Skip to main content
. 2022 Dec 13;13:1012293. doi: 10.3389/fpls.2022.1012293

Table 4.

The accuracy of estimation of different models for grain weight per plant.

Type No. of indices Metrics PLSR RFR Logistic SVM DNN
VIs 25 R2 0.43 0.42 0.45 0.48 0.48
RMSE 3.98 3.97 3.98 3.83 3.88
rRMSE 42.96% 42.53% 41.42% 41.26% 43.52%
VIs+TI 60 R2 0.45 0.45 0.51 0.58 0.58
RMSE 3.89 3.86 3.67 3.4 3.541
rRMSE 41.72% 41.31% 39.33% 36.34% 39.45%
VIs+TI+CC 61 R2 0.45 0.46 0.51 0.59 0.61
RMSE 3.9 3.85 3.67 3.40 3.28
rRMSE 41.75% 41.26% 39.32% 36.47% 35.29%
VIs+TI+CC+CHM 62 R2 0.48 0.49 0.52 0.61 0.62
RMSE 3.78 3.74 3.60 3.31 3.25
rRMSE 40.4% 40.00% 38.52% 35.40% 35.32%
VIs+TI+CC+CHM+Lodging 63 R2 0.48 0.49 0.53 0.62 0.64
RMSE 3.78 3.76 3.6 3.287 3.16
rRMSE 40.43% 40.22% 38.54% 35.18% 33.80%

VIs, vegetation index; TI, texture information; CC, canopy cover; CHM, crop height; DNN, deep neural network; Logistic, logistic regression; PLSR, partial least squares regression; RFR, random forest regression; SVM, support vector machine regression. The best results in terms of R2, RMSE, and rRMSE values through different sensors with various modeling methods are shown in bold.