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ABSTRACT: A great number of scientific papers are published
every year in the field of battery research, which forms a huge
textual data source. However, it is difficult to explore and retrieve
useful information efficiently from these large unstructured sets of
text. The Bidirectional Encoder Representations from Trans-
formers (BERT) model, trained on a large data set in an
unsupervised way, provides a route to process the scientific text
automatically with minimal human effort. To this end, we realized
six battery-related BERT models, namely, BatteryBERT, Batter-
yOnlyBERT, and BatterySciBERT, each of which consists of both
cased and uncased models. They have been trained specifically on a corpus of battery research papers. The pretrained BatteryBERT
models were then fine-tuned on downstream tasks, including battery paper classification and extractive question-answering for
battery device component classification that distinguishes anode, cathode, and electrolyte materials. Our BatteryBERT models were
found to outperform the original BERT models on the specific battery tasks. The fine-tuned BatteryBERT was then used to perform
battery database enhancement. We also provide a website application for its interactive use and visualization.

■ INTRODUCTION
The number of scientific publications in the area of battery
research has been growing exponentially in recent years, but
these huge textual resources are not being explored thoroughly
by scientists. Yet, advancements in Artificial Intelligence and
Natural Language Processing (NLP) are enabling NLP-based
text-mining techniques to provide a way for rapid large-scale
information retrieval and data extraction from the materials-
science literature without too much human intervention.1−6

Language modeling is one of the NLP applications that has
undergone considerable development in the past decade, and it
lays the foundation of many other NLP tasks. The first-
generation language models (Word2Vec,7 Glove,8 FastText9)
have proven abilities in capturing semantic meanings of words.
Meanwhile, the latest models are able to capture more complex
concepts with minimal human labeling, especially the bidirec-
tional long short-term memory (LSTM)-based models,10 and
the transformer-based GPT-311 and BERT.12

The latest developments of transformer-based models
incorporate transfer learning into NLP, where a deep-learning
model is trained on a large data set and the pretrained weights
are fine-tuned for another task. This functionality enables
transformers to be used in many downstream tasks, such as
question answering or machine translation.13 Language models
can also be domain specific. Once trained over a large corpus
that is specific to a particular domain, such as scientific papers,
language models can be used to perform tasks in that typical
domain, for example, chemical-named entity recognition
(CNER) in the chemistry area.14−16 There are many variants

of domain-specific models, such as SciBERT,17 BioBERT,18

ClinicalBERT,19 and FinBERT.20 All of these models have
been demonstrated to outperform the other BERT models on
the downstream domain-specific tasks.
However, there is a lack of huge language models such as

BERT in the field of scientific research. While BERT models
have been used extensively in biomedical areas, they are rarely
found in the domain of chemistry and materials science,
especially in the field of battery research, in which millions of
research papers have been published. A battery database was
recently autogenerated from large-scale data extraction of
scientific papers using the ”chemistry-aware” NLP tool,
ChemDataExtractor.21−23 However, its construction was
reliant on tedious manual labeling and training. We propose
that BERT models are likely to improve the accuracy of battery
data extraction and extend the functionalities of text mining in
the area of battery research. One example of a functional
extension is the extraction of relational data that can be
extracted by fine-tuning the pretrained BERT model on a
question-answering data set. If the training data set contains
information about battery device components, the fine-tuned
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model can then be used for large-scale device-component
classification and data extraction.
To this end, we trained and realized six battery-related

BERT models for battery text mining, based on the battery
papers from several publishers, including the Royal Society of
Chemistry (RSC), Elsevier, and Springer. Our model is
demonstrated to outperform the other BERT models on the
battery text-mining tasks, such as question answering and
battery paper classification. These fine-tuned models were then
used to update and enhance a battery database that was created
previously.21

■ METHOD
We developed six different battery-related BERT models for
this work: BatteryBERT-cased, BatteryBERT-uncased, Batter-
ySciBERT-cased, BatterySciBERT-uncased, BatteryOnly-
BERT-cased, and BatteryOnlyBERT-uncased, based on differ-
ent corpora that were used for pretraining. As is shown in
Figure 1, we trained the BERT models on battery research

papers either from previous weights or from scratch. Different
vocabularies were used for different models. Once the
pretraining stage had completed, the pretrained BatteryBERT
models were fine-tuned for two downstream tasks: document
classification, to distinguish the battery or nonbattery text, and
question answering, to classify the battery device component.
The details of each step will be introduced in this section,
including model overview, text preprocessing, model pretrain-
ing and fine-tuning, and data extraction using the BatteryBERT
models.

Model Overview. The architecture of our battery-related
BERT models (BatteryBERT, BatterySciBERT, and Batter-
yOnlyBERT) is consistent with that of the original BERT
models for the ease of comparison.12 We also tried to keep the
same parameters as the original BERT models, such as the
number of hidden layers, number of attention heads, and
vocabulary size. The key parameters used in our models are
listed in Table 1. Both cased and uncased models were created

for our battery-related BERT models. The cased model keeps
the same text in the original papers as input, including both the
capitalized and lowercase words, while the uncased models
only use the words in lowercase. The main difference between
the three types of models (BatteryBERT, BatterySciBERT, and
BatteryOnlyBERT) is the training source. BatteryBERT was
pretrained from the original BERT weights, in which the
training data originate from English Wikipedia and Books
Corpus,24 and then further trained in additional steps that
employ our own data, that is, battery research papers.21

By contrast, the further training steps that afforded
BatterySciBERT started from the SciBERT weights.17

SciBERT was mainly pretrained on biomedical and computer
science-based scientific text, and SCIVOCAB was also used for
tokenization rather than BASEVOCAB from the original
BERT model. The last model, BatteryOnlyBERT, was trained
from scratch using only our own paper-sourced data sets. The
tokenizer of BatteryOnlyBERT was also trained exclusively
from these battery research papers. Figure 2 shows the word
cloud pictures of the three training corpora. It is clear that in
our battery corpus, more battery-related words such as
”energy” and ”electrode” appear more frequently, whereas
the other two corpora contain more biomedical-related or
more general English words, such as ”patient” and ”said” for
SciBERT and BERT, respectively.

Text Preprocessing. The battery research papers were
retrieved using web-scraping tools from ChemDataExtrac-
tor22,23 and python HTTP client library ”requests”. More
details of article retrieval have been provided by Huang and
Cole.21 The literature data were initially downloaded in
HTML/XML format and saved in text format, in order to be
easily processed in the text-processing step. Then, a subword
tokenizer, WordPiece tokenizer,25 was used to decompose rare
words into smaller meaningful subwords. An example of a
subword tokenizer is as follows: a single word ”solvation” is
split into three words: so, ##l, and ##vation. In this way, the
vocabulary size can be reduced to a reasonable level in order to
improve the computational efficiency. The vocabulary files of
BatteryBERT and BatterySciBERT are the same as the original
BERT and SciBERT vocabulary, respectively; while the size of
both vocabularies is the same as the original model. For
BatteryOnlyBERT, we trained our own WordPiece tokenizer
from the battery-paper data sets. Figure 3 shows the
comparison of vocabularies of the three BERT models. The
resulting BatteryVocab file of BatteryOnlyBERT shares 40.4%
of the same words as the vocabulary file of the original BERT
model, while around 60% of words in BatteryVocab are brand
new and they are more about chemistry or batteries than the
general popular English words that were used by the original
BERT model. As shown in Figure 2a, the most common words
in the word cloud picture of the battery corpus, such as
electrode, energy, and batteries, demonstrate that the focus of
this vocabulary file is in the domain of batteries. This also
reflects that the text about battery research is a central part of
the corpus that further trains the BatteryBERT and
BatterySciBERT models.
Overall, the number of individual word tokens from the

corpus of battery papers from our previously created
database21 is 1870 million, compared to 3300 million tokens
that were used to train the original BERT model and 3170
million tokens that were employed to train SciBERT, as shown
in Table 2. This also reflects the overall complexity of each
model. Our training corpus includes scientific papers from

Figure 1. Two stages of the battery-related BERT models: pretraining
and fine-tuning.

Table 1. Key Parameters of Battery-Related BERT Model

parameters value

num_hidden_layers 12
hidden_size 768
num_attention_heads 12
attention_probs_dropout_prob 0.1
max_position_embeddings 512
total_number_of_parameters ∼110 million
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three publishers: RSC, Elsevier, and Springer, whose total
number over the years from 2000 to June 2021 is 400 366.
Figure 4 shows the trend of papers about battery materials
from different publishers over the last 20 years. Compared to
our first autogenerated battery database,21 the number of RSC
and Elsevier papers has been augmented by 12 905 and 74 213,
respectively, over the last 2 years, while a brand new collection
of 84 187 Springer papers have also been added, to enhance
this original battery database.

Pretraining and Fine-Tuning. Figure 1 shows two stages
in which the three battery-related BERT models were trained:
pretraining and fine-tuning. In the pretraining stage, the words
of our corpus of battery papers were used for pretraining after
initializing weights from either existing models or from scratch.
The main training phase of the three models is masked
language modeling (MLM), in which 15% of words in the
employed corpus are masked and the transformer model is
trained to predict the masked words. The next sentence
prediction (NSP) loss is removed from the training objective,
due to its unimproved performance, as suggested by Liu et al.26

We trained all of our battery-related BERT models with a
batch size of 256, and the maximum sequence length was fixed
to 512. The training time was 5 days for BatteryBERT and
BatterySciBERT models (further trained for 1 000 000 steps)
and 7 days for the BatteryOnlyBERT model (1 500 000 steps),
using eight NVIDIA DGX A100 GPUs on the ThetaGPU
cluster at the Argonne Leadership Computing Facility
(ALCF). Details of the pretraining hyperparameters can be
found in the Supporting Information.
Fine-tuning is a step to refine the large pretrained model

which is then used to perform similar tasks on this or other
data sets. This process is known as transfer learning, during
which only minimal architectural changes are required for its
use in downstream tasks within our operational pipeline. In
other words, only the extra fully connected layers of the BERT
model need to be trained and fine-tuned in this stage, while
most of the parameters in the original model remain the same.
As shown in Figure 1, the battery-related BERT models were
used and examined on two downstream tasks: document
classification and question answering. For these two tasks,
most hyperparameters are the same as in pretraining, while the
batch size, learning rate, and the number of the training epochs
are changed. The optimal hyperparameters are task-specific,
and we tested the following possible values for all tasks: batch
size (16, 32), learning rate (Adam: 5 × 10−5, 3 × 10−5, 2 ×
10−5), and the number of epochs (1−4 for Q&A, 1−15 for

Figure 2. Word cloud of the most frequent words in the vocabularies of the (a) battery corpus, (b) SciBERT corpus, and (c) BERT corpus.

Figure 3. Comparison of the vocabularies of the BatteryBERT,
Battery- SciBERT, and BatteryOnlyBERT models.

Table 2. Number of Tokens Used to Train BatteryBERT,
BatterySciBERT and BatteryOnlyBERT

model number of tokens

BatteryBERT 3.3B + 1.87B
BatterySciBERT 3.17B + 1.87B
BatteryOnlyBERT 1.87B

Figure 4. Stacked bar chart: the number of published papers about
battery materials over the last 20 years. Entries for 2021 included data
only up to June 2021 (inclusive) as the data in this study were
extracted up to this time.
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document classification). The details of these fine-tuning tasks
will be discussed below.
Document Classification. BERT is able to perform

document classification by adding a new sequence-classifica-
tion layer on the top of the fine-tuning stage of the pretrained
BERT model.27 In our study, document classification was
performed to classify whether the research paper is relevant to
battery research or not, according to the given abstract. In our
original battery paper corpus, the papers were downloaded
automatically using ChemDataExtractor.22,23 However, as the
paper search in this scraping process was completed by just
finding the word “battery” or “battery materials” that occurs in
the original paper, the corpus of battery papers inevitably
includes publications that are not about battery research. For
example, a battery can be used in biomedical research, as
written in a research paper (e.g., ref 28), where the key of that
research is not about battery materials. Therefore, it is
necessary to perform document classification to filter out the
irrelevant papers.
A training set is needed for fine-tuning the BatteryBERT

models to classify battery and nonbattery papers. The training
data set in this study was created by manually labeling journal
names that belong to battery research or not. A labeled training
data set was created from a total of 8137 journals that span
different scientific areas. Journals whose names are in the area
of battery research were labeled as “battery”, such as “Journal
of Power Sources” or “Journal of Applied Electrochemistry”.
By contrast, journals with names such as “Human Genetics”
were labeled as “nonbattery”. A total of 1058 journal names
were labeled manually, which contained a total of 46 663
papers in our corpus. Table 3 shows the number of battery

papers (69.7%) and nonbattery papers (30.3%), respectively,
in the data set that we created. It also shows the percentages of
papers that were used in the training (70%), validation (20%),
and test (10%) data sets. Note that the manual labeling of
journals by their names can still include irrelevant papers; for
example, solar cell research can also be mentioned in the
electrochemistry journal. However, labeling journals by their
names instead of individual papers that are published within
them saves a lot of time without too much compromise when a
large training-test data set is involved; such a data set is likely
to be created in this way. To compare the performance of our
models with that of traditional techniques, we also used the
logistic regression (LR)-based binary-classification model as a
baseline performance in our comparison.
Extractive Question Answering. The BERT models were

also fine-tuned for an extractive question answering task in the
battery domain. This task required a training data set of general
question-and-answering (Q&A), for which the SQuAD v1.1
data set was used, together with our battery-related BERT
models. SQuAD v1.1 includes >100 000 questions for machine
comprehension in various domains.29 The newer SQuAD
version 2.030 was excluded in our fine-tuning objective, as the

final use of the Q&A system is limited in the battery area and
does not include unanswerable questions. We fine-tuned our
battery-related BERT models from these >100 000 SQuAD
records with a train/validation ratio of 90%:10%, and we also
created and manually labeled a custom Q&A data set that is
relevant to the battery domain for evaluation use. This specific
Q&A data set has the same format as the SQuAD data set,29

and it contains three types of questions: “what is the anode?”,
“what is the cathode?” and “what is the electrolyte?”. This data
set consists of a total of 272 data records. Several examples of
this evaluation data set are shown in Figure 5.

By adding a span-classification layer on the top of the fine-
tuning stage of the battery-related BERT models, they can be
fine-tuned to answer specific questions given the context. This
kind of question-answering system is known as extractive
question answering, since the answer is extracted from the
words in their given context. Thus, the fine-tuned model can
be used for relational data extraction. In addition, a confidence
score can be calculated by the model, which indicates the
confidence that the answer is the right match for the given
question. This confidence score is given by the multiplication
of the token level probabilities for the start and end location of
answer phrases that are calculated from the softmax function.
The equation is given by

=

×

confidence score softmax(start logits)

softmax(end logits) (1)

where

=softmax(start logits)
e

e

potential start logits

start logits (2)

and

=softmax(end logits)
e

e

potential end logits

end logits (3)

In this way, the start and end tokens of the answers with the
highest probability will be extracted. The confidence score can
then be used as a threshold in the data-extraction step to adjust
the precision/recall trade-off. To deal with the specific Q&A
cases for battery materials, the chemical-named entity
recognition (CNER) capabilities of ChemDataExtractor were
used to filter the answers that are not a valid chemical name.
Similarly, a name-normalization data-cleaning step was also
implemented to remove invalid material property data.

Data Extraction. Figure 6 shows the database enhance-
ment pipeline in this research, including both the transformer-

Table 3. Training, Validation, and Test Datasets of the
Document Classification

battery papers nonbattery papers total

training 20 629 12 034 32 663
validation 5 895 3 438 9 333
test 2 948 1 719 4 667
total 29 472 17 191 46 663

Figure 5. Examples of the evaluation question-answering data set.
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based and traditional approach. In the transformer-based
approach, the preprocessed text data from the set of battery
papers were first pretrained from scratch or from BERT
weights to create a BatteryBERT model. The BatteryBERT
model was then fine-tuned on two downstream tasks,
document classification and question answering, as introduced
above. The document classifier was used as a nonrelevant
paper filter, so that the nonbattery papers could be removed
from the corpus of papers. The fine-tuned BatteryBERT
contained an additional Q&A layer at its front end in order to
perform the database enhancement step as a preprogrammed
Q&A agent. In this step, the words of the battery device
components (anode, cathode, electrolyte) were detected
automatically by searching for the exact words in the paper.
Once the words “anode”, “cathode” or “electrolyte” were

detected, the preprogrammed questions about these device
materials were asked, and the battery device components data
were then classified using the fine-tuned preprogrammed
model. The fine-tuned preprogrammed model includes a
default confidence score threshold, which was determined by
testing the different performance of each confidence-score
parameter from 0 to 1 on our manually labeled battery-specific
data set in terms of the precision-recall trade-off. The extracted
device data were finally saved into the battery database,
thereby resolving each material therein with its device function.
For the traditional approach, we reapplied the battery

property parser which was previously applied to extract the
data that formed the originally autogenerated battery-materials
database,21 this time to a new corpus of literature that was
either published more recently than the data extraction of the

Figure 6. Database enhancement pipeline: transformer-based approach and traditional approach.

Figure 7. Loss versus pretraining steps for the BatteryBERT, BatterySciBERT, and BatteryOnlyBERT models.
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original battery-material database, or was sourced from a
previously unsorted publisher. The document classifier that has
been described in the transformer-based approach was also
used in this step to remove nonrelevant data. The new
collection of \{material, property\} data were then combined
with the device-classified data and eventually saved into the
battery database in the final step.

■ RESULTS
Model Performance. Pretraining. We pretrained our

models for 1 000 000 steps for BatteryBERT and Battery-
SciBERT, and 1 500 000 steps for BatteryOnlyBERT since this
model was trained from scratch. The number of training steps
was determined according to the original BERT model, which
was also trained for 1 M steps,12 and the authors claimed that
BERT was trained for 1 M steps, and it achieved better
performance for language modeling tasks when trained on 1 M
steps compared to 500 K steps. The number of epochs is
around 46 for BatteryBERT and BatterySciBERT models,
while the training epochs for the BatteryOnlyBERT model is
∼70.
Figure 7 shows how the loss varies with the training steps.

The final loss for all models lies in the range between 0.96 and
1.09, and the loss values of all the uncased models is slightly
higher than those of the cased models. Since the
BatteryOnlyBERT model was trained only on the battery
text from scratch, the pretraining loss converges slower than
that in the other models. Overall, the training loss keeps
decreasing during these training steps, and the models that
stop pretraining at this point are demonstrated to have good
performances on the downstream tasks as will be introduced
later.
Document Classification. Table 4 presents the accuracy of

binary document classification of the test data set for each
model. The logistic regression (LR) classifier used term
frequency-inverse document frequency (Tf-idf) features as
input and achieved an accuracy of 90.95% and 90.12%, for
cased and uncased model, respectively; this is regarded as the
baseline performance for accuracy metrics of the binary
classification for the various BERT models, which are shown
in Table 4. Binary classification for all BERT models
outperforms the traditional approach (LR) by ∼6−7%,
which proves that by using the deep-learning based pretrained
language models, one can achieve much better results than
when using the traditional machine learning techniques.
Binary classification shows almost the same performance

between BERT models within a very narrow range of accuracy
scores. Still, all of the battery-related BERT models outperform
the original BERT models, demonstrating the positive effect of
domain-specific pretraining on downstream tasks. The
BatterySciBERT-uncased model achieved the highest accuracy
for this task, which might be due to greater overlap with the
SciBERT vocabulary. This model will be used as the final
model for the battery paper classification.
Extractive Question Answering. To examine the perform-

ance of the extractive question-answering system, we used two
evaluation metrics: exact match-single (EM-single) and F1-

single score, on the SQuAD data set. These scores are
computed on individual question-and-answer pairs. The EM-
single score is the percentage of the extracted data with exactly
the same answers as those in the evaluation data set. Therefore,
EM-single can only be either 1 or 0 for an individual record.
The F1-single score is calculated via the precision-single and
recall-single metrics, as given by

=
+

precision single
TP

TP FP (4)

=
+

recall single
TP

TP FN (5)

=
·
+

F1 single 2
precision single recall single

precision single recall single (6)

where TP denominates true positive, FP is false positive, and
FN is false negative.
As the answer of a question often contains multiple words, a

true positive metric signifies the percentage of words that is
shared between the original true answer and the predicted
answer; false positive is defined as the percentage of words that
are in the predicted answer but not in the true answer; and
false negative is the percentage of words that are in the true
answer but not in the predicted answer. Note that the EM-
single and F1-single score are only determined from a single
answer, and a final value of EM-single and F1-single score are
obtained by averaging over the individual scores. Therefore, we
name the metrics as EM-single and F1-single. The EM-single
and F1-single score can be used to evaluate the prediction
performance of the model. Compared to the EM-single score,
the F1-single score reflects the model performance more
accurately. For example, one of the predicted answers for the
electrolyte materials can be “KOH and 0.2 M ZnAc2”, while
the true answer in the training set can be “A mixed solution of
6 M KOH and 0.2 M ZnAc2”. In this case, the EM-single score
is calculated as 0 since these two answers are not exactly the
same, but the F1-single score is 0.615 as the predicted answers
contain some of the same words in the true answer (TP, 4/9;
FP, 0/9; FN, 5/9; precision-single, 1; recall-single, 4/9; F1-
single, 0.615).
Table 5 reports the performance of our battery-related

BERT models on the SQuAD validation data set in
comparison with the original BERT model. Both the cased

Table 4. Accuracy of Binary Classifiers for the Test Dataset of Battery and Nonbattery Abstracts

model LR BatteryBERT BatterySciBERT BatteryOnlyBERT Original BERT

accuracy cased 90.95% 96.85% 97.19% 97.34% 96.83%
accuracy (uncased) 90.12% 96.94% 97.47% 97.08% 96.29%

Table 5. EM-Single and F1-Single Score of Each Model for
the SQuAD Validation Dataset

model EM-single score F1-single score

BERT-base-cased 81.30 88.58
BatteryBERT-cased 81.54 89.16
BatterySciBERT-cased 79.66 87.43
BatteryOnlyBERT-cased 79.61 87.30
BERT-base-uncased 80.93 88.20
BatteryBERT-uncased 81.08 88.41
BatterySciBERT-uncased 79.81 87.66
BatteryOnlyBERT-uncased 79.53 87.22
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and uncased BatteryBERT achieved the highest EM-single
score and F1-single score compared to the other cased/
uncased model. This demonstrates that the further pretraining
of the original BERT on the battery-specific domain can also
improve the performance on the general English Q&A data set.
However, the performance of BatterySciBERT and Batter-
yOnlyBERT models is worse than the original BERT model,
which is as expected as these models were not pretrained on
the general English corpus such as books and Wikipedia.
To demonstrate the utility of our battery-related BERT

models in the specific domain of battery materials, we
evaluated all models on the manually labeled Q&A data set,
including 272 battery device data. After the question about
battery device materials was answered, we used the NLP
function of ChemDataExtractor_batteries21 to filter out the
invalid material data, and a confidence score threshold to filter
out the data that is less likely to be true. We used two
evaluation metrics for this battery-specific evaluation data set:
precision-data set and recall-data set, both of which are
calculated based on the whole evaluation data set. Recall-data
set is the proportion of the material data that has been
answered and extracted from the 272 evaluation data records
with a higher confidence score than the threshold, while
precision-data set is the average value of the F1-single scores of
each individual extracted answer. Recall-data set can reflect
how versatile the model is to answer questions under different
contexts, while precision-data set can be used to evaluate the
prediction accuracy of the model.
Using the evaluation metrics above, the performance of the

different battery-related BERT models on our manually labeled
data set can be compared. As shown in Table 6, the

BatteryBERT model has the highest precision-data set score
for both cased (70.74%) and uncased (68.27%) models among
all of the models, and both models also have a relatively high
recall-data set score (84.17% and 80.88%, respectively). For
the cased model, the original BERT model shows a slightly
higher precision-data set score compared to the BatterySci-
BERT and BatteryOnlyBERT models, but it has the lowest
recall-data set score. By contrast, for the uncased model, all of
the three battery-related models have higher precision-data set
and recall-data set score compared to the original uncased
BERT model, while the BatterySciBERT-uncased model
achieved the highest recall-data set score (85.29%) among
the eight models. Like the document classification task, this
finding also demonstrates that further pretraining from the
BERT and SciBERT weights or pretraining only on battery text
from scratch can help to achieve better results in the domain-
specific task. Note that for all these BERT models, most of the
wrong answers were extracted from very long contextual text,
since the BERT model is better at dealing with short textual
extracts (e.g., less than 512 words). The misclassification of
CNER for complicated material names also led to worse model
performance. Thus, our battery-related BERT models can
exhibit even better performance on shorter textual data sets
when using better CNER tools.
As the BatteryBERT-cased model has the highest precision-

data set score, and third highest of recall-data set score, it was
chosen to be used for the device component classification and
large-scale data extraction. To determine the best parameters,
we evaluated the performance of the BatteryBERT-cased
model as a function of the confidence score threshold on our
manually labeled battery-specific data set. Each confidence
score was calculated, as shown in eq 1. Figure 8 shows how the
confidence score threshold varies with the precision-data set
and recall-data set score; when the confidence score threshold
is larger than 0.4, the precision-data set score is 79.01%. At this
point, the recall-data set score (58.82%) is also relatively high.
Therefore, a confidence score threshold of 0.4 for the
BatteryBERT-cased model was set as the final model for the
further database enhancement.

Visualization. An intuitive view of what attention patterns
the battery-related BERT models have learned was obtained
using the bertviz31 tool. Transformer-based models such as
BERT use a multilayer, multihead architecture in which these
attention patterns are generated. Bertviz enables one to
visualize these patterns by breaking down this complicated

Table 6. Precision-Dataset and Recall-Dataset Score of Each
Model on the Manually Labeled Battery-Specific Dataset

model precision-data set recall-data set

BERT-base-cased 67.02 80.15
BatteryBERT-cased 70.74 84.19
BatterySciBERT-cased 65.09 84.56
BatteryOnlyBERT-cased 64.28 82.72
BERT-base-uncased 62.19 75.00
BatteryBERT-uncased 68.27 80.88
BatterySciBERT-uncased 66.65 85.29
BatteryOnlyBERT-uncased 67.20 83.82

Figure 8. Precision-data set and recall-data set versus the confidence score threshold for the BatteryBERT-cased model.
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part of the BERT architecture into a series of multiple-layer
bipartite graphs for a given sentence of text. Thereby, each
token of a sentence represents a node (vertex) on each side of
the graph; while the edges that join them represent the nature
and strength of attention patterns that link each token to
another within the sentence. Each edge carries a weighting that
quantifies the extent of attention (the attention score) between
two tokens that results from the combination of the many
attention patterns that describe how each pair of tokens is
semantically related to other words in the sentence by its
context. The contextual information from each sentence is
embedded into a BERT model via a set of attention heads, the
number of which is fixed for a given model, as defined by the
user input. This study employed 12 Heads, each of which is
identifiable by color assignment (cf. the color bar at the top of
Figure 9). Each Head performs a linear transformation of each
token once the token has been vectorized into its own token

embedding. The linear combination of the token and
contextual embedding produces an updated token vector, the
values of which differ from the original vectorized token in a
numerical fashion that captures the influence of the sentence
content on this token. Figure 9 illustrates a typical result,
whereby the token “oxide” is highlighted in gray in the
sentence given on the left of Figure 9; the same sentence is
given on the right of this bipartite graph, although the coloring
of tokens in this sentence is multivariate; each color thereupon
represents the color of a Head which has a significant influence
(contextual bearing) on the token “oxide”. Thus, Figure 9
reveals that “oxide” is highly correlated to cobalt and, to a
lesser extent, lithium, as one would expect for a sentence about
the compound, lithium cobalt oxide, in the BatteryBERT
model; i.e., “oxide” is strongly related to the chemical
constituents of the compound to which it belongs and this
compound is highly contextually related to battery materials.
Moreover, “oxide” is correlated to [SEP] which separates a
sentence, or sentence fragment, from another that is otherwise
classified [CLS].
Aside from providing a token-level perspective of attention

patterns within a BERT model, the Bertviz tool also provides a
view of the attention patterns that span the full multilayer,
multihead model via its display thumbnail images of attention
patterns within an m × n array of m Layers (rows) × n Heads
(columns). The image for each Layer (row) represents the nth
time that a fuller version of the aforementioned token
embedding modification procedure in the BERT architecture
is repeated, in order to afford a final model. Figure 10 shows
this model view for attention patterns of the Q&A fine-tuned
BatteryOnlyBERT-uncased model when it employed 12 Layers
and 12 attention Heads. Therein, its (Layer 2, Head 3)
attention patterns are illustrated using the example sentence
“The cathode of this Li-ion battery is LiFePO4”. If this
sentence is passed for contextual information for the extractive
Q&A task, “lifepo4” points to the word “cathode”. Given the
battery-specific nature of such patterns that form in our
models, we believe that this visualization tool helps to evidence
that BatteryBERT models can capture the contextual features
after their pretraining and fine-tuning steps.

Battery Corpus and Database Updates. The fine-tuned
BatteryBERT model was first used as a binary classifier to
partition battery and nonbattery related papers that were
downloaded from the publishers. Table 7 lists the results for
the paper classification. Around 62.5% of the total number of
papers were removed from our corpus of papers, most of which
are not in the domain of battery research but still mentioned
the word “battery” in the paper. However, some battery papers
can be misclassified as “nonbattery” papers when the paper
does not have an abstract, or the metadata is too old to parse
by ChemDataExtractor. More than 82.5% of the RSC papers
remained as battery-related papers following this filtering
process, which might be due to the greater chemistry-specific
focus of RSC publications; while the other two publishers are
much more multidisciplinary and contain many papers from a
wider range of scientific domains, such that the filtering
process removed many more of them (see Table 7).
Having performed property data extraction on the new

collection of battery-material containing papers (published in
RSC or Elsevier journals from 2019 until June 2021 or
published in Springer journals), these data were then added to
the battery-material database. The resulting augmented
database was compared with the originally created battery-

Figure 9. Visualization of Layer 0 in the BatterySciBERT-cased model
architecture. (https://huggingface.co/batterydata/batteryscibert-
cased).
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material database.21 Table 8 presents the changes to the
original database owing to the battery-relevance filters and the

data extracted from new battery text sources. While the
number of conductivity and Coulombic efficiency data
increases by a small amount when the paper filter and Springer
data are included, owing to the most recently published papers
added, the other three property data diminish in quantity. The
large reduction in the total number of data is caused by the
voltage data, which alone accounts for 54.8% of the total
reduction. The rationale for this appears to be that voltage can
be mentioned in various applications, such as a biomedical

device, while the other four properties, especially conductivity
and Coulombic efficiency, are most likely to be used to only
describe battery materials, bearing in mind the paper search
criteria that had been employed. Therefore, once the
nonbattery papers had been removed by our binary-
classification filters, there is a huge reduction in the voltage
data, but the other property data are not affected that much.
Table 8 also lists a summary of the breakdown of property data
in the new database, including a differentiation that signifies
the contribution of the Springer data. A total of 231 345
property data were extracted from the papers that were
published up to June 2021.
A battery device component database was also created,

consisting of 308 964 valid data including the classification of
anode, cathode, and electrolyte materials. Table 9 shows a
summary of data records in this device component database,
while Table 10 lists the number of duplicate and unique data
records of anode, cathode, and electrolyte materials. The large
proportion of duplicates indicates that many of the same
device component materials are used by different scientists.

Figure 10. Visualization of Layer 2, Head 3 of the fine-tuned Q&A BatteryOnlyBERT-uncased model architecture. (https://huggingface.co/
batterydata/batteryonlybert-uncased-squad-v1).

Table 7. Classification of Battery or Nonbattery Papers from
the Three Publishers Using the Fine-Tuned BatteryBERT
Model

RSC Elsevier Springer total

battery papers 36 794 91 513 21 685 149 992
nonbattery papers 7 800 180 072 62 502 250 374
total 44 594 271 585 84 187 400 366

Table 8. Comparison between the Database with and
without Paper Filter from RSC and Elsevier, and the
Database with Paper Filter and with Springer Data

property

no. of data records
(without paper
filters, without
Springer data)

no. of data
records (with

paper filters, with
Springer data)

no. of data records
(with paper filters,
without Springer

data)

capacity 144 359 139 118 129 232
conductivity 7 168 12 697 11 992
coulombic
efficiency

11 033 12 692 11 821

energy 15 543 14 771 13 542
voltage 115 240 52 067 46 197
total 292 313 231 345 212 784

Table 9. Summary of Data Records in the Device
Component Database

data description data type

type device component types string
name chemical compound names string
extracted_name normalized chemical name list of dictionaries
score confidence score float
context context of original data string
DOI source article DOI string
journal published journal string
date published date string
title source article title string
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Among the 14 052 unique data records, a total of 11 960
unique materials were found, as some materials can be any of
the three types of device components. For example, graphite is
found to be used as either an anode32 or cathode33 in different
types of batteries. Figure 11 gives an overview of the chemical
distributions of anodes, cathodes, and electrolytes in the device
material database. It also specifies the distribution of the top
eight representative materials of each type of battery device
component. Therefore, it is easy to find the most popular
anode (Li), cathode (LiCoO2), and electrolyte (KOH)
materials that were studied over recent years.

Online DEMO. To demonstrate the potential utility of
BatteryBERT models, we created a Web site application (web
app) that can be accessed via www.materialsforbatteries.org.
Figure 12 presents the snapshot of two of its sections that are
related to the battery Q&A system. The BatteryQA section has
been designed for interactive use of the extractive Q&A fine-
tuned BatteryBERT models. Users can select parameters on
their own, including which one of the three BatteryBERT
model options they wish to analyze, the confidence score
threshold, the question to be asked (the default is a device
component question), and the context of either a paper file or
raw text. This web app will return the relevant device
component materials if it finds an answer. The BatterySearch
page is a section just for simple demonstration use just now.
Accordingly, this Q&A system is based on the preprogrammed

Table 10. Number of Data Records and Unique Data
Records for Anode, Cathode, and Electrolyte Materials

types no. of device records no. of unique device records

anode 157 885 6 210
cathode 118 310 6 179
electrolyte 32 769 1 663
total 308 964 14 052

Figure 11. Distribution of device component materials and its top eight representatives.

Figure 12. Snapshot of the BatteryData web app with BatteryQA and
BatterySearch sections. (http://www.materialsforbatteries.org/).
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data set rather than the context that is provided each time. At
present, questions such as “What is the most common
electrolyte in 2019?” can already be answered since the
relational data \{year, device component, material\} is saved in
the back-end data sets. We hope to extend the functionality of
this search-engine system by improving the preprogrammed
data sets in the future. In addition, the web app also presents a
database overview and an introduction about the relevant
techniques that underpin this online tool. Overall, we hope
that it can aid users to reuse, review, and visualize our battery
database and models.

■ CONCLUSION
To summarize, we have pretrained and released six battery-
related BERT models: BatteryBERT, BatteryOnlyBERT, and
BatterySciBERT, including both cased and uncased models. All
of these models were pretrained on our battery-paper corpora;
the main difference between the models is the initialized
weights. Our battery-related BERT models outperform the
original BERT models on two downstream tasks: document
classification and extractive question answering. The Batter-
yBERT-cased model performs the best on the extractive Q&A
task, while the BatterySciBERT-uncased model achieved
highest accuracy for the document classification task. This
indicates that further pretraining on a domain-specific area can
improve the model performance compared to the original
BERT model. The fine-tuned BatteryBERT-cased model was
optimized on the Q&A data set for the purpose of device
component classification to serve as a functional application.
The visualized attention mechanism also indicates that there
are battery-specific interpretable patterns behind the model
weightings. We further employed the fine-tuned BatteryBERT-
cased model to perform data extraction in order to enhance the
originally released battery database.21 To the best of our
knowledge, this is the first transformer-based language model
that has been trained on the specific area of battery research,
and it is also one of the first models that has been applied in
the domain of scientific papers which are beyond the
biomedical area.34,35 All of our pretrained and fine-tuned
models have been deposited on https://huggingface.co/
batterydata which can be easily accessed by the transformer
library.36

Through this study, we have demonstrated that pretraining
in an unsupervised way is able to achieve state-of-the-art results
in text mining within a specific field without too much human
intervention. Also, with minimal changes in model architecture
during the fine-tuning step, BatteryBERT models can be used
in many downstream battery-specific tasks. Owing to the
nature of transfer learning, the limited amount of time required
during fine-tuning increases the possibility of the BatteryBERT
model to be applied to various research areas, even though the
overarching BERT-based model is large and complicated. We
believe that scientists can use our models to gain a thorough
view of current battery research, and are also able to perform
many battery-specific text-mining tasks except for just
document classification and extractive question answering.
One limitation of this type of research is that performance

can still be improved. For example, the overall performance of
any task in this study could be improved by employing the
large-BERT models, which feature more layers and more
attention heads. Due to its larger architecture and more
parameters, large-BERT is likely to achieve better results even
when using the same training set. We only selected the base-

BERT architecture for this study, since the use of large-BERT
models would have cost so many computational resources that
it would discourage the use of our models owing to their long
running times. In addition, our models were pretrained from
400 366 papers; this number can be larger when more papers
are published in the future, or when more publishers provide
us the access to their papers. With more papers being trained
on our models, BatteryBERT is likely to become a more
professional “battery expert”. Also, our battery-related BERT
models were found to be error-prone when dealing with longer
contextual text, due to the nature of the model’s architecture,
but it is still better than when using traditional methods,
including the LSTM model. In addition, our battery-related
BERT models were only fine-tuned on two specific tasks for
this study, while many other tasks, such as chemical-named
entity recognition (CNER), can also be tested using our
models. Lastly, it is still a challenge for our battery-related
BERT models to obtain implicit information using purely
BERT models, which is in common with the other current
language models that have proven abilities to capture the
contextual information and comprehend the language text.
Overall, our battery-related BERT models have out-

performed the original BERT model and achieved state-of-
the-art results on the specific battery data set. Its usefulness is
also demonstrated in text mining within the battery area; as an
example, a more informative battery database can be created
using the BatteryBERT-cased model. The battery-related
BERT models will be further trained in the future, once
more new papers have been published. The models and battery
database created by the BatteryBERT-cased model are easily
accessible via our web app for interactive use as well as its fine-
tuning use on other particular tasks.

■ DATA AND SOFTWARE AVAILABILITY
The pretraining and fine-tuning code was written using
PyTorch and Transformers library36 and is available at the
GitHub repository https://github.com/ShuHuang/
batterybert, which also includes the code of BatteryBERT
usage and data extraction. A list of DOIs for the papers that
were used to train our models can be found in this GitHub
repository to enable the reproducibility of this work. The code
of ChemDataExtractor_batteries (v1.5) that has been modified
for database autogeneration in the battery domain is available
at https://github.com/ShuHuang/batterydatabase. All the
BatteryBERT models and data sets used for fine-tuning can
be found at https://huggingface.co/batterydata. The new
battery property database v2.0 and device-classified battery
database have been saved in JSON, SQL, and CSV format;
both can be found on Figshare at 10.6084/m9.figshare.
18154715.
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