Table 5.
Models |
12 one-hot features |
7 one-hot features |
||||||||
---|---|---|---|---|---|---|---|---|---|---|
Accuracy | Precision | Recall | Specificity | F1 score | Accuracy | Precision | Recall | Specificity | F1-score | |
DT | 0.761 | 0.83 | 0.72 | 0.81 | 0.77 | 0.775 | 0.82 | 0.78 | 0.77 | 0.79 |
RF | 0.873 | 0.94 | 0.82 | 0.94 | 0.88 | 0.873∗ | 0.9 | 0.88 | 0.87 | 0.89 |
KNN | 0.929∗ | 0.95∗ | 0.93∗ | 0.94∗ | 0.94∗ | 0.929 | 0.97 | 0.9 | 0.97∗ | 0.94 |
Naïve Bayesian | 0.915 | 0.95 | 0.9 | 0.94 | 0.92 | 0.915 | 0.97 | 0.88 | 0.97∗ | 0.92 |
SVM | 0.929∗ | 0.95∗ | 0.93∗ | 0.94∗ | 0.94∗ | 0.944∗ | 0.95∗ | 0.95∗ | 0.94 | 0.95∗ |
ANN | 0.915 | 0.95 | 0.9 | 0.94 | 0.92 | 0.901 | 0.95 | 0.88 | 0.94 | 0.91 |
Average | 0.887 | 0.93 | 0.87 | 0.92 | 0.90 | 0.890 | 0.93 | 0.88 | 0.91 | 0.90 |
ANN = artificial neural network; DT = decision tree; KNN = k-nearest neighbor; RF = random forest; SVM = support vector machine.
Indicates the highest accuracy value for each measurement.