Skip to main content
. 2022 Dec 14;13:1048582. doi: 10.3389/fpls.2022.1048582

Table 2.

Description of commonly used prompt fluorescence (JIP-test) parameters.

Fluorescence parameters Description References
F 0ABS/CS 0 initial fluorescence obtained in a dark adapted sample Strasser et al., 2004
F L F 150 fluorescence at 150 μs after illumination of a dark adapted sample Oukarroum et al., 2007
F K F 300 fluorescence at 300 μs after illumination of a dark adapted sample Strasser et al., 2004
F J F 2ms fluorescence at 2 ms after illumination of a dark adapted sample Strasser et al., 2004
F I F 30ms fluorescence at 30 ms after illumination of a dark adapted sample Strasser et al., 2004
F M F P maximum fluorescence after illumination of a dark adapted sample Strasser et al., 2004
V L = (F 150F 0)/(F M F 0) relative variable fluorescence at 150 μs after illumination of a dark adapted sample Oukarroum et al., 2007
V K = (F 300F 0)/(F M F 0) relative variable fluorescence at 300 μs after illumination of a dark adapted sample Strasser et al., 2004
V J = (F 2ms − F 0)/(F M − F 0) relative variable fluorescence at 2 ms after illumination of a dark adapted sample Strasser et al., 2004; Strasser et al., 2010
V I = (F 30ms − F 0)/(F M − F 0) relative variable fluorescence at 30 mμs after illumination of a dark adapted sample Strasser et al., 2004; Strasser et al., 2010
V K /V J efficiency of electron flow from OEC to PSII reaction centres Strasser et al., 2004; Strasser et al., 2010
M 0 = 4 (F 300− F 0)/(F M − F 0) approximated initial slope of the fluorescence transient, expressing the rate of RCs’ closure Strasser et al., 2004
φ Po TR 0/ABS = F V /F M = (F M F 0)/F M maximum quantum yield of PSII photochemistry Strasser et al., 2004
ψ o ET 0/TR 0= (F M – F 2ms )/(F M – F 0) = 1 – V J probability that a trapped exciton moves an electron into the electron transport chain beyond QA Strasser et al., 2004; Strasser et al., 2010
δ Ro RE 0/ET 0= (F M – F 30ms )/(F M – F 2ms ) probability that an electron from the intersystem electron carriers is transferred to reduce end electron acceptors at the PSI acceptor side Strasser et al., 2010
ψ REo ΔV IP ψ Eo × δ Ro total efficiency of electron transport from PSII to PSI Strasser et al., 2010; Bussotti et al., 2020
RC/ABS = γ RC /(1 – γ RC ) = φ Po (V J /M 0) QA reducing RCs per PSII antenna chlorophyll Strasser et al., 2004
RC/CS 0 φ Po (V J /M 0) (ABS/CS 0) density of active RCs (QA reducing RCs) per cross section at point 0 Strasser et al., 2004
PI ABS RC/ABS × φ Po /(1 – φ Po ) × ψ Eo /(1 – ψ Eo ) performance index (potential) for energy conservation from photons absorbed by PSII to the reduction of intersystem electron acceptors Strasser et al., 2004
PI total RC/ABS × φ Po /(1 – φ Po ) × ψ Eo /(1 – ψ Eo ) × δ Ro /(1 – δ Ro ) performance index (potential) for energy conservation from photons absorbed by PSII to the reduction of PSI end electron acceptors Strasser et al., 2010