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ABSTRACT: Synthetic analogues of the DNA-alkylating cytotoxins of the duocarmycin class
have been extensively investigated in the past 40 years, driven by their high potency, their
unusual mechanism of bioactivity, and the beautiful modularity of their structure−activity
relationship (SAR). This Perspective analyzes how the molecular designs of synthetic
duocarmycins have evolved: from (1) early SAR studies, through to modern applications for
directed cancer therapy as (2) prodrugs and (3) antibody−drug conjugates in late-stage clinical
development. Analyzing 583 primary research articles and patents from 1978 to 2022, we distill
out a searchable A0-format “Minard map” poster of ca. 200 key structure/function-tuning steps
tracing chemical developments across these three key areas. This structure-based overview
showcases the ingenious approaches to tune and target bioactivity, that continue to drive
development of the elegant and powerful duocarmycin platform.
KEYWORDS: duocarmycin, cancer prodrug, CC-1065, antibody-drug-conjugates (ADC), CBI therapeutics, structural evolution

1. INTRODUCTION

The natural products CC-1065 and duocarmycin SA are
irreversible DNA alkylators that react after docking in the
minor groove. Since their isolation from Streptomyces from
1978 onward,1,2 their picomolar cytotoxic potency has
attracted continuous attention. Several total syntheses have
been reported,3−5 and biochemical research has shown how

their site-selectivity of DNA alkylation depends on structural
features and stereochemistry.6,7 Clinical drug8 and prodrug9

candidates for cancer treatment quickly advanced to phase I
and II clinical trials.10−13 Even after initial trials were
discontinued due to narrow therapeutic index or strong side
effects, an entire “duocarmycin family” of synthetic analogues
with a broad range of aims and applications have been pursued.
This minireview aims to distill this diversity of duocarmycin
development into a rapidly grasped, yet comprehensive,
format.
Medicinal chemistry around duocarmycins has focused on

three key areas (Figure 1). (1) SAR studies have explored the
relationship of pharmacophore structure to DNA alkylation,
and simplified synthetic analogues such as the cyclopropa-
benz[e]indoles (CBIs)14 have been developed, to retain the
parent functionality but with greater chemical tractability.15

(2) Prodrugs aiming to direct activity better toward target
cancer cells have explored activatable alkylation motifs and
bifunctional conjugates.16 (3) Antibody-drug conjugates
(ADCs) have also been developed for improved targeting,
and in this incarnation the first duocarmycin derivative was
recently FDA-approved.17

In this Perspective we present a focused digest of the
chemistry in these areas, collating most of the prolific research
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Figure 1. (a) 583 duocarmycin research reports were classified by a
nine-point scheme, then structurally analyzed. (b) The A0-sized
Poster S1 “Minard map” summarizes the structural evolution of >200
duocarmycin-derived agents from SAR to prodrugs and ADC.

Perspectivepubs.acs.org/jacsau

© 2022 The Authors. Published by
American Chemical Society

2636
https://doi.org/10.1021/jacsau.2c00448

JACS Au 2022, 2, 2636−2644

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jan+G.+Felber"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Oliver+Thorn-Seshold"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/jacsau.2c00448&ref=pdf
https://pubs.acs.org/doi/10.1021/jacsau.2c00448?ref=pdf
https://pubs.acs.org/doi/10.1021/jacsau.2c00448?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/jacsau.2c00448?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/jacsau.2c00448?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/jacsau.2c00448?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/jaaucr/2/12?ref=pdf
https://pubs.acs.org/toc/jaaucr/2/12?ref=pdf
https://pubs.acs.org/toc/jaaucr/2/12?ref=pdf
https://pubs.acs.org/toc/jaaucr/2/12?ref=pdf
https://pubs.acs.org/doi/10.1021/jacsau.2c00448?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacsau.2c00448?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacsau.2c00448?fig=fig1&ref=pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.2c00448/suppl_file/au2c00448_si_002.pdf
https://pubs.acs.org/doi/10.1021/jacsau.2c00448?fig=fig1&ref=pdf
pubs.acs.org/jacsau?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/jacsau.2c00448?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/jacsau?ref=pdf
https://pubs.acs.org/jacsau?ref=pdf
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://acsopenscience.org/open-access/licensing-options/
https://pubs.acs.org/page/policy/editorchoice/index.html


on duocarmycins using a systematic literature review workflow
(SLR;18 Figure 1a, details in Supporting Information), then
graphically summarizing it for rapid analysis. We classify the
SLR database according to research focus, use it for meta-
analysis, and provide it for future researchers with an interest in
the field to orient their molecular designs. We then provide a
searchable, dynamic datafile in A0 poster format (Figure 1b;
Poster S1) which groups and analyzes structural design
features, with particular focus on duocarmycin family (1)
SAR, (2) prodrugs and bifunctional conjugates, and (3) ADCs.

2. SYSTEMATIC LITERATURE REVIEW (SLR)
SLR18 was conducted to collate and group the vast majority of
experimental literature concerning duocarmycins. Two groups
with low structural diversity were split off: (a) reports of the
isolation, characterization, and mechanism of action of natural
products structurally related to CC-1065; and (b) reports of
preclinical and clinical trials of early cancer drug candidates.
Three groups with high structural diversity are analyzed here:
(1) SAR: synthesis and cellular evaluation of derivatives in
structure−activity-relationship (SAR) studies; (2) Prodrugs:
synthesis, evaluation, and/or therapeutic use of prodrugs,
mainly based on bioactivation of the seco-duocarmycin latent

alkylator functional unit, or of bifunctional small molecule
conjugates bearing at least one (seco-)duocarmycin; (3) ADCs:
synthesis, conjugation, and therapeutic efficacy of (multi)-
functional ADCs incorporating a synthetic duocarmycin or its
seco-precursor.
Literature screening was first done by Boolean keyword

search initiated with, e.g., [“CC-1065” or “duocarmycin”]
AND [“analog” or “prodrug” or “derivative”] then refined with
more specific keywords (see Supporting Information). From
this, the major academic groups or pharmaceutical companies
in each area of research were identified. For each group, all
references reporting duocarmycin family agents were manually
collected and categorized. Lastly, selected recent reviews on
specific topics within the field of duocarmycins16,17,19−24 were
harvested for additional references. Thus, a comprehensive
duocarmycin structural library was assembled, from 583
reports�mainly of primary research (Figure 2).
2.1. Literature Metrics

A bibliographic overview of this library is given in Figure 2. Of
the 583 total research items, the vast majority were published
in scientific journals (123 journals, 499 publications, 86%)
covering all areas from basic biology, biochemistry, medicinal
chemistry, and molecular sciences, to physical chemistry,

Figure 2. Literature metrics. (a) 583 primary research items form the duocarmycin literature database reviewed here. Charts show the major
research groups (>20 publications) and journals (>10 publications). (b) The literature was grouped as: (a) natural products, biochemistry, and
molecular mechanism of CC-1065 and close analogues; (b) initial clinical trial compounds; then the focus groups of this Perspective: (1) synthetic
analogues and SAR; (2) prodrugs and bifunctional conjugates; (3) ADCs. Group histograms reveal the chronological progress of duocarmycin
research. Paper/patent ratios may indicate perceived commercialisation chances.
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theoretical chemistry, and preclinical or clinical oncology.
Major progress in chemical design and SAR has been published
in chemistry (JACS 63, JOC 35, JMC 33, ANIE 13, Chem.
Eur. J. 11) and bioorganic chemistry journals (BMC 38,
BMCL 31); isolation and mechanism reports cluster in
Biochemistry (21) and J. Antibiotics (13); and clinical results
in oncology journals (Cancer Res. 16, Cancer Chemother.
Pharmacol. 11, Mol. Cancer Ther. 9). 61 patents or patent
applications filed by academic groups and pharmaceutical
companies also entered this library (Figure 2a).
2.2. Evolution of the Focus of Duocarmycin Research
The sequence of duocarmycin development is easily visible
when analyzing the five report groups by date (Figure 2b).
Isolation and early molecular mechanism studies (group a; 146
items) dominate the 1980s and 1990s and have been key for
further molecular designs. Rapidly following initial cytotoxicity
studies, small molecule drugs (adozelesin and bizelesin) and
hydrolytic prodrugs (carzelesin and pibrozelesin) were taken
into initial clinical anticancer trials, that were discontinued
during the 2000s (group b; 49 items). Hurley (29), Krueger
(17), and others were the major academic groups driving both
these developments.
Exhaustive and creative structural variations during the

1990s and 2000s largely mapped the SAR in this molecular
class (Group 1, SAR: 192 items) with major contributions by
Boger (125), Sugiyama (58), and Lee (25). Innovation
increasingly focused on targeting, with activatable prodrugs
and bifunctional small molecule conjugates taking off during

the 2000s and 2010s (Group 2, Prodrugs: 102 items) led by
Denny and Tercel (49), Tietze (35), Saito (23), and others.
Finally, since the 2010s, conjugates of duocarmycins with
monoclonal antibodies (Group 3, ADCs: 71 items) have
opened up a new future for this class of bioactives. Combining
the tunable potency and molecular flexibility of the
duocarmycins, with the potential for enriched delivery to
cancers, has led to a new wave of duocarmycin antibody−drug
conjugates in clinical trials, driven by Byondis B.V. (22),
Medarex Inc. (7), and others. With their increasing therapeutic
relevance, the share of patents in the last two areas of research
is also significantly higher (Figure 2b).

3. STRUCTURAL EVOLUTION OF DUOCARMYCIN
ANALOGUES

The structural evolution of duocarmycins across these groups
can also be best understood along a time axis, that resolves
both the stepwise and disruptive innovations that have driven
this field from 1978 to 2022. Figure 3 is a cartoon
representation showing a data point for each research item
in the three focus groups (circle: journal; star: patent); the A0-
size Poster S1 in the Supporting Information maps these data
points one-to-one onto representative chemical structures from
each research item, color-coded for functionality, and DOI-
hyperlinked for access to the original papers. We also
encourage interested chemists to print a copy for easy
reference.

Figure 3. Structural developments of the duocarmycins (cartoon; all chemical structures in Poster S1). In Group 1 (SAR compounds), studies
resolved the molecular motifs crucial for rational tuning of bioactivity. In Group 2 (Prodrugs), non-natural prodrugs (glycosides, nitroaryls,
carbamates, N-oxides) and bifunctional conjugates expanded the scope of duocarmycins. In Group 3 (ADCs), industry has been a main driver of
research.
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3.1. Group 1: SAR Compounds

The lead natural product CC-1065 was isolated in 1978,1 and
its first total synthesis was reported in 1988, laying the grounds
for much synthetic development.3 During the 1990s and
2000s, systematic variations of both the core alkylator motif
(“segment A”, typically an activated cyclopropane) and the
DNA-docking motif (“segment B”) led to our current
understanding of the structural features that need to be
arranged for DNA association and sequence-selective alkyla-
tion (succinctly described by Hurley7).
Many heterocyclic systems beyond the native cyclopropa-

[e]pyrroloindole (CPI) of duocarmycin SA25 can serve as
segment A. Much research has focused on the chemically
tractable CBI, with optional substitutions;14 cyclopropain-
dole26 (CI) and others27 also alkylate DNA with the reactivity
trend (CBI ∼ CPI > CI) (Figure 4a).
The activated cyclopropane electrophile must be in its native

(S)-configuration for DNA alkylation,28,29 but high potency
can be maintained with “proagent” seco-variants, that use in situ
intramolecular Winstein spirocyclization to unfurl their
activated cyclopropane, relying on the para-phenol.30 Good
leaving groups (-Cl, -Br, -OMs)9,31 and several alternatives to
the dihydroindole (5-, 6-, 7-membered rings)32 are all
tolerated. Alternatively, masking this phenol suppresses
spirocyclization:33 a disruptive step that opened the door for
rational tuning of prodrug candidates in later years (see
below). The group of Lee also introduced achiral seco-variants
that are similarly reactive, but structurally simpler and more
accessible.34,35

Segment B heterocycles have mainly clustered around
indole-based rings that strengthen DNA binding. Stepwise
simplification of the native dimeric segment B (in CC-1065)
gave variously the deoxygenated CDPI dimer,36 3,4,5-
trimethoxyindole (TMI),29 and monoalkoxylated (DEI),37 or

even simple mono/oligoindoles; and other heterocycles38 can
also be used. These do impact DNA binding, alkylation site-
selectivity, and potency; but overall, the tolerance for segment
B variance is high (Figure 4a).
Assembling the A and B segments has also received

attention. A remarkable class of hairpin duocarmycin
conjugates was driven by Lown and Sugiyama in the
2000s.39 Using synthetic oligo-pyrroles/imidazoles from the
minor-groove binder distamycin A as segment B binding
domains gave potent duocarmycin analogues allowing
sequence-selective alkylation in specific areas of DNA.40,41

“Standard” duocarmycins consist of segments A and B linked
by an amide bond: but the natural product Yatakemycin42,43

has revealed that multiple B segments may be used, and
randomly shuffled around without losing bioactivity.44 Dimeric
bisalkylators with two A segments, allowing interstrand DNA
cross-linking, also give extremely high potency.45,46

3.2. Group 2: Activatable Prodrugs and Bifunctionals

Early trials already exploited duocarmycin prodrugs where seco-
duocarmycin bioactivity was to be triggered in situ by
unmasking a para-phenol, to avoid parasitic loss of a preformed
cyclopropane en route to target tissues. These carbamate
hydrolysis designs (Carzelesin,47,48 Pibrozelesin/KW-21899,49)
were discontinued in clinical trials due to side effects and low
therapeutic index.13,50 Follow-up work mined esters, solubi-
lized carbamates, phosphates, and others as other hydrolytic
activation methods (Figure 4b),51−56 although none of these
promise any greater mechanistic selectivity for cancer, since the
activating hydrolases are ubiquitously expressed.
Key steps toward cancer-selective prodrugs were initiated by

the lab of Denny in the late 1990s. They introduced nitro-seco-
CBIs that can be irreversibly reduced to the amino-seco-CBI in
the low-oxygen conditions found in solid tumors. These

Figure 4. Structural elements of duocarmycin therapeutics. (a) SAR analysis: variations of segments A and B. (b) Activatable prodrugs: strategies to
trigger bioactivity. (c) Antibody−drug conjugates: CBI-ADCs including clinical candidates SYD985 and MDX-1302. See also Poster S1.
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amines then undergo Winstein cyclization becoming DNA-
alkylators (Figure 4b).57−59 In the early 2000s, Tietze
developed glycosidic prodrugs that can be built modularly,
aiming at antitumor uses relying on glycosidases.37,60,61

Adopting novel chemistries in the 2010s, Boger introduced
O-amino-N-acyl-seco-CBIs that are also subject to bioreductive
activation.62−64 The field of masked seco-CBIs has by now
exploited the full arsenal of chemical biology, passing through
reducible Co-complexes,65 Fe(II)-reactive peroxides,66 photo-
activated designs,67,68 and oxidizable naphthalenes.69 Recently,
cyclic dichalcogenides (that resist monothiol exchange, but can
be reductively activated by specific oxidorectases such as
thioredoxin) have joined this panoply of prodrugs.70,71 Finally,
bifunctional conjugates of duocarmycins with other pharma-
ceuticals (glucuronide,72 biotin,73 antibiotics,74 pyrrolobenzo-
diazepine (Figure 4b),75,76 albumin,77 peptides78) show the
wide applicability and adaptability of this unique class of
bioactives.
3.3. Group 3: Antibody−Drug Conjugates (ADCs)

Monoclonal antibodies against cancer-selective biomarkers
have the potential to deliver high-potency cytotoxic cancer
drugs to tumors in a targeted and therapeutically effective
manner. The duocarmycins’ outstanding potency has moti-
vated much ADC research, with two general designs emerging.
Type A designs mask the seco-duocarmycin phenol with a
linker conjugated to the antibody: allowing spirocyclization-
based activation after linker cleavage. Intracellular cleavage of
these linkers (dipeptides like ValCit that are prone to
lysosomal proteolysis; hydrolyzable phosphates; reducible
disulfides) can directly liberate the key Winstein cyclization
phenol, but additional self-immolative spacers, that undergo
cyclization or elimination cascades to liberate this phenol, are
common.79−83 Type B designs attach a phenolic prodrug of the
duocarmycin, via a peripheral site, to the antibody: permitting
an extra layer of prodrug-based selectivity if prerelease
activation can be avoided (Figure 4c). ADCs of Type B are
less clearly reported, and many are IP-protected by
pharmaceutical companies.84−87

The late-2000s rebirth of preclinical/clinical development in
the duocarmycin class has essentially been driven by these
ADCs, with a variety of designs achieving in vivo efficacy in
mouse cancer models.56,88−92 Beyond the choice of biomarker
and payload, ADC development must balance factors from

conjugation site, degree of labeling, and linker nature,93,94

through to chemical conjugation method, making refinement
of ADCs more complex than that of prodrugs.95 Nevertheless,
the ADCs SYD985, MGC018, and MDX-1203 all reached
clinical trials with promising results and high efficacy.96−98

While MDX-1203 was halted due to insufficient improvement
of therapeutic benefit compared to alternative therapeutics,
SYD985 was recently given fast-track approval as a follow-up
or cotreatment for patients with HER2-positive metastatic
breast cancer.99 This is the first duocarmycin approved for
clinical use; its success will spur the developments of the future
(Figure 5).
3.4. Guiding Principles for Future Developments

Predicting the future of drug development is a challenge, but
this structure/function-based Perspective highlights trends that
can drive the duocarmycins’ next decades. First, duocarmycins
will remain high-value targets in cancer therapy. If their
bioactivity can be directed, then their outstanding potency and
their binding-triggered covalent-reactive mechanism, promise
high efficacy with limited resistance in a broad scope of
indications. Second, progress will continue to rely on
disruptive innovations in duocarmycin chemistry. Key
strategies so far include (i) SAR simplification for synthetic
access, (ii) protecting the cyclopropane warhead by forming it
in situ, (iii) chemical mechanisms for tumor-selective prodrug
activation, and (iv) antibody-based mechanisms for tumor-
selective prodrug delivery. Solubilization and self-immolative
spacers have also proven critical. It is perhaps no accident that
the first duocarmycin to be clinically successful had built in
nearly all these strategies (Figure 5). We see much potential
for new therapeutics that also harness these strategies but
tackle other indications with different target expression profiles
and biodistribution needs. We also believe that finding
sufficiently selective yet sufficiently high-turnover chemical
mechanisms for tumor-specific activation would revolutionize
both ADC and small molecule prodrug applications, and we
await developments in this still-underexplored chemical space.

4. CONCLUSIONS
Duocarmycins have undergone great efforts toward developing
targeted cancer therapeutics. A careful understanding of their
unusual mechanism of bioactivity, leveraging spirocyclization
and docking for high-potency site-selective DNA alkylation,

Figure 5. Color-coded highlights of the disruptive chemical steps that have led the duocarmycins from isolation to the clinic (see also Poster S1).
(Key: A,B = A-,B-segments. C = intracellular cleavage site. S = solubilizer. L = self-immolative spacer. R = reactive group for antibody conjugation.)
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has enabled many creative approaches using the duocarmycins
as a modular bioactive platform. Here we have provided a
structured literature review tracking the chemical develop-
ments of the last 40 years, that have led from isolation to basic
understanding, early trials and setbacks, re-engineering, and
ultimately a first clinical anticancer agent.
We hope this concise overview will promote a structure/

function-based understanding, allowing rational design and use
of duocarmycin-based bioactives. It also follows the didactic
tradition of Njardarson’s Posters100 with the A0-size Poster S1,
that can be printed and hung up in hallways for graphical
overview and discussions, or used digitally for easy followup of
its 200 embedded key structures (DOI hyperlinks).
The modularity of duocarmycin bioactivity should en-

courage researchers to design in structural features a ̀ la carte.
A structure-based overview to guide the choice and under-
standing of these features, with easy direction to the
corresponding references, may be very helpful for gaining a
coup d’oeil when entering new scientific territory: particularly
where the frontiers of research are increasingly interdiscipli-
nary. We can still expect much from the duocarmycins; and we
hope this Perspective and its Poster bring a graphic
understanding of how to design, incorporate, and exploit this
powerful molecular class.
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