase levels increased in the 
demyelinated hippocampus of multiple sclerosis patients, while deme-
thylation enzymes decreased (Chomyk et al., 2017). 

DNA methylation can be recognized by a variety of methyl-CpG- 
binding domain (MBD) proteins “epigenome readers” such as methyl- 
CpG binding protein 2 (MECP2) and methyl-CpG-binding domain pro-
teins 1–4 (MBD1–4). MECP2 is an X-linked gene that codes for a nuclear 
protein that binds to methylated DNA and acts as a broad suppressor 
interacting with histone-modifying complexes (Goffin et al., 2011). 
Mutations in the MECP2 gene and subsequently irregular expression of 
MECP2 are the leading cause of the Rett syndrome, a neurological 
X-linked disorder mainly affecting females. MECP2 mutations have also 
been associated with a wide range of other neurodevelopmental dis-
eases, including X-linked mental retardation, and autism, representing 
that mutation in MECP2 has extensive consequences and leads to various 
neurodevelopmental disorders (Bostick et al., 2007; Amir et al., 1999; 
Gonzales and LaSalle, 2010). 

Abnormal DNA methylation patterns have also been reported in 
several neurodegenerative disorders. Alzheimer’s disease (AD) is a 
common neurodegenerative illness marked by progressive dementia 
that may be due to abnormal DNA methylation. In some AD brain 
research, elevated levels of S-adenosylhomocysteine have been detec-
ted, which inhibits DNMT s activity (Kennedy et al., 2004). Further-
more, DNA hypomethylation has been identified, in promoter CpGs of 
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AD-related genes such as presenilin 1(PS1), APP, and β-site 
APP-cleaving enzyme1 (BACE1), resulting in abnormal upregulation of 
these genes, leading to accumulation of Aβ (Kennedy et al., 2004). 
Moreover, hypermethylation is also observed at a specific position in the 
promoter of specific genes, such as methylenetetrahydrofolate and 
apolipoprotein E reductase, in the brain of AD patients. As a result, it can 
be said that the change of methylation level is one of the causes of 
Alzheimer’s disease related to genes (Wang et al., 2008). 

Previous studies also demonstrate abnormal DNA methylation in 
various psychiatric diseases (Grayson and Guidotti, 2013). Postmortem 
methylome profiling of brains from patients with schizophrenia has 
demonstrated intense alterations in the DNA methylation profile, 
including genes that are related to pathogenesis (Mill et al., 2008). 
Predominantly, hypermethylation of glutamic acid decarboxylase 67 
(GAD67) and RELN promoter regions was linked to decreased expression 
of these genes in schizophrenia patients (Guidotti et al., 2000). Table 1. 

2.2. DNA methylation and depression 

Depression is one of the most common psychiatric disorders in the 
world (Reszka et al., 2021). Depressive symptoms in adolescence have 
long-term consequences for brain development and can cause severe 
social and educational problems. Furthermore, depression is linked to 
cerebrovascular diseases such as stroke (Guo et al., 2021; Xiang et al., 
2021). Major depressive disorder (MDD) is a complex, debilitating 
psychiatric condition with a high prevalence of 3.63%. Symptoms 
include anxiety, sadness, hopelessness, and emptiness, feelings of guilt 
or loss and worthlessness, irritability or frustration, loss of interest or 
pleasure in most routine activities, sleep disturbances, reduced or 
increased appetite, low energy, difficulty thinking and concentrating, 

impaired cognition, physical pity, and physical pity. Genetic and envi-
ronmental risk factors influence depression (Li et al., 2021; Sales et al., 
2021; Borçoi et al., 2021). Epidemiologic studies show that genetic 
factors increase the risk of depression. On the other hand, studies have 
shown a strong relationship between specific genes and environmental 
factors in the development of depressive disorder (Sun et al., 2021). 
Evidence suggests that the onset of depression is increased by around 
60% by exposure to stressful events (Sales et al., 2021). Exposure to 
stress can modify DNA methylation patterns and affects brain plasticity 
and emotion (Reszka et al., 2021). One of the main neurobiological 
mechanisms of depression is dysregulated and dysfunctional stress 
response system (such as hypothalamic-pituitary-adrenal (HPA) axis 
activity and glucocorticoid receptor (GR) sensitivity) to show the 
adaptive change (Guo et al., 2021). Moreover, prenatal depressive 
symptoms might influence fetal epigenetic programming (Kallak et al., 
2021). Prenatal depression is associated with differential methylation in 
GNAS, CTNNA2, OSBPL10, and 5-HTTLPR (Sales et al., 2021; Drzymalla 
et al., 2021). Mothers with persistent perinatal depression have hyper-
methylation of OXTR in the saliva. However, this is the only marker 
associated with perinatal depression in mothers, but no causal effect has 
been proven (Sales et al., 2021). Maternal depression leads to increased 
neonatal DNA methylation in the glucocorticoid receptor gene (NR3C1) 
and BDNF IV promoter (Braithwaite et al., 2015). Preclinical studies 
have reported stress-induced hypermethylation and reduced gene 
expression, indicating that exposure to stress conditions in early life 
leads to persistent epigenetic changes and influences neural and 
behavioral patterns in adulthood (Sales et al., 2021; Drzymalla et al., 
2021). Studies show that epigenetic processes such as DNA methylation 
are heritable. This could explain the heritability of depression (Juruena 
et al., 2021). Exposure to stress results in the modification of DNA 

Table 1 
The relationship between neurological diseases with genes involved and their methylation.  

Neurologic disorders Methylation status Specific genetic loci Probable effect symptoms 

Rett syndrome Unknown MECP2 gene Loss of the activity of the MECP2 
gene Reduced BDNF (Na and 
Monteggia, 2011) 

Seizures, cerebral palsy, Repetitive, 
stereotyped hand movements 

Alzheimer’s disease Hypomethylation 
Hypermethylation 

PS1, BACE1, APP 
Neprilysin (NEP) 

Upregulation of PS1, BACE1, APP 
Aβ accumulation (Qazi et al., 2018) 

Progressive dementia 

Stroke Hypermethylation Global methylation 
(Krupinski et al., 
2018)  

Sudden onset focal dysfunction 

Multiple sclerosis Hypomethylation PAD2 PAD2 
Upregulation (Calabrese et al., 
2012) 

several neurologic symptoms: muscular 
weakness, visual symptoms, tremors, 
intestinal and urinary disorders, cognitive 
abnormalities 

Epilepsy Hypermethylation reelin Decreased reelin expression ( 
Henshall and Kobow, 2015) 

seizure 

Parkinson’s disease Hypomethylation SNCA intron1 Increased expression of SNCA ( 
Jowaed et al., 2010) 

Rigidity, tremors, shaking, difficulty in 
walking 

Immunodeficiency, Centromeric 
Instability, and Facial Anomalies 
Syndrome Type1 (ICF1) syndrome 

Hypomorphic 
mutation of DNMT3B 

DNMT3B Reduced the activity of DNMT3B ( 
De Greef et al., 2011) 

Mental retardation syndrome 

ICF2 Hypomethylation ZBTB24 hypomethylation of minor satellite 
DNA and Centromeric instability ( 
Hardikar et al., 2020) 

Mental retardation syndrome 

ADCA-DN Hypomethylation DNMT1 reduced DNMT1 activity (Kernohan 
et al., 2016) 

Autosomal dominant abnormality with 
Cerebellar ataxia 

Amyotrophic lateral sclerosis (ALS) Hypomethylation VEGF, SOD1 No transcriptional silencing (Lu 
et al., 2013b) 

Weakness and atrophy of the muscles 

schizophrenia Hypermethylation GAD67 
RELN 

Decreased expression of GAD67and 
RELN (Grayson and Guidotti, 2013) 

Hallucinations, Disorganized thinking 

Fragile X syndrome Hypermethylation FMR1 FMR1 inactivation (Kumari et al., 
2020) 

Intellectual disability 

HSAN1 Hypomethylation DNMT1 Reduced DNMT1 activity (Sun 
et al., 2014) 

Multiple neuropathies 

MECP2: methyl CpG binding protein 2, BDNF: brain-derived neurotrophic factor, PS1: presenilin 1, BACE1: beta-secretase 1, APP: amyloid precursor protein, NEP: 
neprilysin or neutral endopeptidase, PAD2: peptidyl arginine deiminase, SNCA: Alpha-synuclein, DNMT: DNA methyltransferase, ZBTB24: zinc finger and BTB 
domain-containing protein 24, VEGF: vascular endothelial growth factor, SOD1: superoxide dismutase type 1, GAD67: glutamate decarboxylase-67, FMR: fragile X 
mental retardation, Immunodeficiency, Centromeric Instability, and Facial Anomalies Syndrome Type1; ICF1, Immunodeficiency, Centromeric Instability, and Facial 
Anomalies Syndrome Type 2; ICF2, Amyotrophic lateral sclerosis; ALS. Amyotrophic lateral sclerosis; ALS. 
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methylation in several genes associated with depression, including the 
glucocorticoid receptor (NR3C1 or GR), mineralocorticoid receptor 
(NR3C2 or MR), corticotrophin-releasing hormone receptor 1 (CRHR1), 
serotonin transporter (SLC6A4 or 5-HTT), brain-derived neurotrophic 
factor (BDNF), and FK506-binding protein 5 (FKBP5) (Borçoi et al., 
2021; Drzymalla et al., 2021; Ding and Dai, 2019). Different studies 
have reported the significant relationship between alteration in DNA 
methylation of FKBP5 with depressive symptoms (Guo et al., 2021; Han 
et al., 2017; Höhne et al., 2015). These alterations in gene expression 
may lead to significant modifications in neural and behavioral functions 
(Sales et al., 2021). Homer1a expression in the hippocampus and 
cingulate gyrus of patients with major psychiatric disorders including 
major depression (Leber et al., 2017). Also, Stratum lacunosum glial 
cells displayed reduced Homer1a expression in bipolar disorder when 
compared to major depression (Leber et al., 2017). Deletion of synaptic 
plasticity protein Homer1a results in depression-like behavior and 
various antidepressant treatments induce its expression (Sun et al., 
2021). Gestational stress increases the expression of DNMTs and DNA 
methylation of BDNF, thereby inducing depressive-like and anxiety-like 
phenotypes by downregulation of BDNF expression in the hippocampus 
of the offspring (Zheng et al., 2016). 

Also, maternal neglecting or separation stress resulted in hyper-
methylation of DNA in the hippocampus and the protein phosphatase 
one catalytic subunit (PP1C) and adenosine A2a receptor (A2AR) pro-
moter in the nucleus accumbens. Upregulation of A2AR is associated 
with synaptic dysfunction in depression (Carvalho et al., 2019). On the 
contrary, some studies indicate an association between DNA hypo-
methylation and stress. For instance, maternal separation stress 
increased DNA methylation in NR3C1 and Syn I genes, followed by 
increased NR3C1 mRNA in the hypothalamus, Syn I mRNA, and protein 
levels in the amygdala, and decreased in the nucleus accumbens 
(Holmes et al., 2019). Thus, it can be concluded that the alteration 
followed by DNA methylation depends on various factors, including the 
type of stressor, age, sex, brain structure, gene, and region (Sales et al., 
2021; Drzymalla et al., 2021). Epigenetic modifications of 5-mC and 
5-hmC are abundantly found in the brain and are directly associated 
with depression (Reszka et al., 2021). Transposable elements of Alu and 
LINE-1, and 5-mC and 5-hmC, have been considered potential bio-
markers in mental disorders such as MDD. Interestingly, 5-mC is asso-
ciated with the downregulation of genes, while 5-hmC is correlated with 
demethylation and increased transcription (Misiak et al., 2019). 

Studies showed a low level of 5-hmC in patients with MDD and a high 
level of 5-mC in BD type I patients. While in another study on patients 
with BD and MDD, there was a reduced level of 5-mC and a significant 
reduction of 5-mC and 5-hmC in major depression (Reszka et al., 2021). 
In a study by Liu et al., hypomethylation of LINE-1 was observed in the 
blood of MDD patients (Liu et al., 2016). The mechanism of action of 
some drugs used as mood stabilizers and antidepressants is based on 
modifying DNA methylation at specific CpG sites (Goud Alladi et al., 
2018). 

A review study showed a significant association between DNA 
methylation and depression risk. Hypermethylation of BDNF, CRMP2, 
NR3C1, and SLC6A4 is associated with Depression and MDD (Xiang 
et al., 2021; Li et al., 2021; Borçoi et al., 2021; Li et al., 2019; Schiele 
et al., 2021; Sanwald et al., 2021; de Assis Pinheiro et al., 2021). Several 
studies have investigated DNA methylation of some critical genes 
modulating depressive symptoms, including PTPRN2 (correlated with 
mood state disturbances), HES5 (associated with MDD and suicide), 
GATA2 (related to depressive behavior in rats), DGKA (differed signifi-
cantly between MDDs and controls), NIPA2 (increased risk of MDD), 
PRDM7 (important in aging and Alzheimer), KCNIP1 (regulate neuronal 
membrane excitability), GRIK2 (related to mood disorders and depres-
sive symptoms) (Wang et al., 2021). Moreover, HELZ2 and ZNF624 gene 
expressions differed differentially between MDDs and health controls 
(Wang et al., 2021). Most patients resist treatment with conventional 
anti-depressant drugs; according to the results, epigenetic markers can 

be used in drug responses for psychiatric disorders (Zhou et al., 2021). 
Characterizing specific DNA methylation patterns identifies novel bio-
markers for subtyping psychiatric disorders and the decision of optimal 
drug choice (Yamagata et al., 2021). For instance, DNA methylation of 
FKBP5 is a potential marker for the treatment response to 
mindfulness-based stress reduction in post-traumatic stress disorder 
(Bishop et al., 2018). Some drugs, such as Clozapine and Sulpiride, 
activate DNA demethylation in brain tissue. Zhou et al.,2021 found that 
antidepressant drugs increased DNA methylation in BDNF promoters in 
patients with MDD and BD (Zhou et al., 2021). 

DNA methylation of multiple immune-related loci in patients with 
depression shows the association between inflammation and depression 
(Crawford et al., 2018). The study by Sun and colleagues conducted the 
correlation between promoter methylation of Homer1a and 
depression-like behaviors. Some antidepressant drugs act through the 
induction of Homer1a. Moreover, DNA methylation of CpG sites around 
the binding sites for CRE in Homer1 promoter results in major depres-
sive disorder (Sun et al., 2021). 

2.3. DNA methylation and ADHD 

ADHD is a heterogeneous disorder with a complex and multifactorial 
background. Numerous genetic and environmental factors and their 
interactions play a critical role in the pathophysiology of this disease 
(Barkley, 1998). Recently, genetic risk factors for ADHD have been 
identified, which include genes involved in neurotransmitter transport, 
neurodevelopment, growth processes, cell adhesion, and ion transport 
(Demontis et al., 2019; Rovira et al., 2020). In addition to genetic risk 
factors, the onset and persistence of ADHD are also associated with 
environmental factors (Jin and Liu, 2018), such as low birth weight 
(Faraone et al., 2005; Karimi-Nazarabad et al., 2015), maternal stress 
during pregnancy (Humphreys et al., 2019; Palladino et al., 2019), and 
toxin exposure (Williams and Ross, 2007; Murgatroyd et al., 2009). 

Notably, the environment can interact with the genome through 
epigenetic changes, such as DNA methylation (Murgatroyd et al., 2009; 
Plazas-Mayorca and Vrana, 2011), which is highly sensitive in early life 
(Bauer et al., 2016). The role of altered DNA methylation in ADHD has 
been evaluated primarily through candidate gene studies (Hamza et al., 
2019). In addition, the first extensive epigenome communication studies 
(EWAS) to diagnose ADHD and population symptoms have been per-
formed primarily on relatively small groups of children (Mooney et al., 
2020) and adolescents (Meijer et al., 2020). 

Epigenetic studies focusing on adult ADHD are rare. Quantitative 
studies have targeted candidate genes for ADHD, such as norepinephrine 
transporters (Sigurdardottir et al., 2021), dopamine transporters (Keitel 
et al., 2018), and serotonin receptors (Perroud et al., 2016). A single 
EWAS has been performed for ADHD symptoms in the general adult 
population (Toikumo et al., 2019) and ADHD status (Rovira et al., 
2020). Chang et al.’s study of twins showed that the genetic contribution 
to ADHD varies from childhood to adulthood (Chang et al., 2013), and 
Meijer et al. Showed that epigenetic differences could distinguish be-
tween persistent ADHD and transient ADHD (Meijer et al., 2020). Meijer 
and colleagues performed targeted bisulfite sequencing for 37 candidate 
genes to investigate differential DNA methylation between adults with 
ADHD and healthy individuals. They found that, unlike EWAS, this 
approach provides information on the methylation level of all CpG sites 
in target areas (Weiß et al., 2021). More studies are needed to under-
stand better whether people are prone to hyperactivity without a genetic 
background and simply by the DNA methylation status of neurons. 

The results of the studies showed that the further analysis of DNA 
methylation in ADHD can help identify the biomarkers of the disease 
and potentially the mechanisms of the disease, with the results of some 
studies pointing to the relationship between the methylation level of 
promoter of GART and SON, SLC7A8, MARK2, ERC2 and CREB5 genes 
(Mooney et al., 2020; Neumann et al., 2020) and DRD4 and 5-HTT re-
gions (van Mil et al., 2014) and the disease. Eventually multi-positional 
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algorithms will be essential for discovery of clinically valuable 
biomarkers. 

2.4. DNA methylation and Alzheimer’s disease 

AD is the leading cause of dementia and also one of the most pressing 
public health issues in our life. By 2050, it is anticipated to have reached 
a global prevalence of over 91 million AD cases. Although the patho-
genesis of AD is yet unknown, the most commonly recognized theory is 
the amyloid pathway, in which the accumulation of tangles and plaques 
is claimed to play a crucial role in the disease’s course and development 
(Ozaki and Niida, 2019). 

However, other characteristics, including phospholipid metabolism, 
cholesterol, and abnormal calcium, frequently appear before the accu-
mulation of tangles and plaques appear early in disorder. The analysis of 
genome set and disorder cascade analysis obtained from the findings of 
“epigenome-wide association studies (EWAS)” proposed biological 
functions involving the amyloid-β protein precursor (APP) degradation, 
tau adhesion molecules, lipid-related mechanisms, and brain immune 
functions in the pathogenesis of Alzheimer’s disorder (Wei et al., 2020). 
Moreover, AD is seen as a multifaceted illness that results from the 
combination of genetic and environmental variables, which are influ-
enced by epigenetic processes (Altuna et al., 2019b). 

There is increasing evidence that epigenetic variation plays a sig-
nificant role in the development of Alzheimer’s disease, although gene 
mutations account for just 5% of all cases. Furthermore, recent meth-
odological developments can employ EWAS in complex disorders phe-
notypes, such as AD. Epigenetics reversibly regulates gene expression 
and may be inherited through cell division (Prasad and Jho, 2019). DNA 
methylation is a vital epigenetic pattern that manages changes in spe-
cific genes and helps regulate gene expression in vertebrates, which is 
the best-studied example of epigenetics modifications in AD (Wei et al., 
2020). 

The link between AD and DNA methylation has been studied 
extensively. In the peripheral blood and brain, distinct methylations of 
genes were discovered in control groups and AD patients. The APP gene 
was the only one that was consistently hypermethylated in both the 
blood and the brain, suggesting that it might be the most effective 
diagnostic biomarker of blood for AD. Furthermore, there was an in-
crease in the APP gene expression in AD patients (Wei et al., 2020; Iwata 
et al., 2014). In addition, Coppieters et al (Coppieters et al., 2014). found 
a positive correlation between global levels of 5mC and amyloid-beta in 
the brain of patients with AD. 

An in vitro investigation has shown that APP hypermethylation is 
related to higher expression in AD brains. Although other studies re-
ported no change in relative hypomethylation in various areas of the 
APP gene in individuals with AD, the methylation-detecting techniques 
utilized in this research were not sufficiently sensitive, affecting the 
credibility of the findings. This finding will need further investigation to 
be confirmed (Wei et al., 2020). 

Altuna et al (Altuna et al., 2019b). proposed that altered methylation 
of DNA in the AD hippocampus happens at particular regulating areas 
that can be critical for neuronal differentiation, supporting the idea that 
adult hippocampus neurogenesis may have a role in the development of 
AD. 

Several genes have been discovered to be differentially methylated in 
AD brain autopsy samples using “Illumina Infinium Human Methyl-
ation450K arrays”, including those genes previously identified as car-
rying genetic variations for AD, such as BIN1 (amphiphysin II) or ANK1 
(ankyrin-1) (Altuna et al., 2019b; Lunnon et al., 2014). 

Interestingly, some of these DNA methylation patterns are available 
in the early AD stages, indicating that such modifications may play a role 
in the disease’s development. Overall, these studies add to our knowl-
edge of the pathophysiology of AD (Altuna et al., 2019b). 

2.5. DNA methylation and Rett syndrome 

Rett syndrome (RTT) is a common mental disability that occurs once 
per 10,000–22,000 girls. It is marked by a stage of average growth and 
development until approximately one year, followed by a fast regression 
that includes stereotypic hand wringing, irregular breathing, ataxia, 
autism, slowed head growth or microcephaly, lack of acquired motor 
and verbal abilities, seizures. Despite these symptoms, patients live until 
maturity (Kriaucionis and Bird, 2003). 

According to a recent study, mutations of MeCP2 cause RTT syn-
drome (MIM 312750), a juvenile neurological illness that is amongst the 
most prevalent due to mental impairment in women. Extensive RTT 
patient screening indicated that 80% of patients with RTT syndrome are 
related to detectable mutations in MeCP2 gene, including insertions, 
deletions, nonsense, and missense (Goffin et al., 2011; Kriaucionis and 
Bird, 2003). Moreover, MeCP2 is overexpressed in the postnatal brain, 
suggesting that methylation-dependent gene regulation can play an 
essential role in the development of the mammalian central nervous 
system (Chen et al., 2001). Furthermore, several genes become silenced 
when the promoters of these genes are methylated. Hence, using tran-
sient transfection research, scientists assumed that MeCP2 gene was a 
transcriptional suppressor and could suppress the transcription in both 
cells and in-vitro (Esteller, 2008; Petralla et al., 2021). To investigate 
MeCP2’s suppression properties, scientists monitored reporter gene 
expression with a fusion of the GAL4 DNA- binding domain to the 
various parts of MeCP2 gene (Petralla et al., 2021). A domain with 100 
amino acids was observed in the middle of the protein, which is in 
charge of transcriptional suppression (TRD). 

Additionally, it revealed that the binding of MeCP2 was capable of 
suppressing the transcription (from up to 2000 bp of the transcription 
start site (TSS)) (Kriaucionis and Bird, 2003). The DNA electrophoretic 
mobility shift assay (EMSA) was utilized by W. Gabel et al (Gabel et al., 
2015). to evaluate the MeCP2 binding to different forms of methylated 
DNA. Consistent with similar studies, MeCP2 showed high affinity to 
mCG DNA and not hmCG, which proves that MeCP2 might not prefer-
entially bind to hmCG in neurons. In contrast, MeCP2 binds to mCA, 
hmCA, and mCG with high affinity compared to binding to mCC and 
mCT with low affinity (the same affinity to unmethylated DNA), 
respectively. This tight binding between MeCP2 to mCG, mCA, and 
hmCA indicates the potential role of MeCP2 in regulating long gene 
expression in the brain through binding to the referred sites. Also, a 
thin-layer chromatography, and Tet-assisted bisulfite sequencing 
(TAB-seq) analysis, showed that the methylation form of hmCA is rare in 
the brain (Gabel et al., 2015). 

The frequency of hCG and mCH in the neuronal genome and the level 
of MeCP2 protein were significantly increased over the postnatal period. 
As such, this suggests that MeCP2 could play a role in the maturation of 
neurons by binding to hmCG and/or mCH methylated DNA (Szulwach 
et al., 2011; Kriaucionis and Heintz, 2009). 

2.6. The role of DNA methylation in Therapeutic approaches to 
neurological diseases 

Epigenetically targeted drugs, in general, and DNA methylation- 
targeted drugs, in particular, may have distinct pharmacological and 
toxicological properties. DNA methylation is the best-studied epigenetic 
mechanism in eukaryotic cells. Mutations in genes can cause epigenetic 
dysfunction leading to certain neurodevelopmental disorders (Stirzaker 
and Armstrong, 2021). Some altered epigenetic patterns are directly 
associated with the presence of a mutation in an epigenetic gene 
involved in a neurodevelopmental disorder. It has been reported that 
DNA methyltransferase activity is high in neurons, and its activity may 
contribute to induced ischemic brain damage in mice (Dolen et al., 
2019). DNA-demethylating drugs are currently considered as a treat-
ment option (Nuzziello and Liguori, 2021). These drugs may be suitable 
for various neurodegenerative and neurodevelopmental diseases, such 
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as fragile X syndrome. Histone deacetylase (HDAC) inhibitors are the 
recent focus for researchers (Kumari et al., 2020). Epigenetic mecha-
nisms are a central process in determining cell fate (Sivalingam and 
Samikkannu, 2020). However, there are no new epigenetic regulators of 
development nor known mechanisms to be used for development. This is 
a rich area for additional research, especially regarding noncoding RNAs 
and their role in CNS development (Sivalingam and Samikkannu, 2020). 

All current approaches to modifying DNA methylation levels target 
the endogenous enzymatic machinery responsible for adding and 
removing mCs from DNA in some way. The use of constitutive and 
conditional gene knockout mouse models and viral-mediated RNA 
knockdown or overexpression techniques has revealed much about the 
importance of active DNA methylation during neurodevelopment and in 
the functioning adult CNS (Kaur et al., 2022). The contribution of the 
epigenome in protection against neurodegenerative diseases such as AD 
or PD have been demonstrated (Suchy et al., 2010). For example, sup-
plementation of S-Adenosyl methionine (SAM) in a transgenic mouse 
model (SOD1-G93A) of amyotrophic lateral sclerosis (ALS) delayed the 
onset of motor neuron pathology. HDACi also facilitated disease pro-
gression in ALS animal models (Suchy et al., 2010). Sodium phenyl-
butyrate significantly extended survival in G93A transgenic ALS mice 
(Ryu et al., 2005). 

Research into Huntington’s disease (HD), a neurodegenerative dis-
order caused by a trinucleotide repeat expansion in the gene (HTT) 
encoding the huntingtin protein, found that mutant huntingtin interacts 
directly with HAT proteins, resulting in altered histone acetylation 
(Jiang et al., 2006). Numerous studies have shown that treatment with 
HDACi halts progressive neuronal degeneration in both fly and mouse 
HD models. Several selective HDACi and other compounds are investi-
gated (Chopra et al., 2012; Duan, 2013). 

Researchers now know that, while DNMT3a/b are frequently 
responsible for de novo methylation and DNMT1 for its maintenance, 
these roles are not mutually exclusive, and knocking out both DNMT1 
and DNMT3a in adult forebrain neurons is required to elicit dysfunction 
in long-term plasticity and deficits in learning and memory (Mattei 
et al., 2022). A Tet1 knockout mouse model and RNA knockdown ex-
periments recently demonstrated that Tet1-mediated mC oxidation is 
required for memory and the regulation of activity-related genes in the 
dorsal hippocampus, including Fos and Arc (Zhan et al., 2022). Previous 
studies have shown that targeting the epigenome, especially with small 
drug molecules, can cross the blood-brain barrier and delays the onset 
and progression of symptoms in animal models of neurodegenerative 
disease (Fischer, 2014). As suggested in many reports, the multicentric 
and multicellular effects exerted by most drugs, the possibility of 

unexpected side effects, and the anatomic and metabolic differences 
between humans and rodents are reasons for concern (Fischer, 2014). 
This suggests that further studies are needed to clarify the most appro-
priate therapeutic approaches, including the use of selective inhibitors, 
timing, dosing regimen, a better understanding of the interplay between 
histone tail modifications and other mechanisms regulating gene 
expression, and evaluation of potential side effects (Fischer, 2014). In 
addition, the route of drug administration varied across studies, are not 
expressed in the same way in brain regions affected by AD, PD, or other 
neurodegenerative diseases. Although HDAC2 and HDAC6 may repre-
sent promising drug targets in AD, it remains unknown which drug or 
dosing regimen is most effective, and similar conclusions can be drawn 
for other neurodegenerative diseases (Harrison and Dexter, 2013). 

Indeed, while recent tools such as fluorescence-activated cell sorting 
and next-generation sequencing have greatly improved the ability to 
measure epigenetic changes with cellular and genetic precision (see 
sidebar, Measuring the Epigenome), our approaches (Fig. 2) to manip-
ulating DNA methylation are far less sophisticated. In contrast, as 
demonstrated for various DNMT proteins and Tet1, genetic processes 
such as traditional gene knockout animal lines, small hairpin RNA 
knockdown, and virally mediated gene overexpression are capable of 
exhibiting complete isoform selectivity (Sagarkar et al., 2022). 

These approaches still have limitations because they do not provide 
precise temporal control over methylation status. Furthermore, because 
they presumably affect methylation status on a genome-wide scale, 
these approaches still lack target specificity. Another limitation to our 
knowledge is that the drugs have been tested in animal models carrying 
mutations in human genes such as SOD1, which account for only about 
1–2% of human cases. In addition, histone code writers or deletion 
proteins could be potential drug development targets, but studies are 
limited. Natural compounds found in the diet, including folate, vitamins, 
polyphenols, and flavonoids, alter the availability of methyl groups and 
affect the activity of DNMTs, thus representing potential “epigenetic” 
preventive factors for neurodegeneration. 

3. Conclusion 

In this brief overview, we reviewed the emergence of a new under-
standing of epigenetic molecular mechanisms and their implications for 
CNS function and dysfunction. Studies have shown how various envi-
ronmental factors, such as stress, smoking, radiation, diets, and medi-
cations throughout life can affect epigenetics and thereby act as strong 
determinants of human health in the coming decades. Research in the 
previous two decades has discovered an emerging outline of the 

Fig. 2. Current Approaches to manipulating DNA methylation.  
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relationship between numerous epigenetic pathways and neurological 
disorders. However, changes in chromatin structure are probable to 
happen in many loci of the genome, and it is imperative to conduct 
epigenetic studies at the genome level to examine this issue in animal 
models like the Alzheimer’s model. 

Perhaps the results of this study and the studies mentioned can lead 
to advances in treatment approaches and tools needed by person- 
centered medicine in neurological disorders. Therapeutic approaches 
aimed at creating of global epigenomic maps in neurological disorders in 
histone modification patterns, DNA methylation, and RNA expression in 
primary tissues and cell types of all major lineages in the human cell 
body would be valuable. Finally, it appears that the various epigenetic 
changes do not occur separately and that DNA methylation and histone 
modification changes occur side by side and affect each other. A com-
plete understanding of these epigenetic changes and their interactions 
will lead to better treatment strategies for neurological disorders such as 
hyperactivity and mental health problems in patients with ADHD, Alz-
heimer’s disease, stress, and depression. By studying the mechanisms 
and targets of epigenetics, especially DNA methylation, drug modula-
tion and regulation of epigenetic processes, there will be many promises 
for the treatment of neurological diseases. 
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