Skip to main content
. 2022 Nov 2;3(6):276–288. doi: 10.1016/j.cvdhj.2022.10.005

Table 5.

Comparison of learning algorithms on reduced one-hot encoded features

Models
12 one-hot features
7 one-hot features
Accuracy Precision Recall Specificity F1 score Accuracy Precision Recall Specificity F1-score
DT 0.761 0.83 0.72 0.81 0.77 0.775 0.82 0.78 0.77 0.79
RF 0.873 0.94 0.82 0.94 0.88 0.873 0.9 0.88 0.87 0.89
KNN 0.929 0.95 0.93 0.94 0.94 0.929 0.97 0.9 0.97 0.94
Naïve Bayesian 0.915 0.95 0.9 0.94 0.92 0.915 0.97 0.88 0.97 0.92
SVM 0.929 0.95 0.93 0.94 0.94 0.944 0.95 0.95 0.94 0.95
ANN 0.915 0.95 0.9 0.94 0.92 0.901 0.95 0.88 0.94 0.91
Average 0.887 0.93 0.87 0.92 0.90 0.890 0.93 0.88 0.91 0.90

ANN = artificial neural network; DT = decision tree; KNN = k-nearest neighbor; RF = random forest; SVM = support vector machine.

Indicates the highest accuracy value for each measurement.