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Summary Sentence:Macrophages in the

adipose tissue affect adipocyte functioning in

the early life, whichmay have a long-term
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Abstract

Adipose tissue macrophages (ATMs) play key roles in metabolic inflammation, insulin

resistance, adipose tissue fibrosis, and immune disorders associated with obesity.

Research on ATM biology has mostly been conducted in the setting of adult obesity,

since adipocyte hypertrophy is associated with a significant increase in ATM number.

Signals that control ATM activation toward a proinflammatory or a proresolving phe-

notype also determine the developmental program and lipid metabolism of adipocytes

after birth. ATMs are present at birth and actively participate in the synthesis of

mediators, which induce lipolysis, mitobiogenesis, and mitochondrial uncoupling in

adipocytes. ATMs in the newborn and the infant promote a lipolytic and fatty acid oxi-

dizing adipocyte phenotype, which is essential to support the lipid-fueled metabolism,

to maintain nonshivering thermogenesis and counteract an excessive adipose tissue

expansion. Since adipose tissue metabolism in the early postnatal life determines

obesity status in adulthood, early-life ATM functionsmay have a life-long impact.
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1 INTRODUCTION

Adipose tissue macrophages (ATMs) are resident immune cells of

the adipose tissue and are responsible for the development of

metabolic inflammation, insulin resistance, adipose tissue fibrosis, and

immune disorders associated with obesity, such as diabetes and self-

immunity.1–7 ATMswere first identified in the fat depots of obesemice

in the 1960s; however, their presence in human adipose tissue and

the central role of ATMs in obesity-associated immune pathologies

remained unnoticed until the 2000s.8–11 ATMs appear in the adipose
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tissues of all mammalian species tested—rodents, ruminants, carni-

vore, and primates.12,13 Adipocyte–ATM interactions have evolved in

parallel with the emergence of the adipose tissue in vertebrates, sug-

gested by the presence of ATMs in amphibia.14 Research on ATM

biology has mostly been conducted in the setting of obesity, since

adipose tissue hypertrophy is associated with a significant increase

in ATM number.7 Prevalence of ATMs in the obese adipose tissue

increases as a result of monocyte infiltration and local prolifera-

tion of ATMs.14–16 Hypertrophic adipocytes release chemotactic and

proinflammatory signals, which increase monocyte development in

the bone marrow, promote monocyte and macrophage chemotaxis

toward the obese fat depots, and eventually increase proinflamma-

tory ATM activation.8,17 ATMs engulf lipid overloaded and apoptotic

fat cells, by forming multinucleated syncytia, so-called crown-like

structures around the dying fat cells.1–7,16,18,19 Albeit apoptotic cell

uptake promotes anti-inflammatory macrophage activation in most
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F IGURE 1 The adipose tissue-associated immune cell niche

tissues, removal of apoptotic adipocytes triggers a proinflammatory

ATM activation.20 Since ATMs are situated within a complex adi-

pose tissue immune cell niche, built up by mast cells, T cells, and

B cells, a proinflammatory ATM activation may initiate a cascade of

intercellular signaling events, leading to an uncontrolled inflamma-

tion (Figure 1). The mechanisms leading to metabolic inflammation

and the role of ATMs in this process have been extensively reviewed

previously.7,21

In adult adipose tissue, a set of immune cells build a niche through

complex mutual interactions. ATMs respond with specific immune

activation to various signals, such as Th1 and Th2 cytokines, lipid

mediators, immune complexes, or pathogen-derived molecules. These

signalsmay evoke ametabolically harmful adipose tissue inflammation,

leading to the production of autoreactive antibodies, Th1 cytokines

or reactive oxygen species. FcγRs: Fc gamma receptors, NRs: nuclear

receptors, PRRs: pathogen recognition receptors, TLRs: Toll-like recep-

tors. Modified fromRefs. 20 and 22.

ATMs are however not only triggers of metabolic inflammation.

Indeed, ATMs and several proinflammatory signal mechanisms are

required for physiologic adipose tissue development.23,24 There is evi-

dence that ATMs stimulate thermogenic and fat catabolizing adipocyte

activities after birth, and ablation of ATMs in newborn mice leads

to the loss of thermogenic fat cells in the subcutaneous fat depot.13

Importantly, ATMs are already present in the fat depots after birth,13

since the first wave of ATMs develops from embryonic macrophage

progenitors.14 Adipose tissue development in the first year of life

is key to determine obesity as an adult.25 Increased body weight at

3–6 months of age, moreover an increased rate of body weight gain

or overweight at the first year of life increase the probability of

obesity as a young adult.26–29 Similarly, increased adiposity before

5.5 years of age is a predictor of obesity and obesity-associated dis-

eases in adulthood.30–35 Mechanisms that control adipose tissue mass

in the newborn and in infancy are hence key determinants of obe-

sity and obesity associated diseases. In adult-onset obesity, the role

of ATMs in triggering obesity-associated diseases has already been

established. However, the role of ATMs in the early postnatal adipose

tissue development is still largely unexplored. This review provides an

update on the possible metabolic roles of ATMs in the early postnatal

life.

2 ADIPOSE TISSUE DEVELOPMENT AND FAT
METABOLISM IN THE EARLY POSTNATAL LIFE

Carbohydrates are the key fuels of the fetal metabolism during the

intrauterine life. Progenitors of the lipid storing, so-called white

adipocytes develop from the lateral plate mesoderm, while lipid oxi-

dizing, so-called brown adipocytes are descendants of paraxial meso-

dermal progenitors and in lesser extent of cells derived from the neural

crest (Figure 2).36–38 Fetal ATMs develop from hematopoietic cells of

the yolk sac and persist in the newborn14 (Table 1). Despite the early

emergence of the adipocyte progenitors and the ATMs, the adipose

tissue begins to expand relatively late: in humans, fat depots develop

in the last trimester, using maternal ketone bodies and glucose as

lipogenic substrates.39–45 In rodents—the most studied animal mod-

els of human obesity—the expansion of the fat depots begins after

birth, with the exception of the interscapular brown adipose tissue,

which is already present at birth.43 At birth, there is a rapid lipolysis

with the release of glycerol and free fatty acid from the subcutaneous

adipose tissue depot.39,46 This is concomitant with a metabolic shift

from carbohydrate-dependent energy production to a lipid-rich nutri-

tion provided by breastfeeding. Breast milk is rich in lipids, of which

85–90% are absorbed by a term infant, and lipid digestion begins in

the buccal cavity in the newborn.41,47 The plasma lipid profile of a

breastfed infant or a suckling rodent reflects the lipid composition of

the breast milk,48,49 and also the maternal adipose tissue and plasma

lipids.50,51

The fetus develops in the thermally stable womb; however, it enters

a hypothermic environment at birth. Therefore, there is a large energy

demand of the newborn to sustain its core body temperature.52

Nonshivering thermogenesis is important to maintain the core body

temperature of the newborn, utilizing the uncoupling of mitochondrial

oxidative respiration to generate heat.52 The substrate of heat pro-

duced in a human term infant is mostly fat,46,53 giving importance to

the thermogenic potential of the adipose tissue.

Metabolic performanceof theadipose tissueof thenewbornand the

infant reflects distinct physiologic demands (Figure 2). At birth, the adi-

pose tissue serves as an energy reserve, and a rapid lipolysis provides

free fatty acids for energy and heat production.46 This is followed by

an increasing fatty acid synthesis and lipogenesis from stored glycogen



RÖSZER 1517

F IGURE 2 Lipid metabolism in the intrauterine and in the postnatal life

TABLE 1 Key traits of adipose tissuemacrophages in the newbornmouse

Expression of hematopoietic lineagemarkers14 CD45+, Kitlow, CX3CR1
bright, CD115+, F4/80bright

Expression of cell cycle associated proteins19 Ki67+ , MafBlow

Expression of lipid metabolizing enzymes13 AGMO–, LPCAT2+

Expression of macrophage activationmarkers13,19 MHC-IIlow / high, prone to release PAF and IL-6

to avoid the depletion of fat reserves.54,55 During infancy, glycerol is

converted to glucose, and free fatty acids are oxidized or re-esterified

in the adipose tissue,56 with an ongoing fat catabolism to generate

energy and heat.55 ATMs are present at birth, and they retain the abil-

ity of self-replenishment.14,19 Later in infancy, these fetal ATMs are

accompanied—andplausibly gradually replaced—bymonocyte-derived

ATMs (reviewed in Ref. 57). Interestingly, the interscapular brown

adipose tissue, the largest thermogenic fat depot in rodents, is scarce

inmacrophages.14,58

Adipocyte progenitors develop from the paraxial mesoderm and in

a lesser extent from the neural crest. ATM precursors originate from

the yolk sac hematopoietic tissue. The last trimester is associated with

the expansion of the fat depots—especially of the subcutaneous depot.

After birth, the fat reserves are used to generate energy and heat by

a rapid lipolysis and uncoupled mitochondrial respiration. In infancy,

the fat depots are expanding further, using nutritional lipids as main

lipogenic substances. The infant adipose tissue maintains an active

oxidativemetabolism and generates heat. In adults, these functions are

lacking, and the adipose tissue accumulates lipids as an energy reserve

and thermal insulator.

3 Th2 CYTOKINE SIGNALING IN THE INFANT
ADIPOSE TISSUE

One important signal, which appears in the immune cell niche of

the adipose tissue, is IL-4. It is a Th2 cytokine, with proresolving

properties, and it triggers an anti-inflammatory (often called as M2)

macrophage polarization by stimulating STAT6 signaling. Inflammatory

milieu in the obese adipose tissue, along with the proinflammatory

activation of ATMs, is a key driver of insulin resistance.7 Therefore,

a proresolving IL-4 signal may help to restore insulin sensitivity by

mitigating adipose tissue inflammation.59 IL-4 stimulates the accumu-

lation of anti-inflammatory ATMs in the adipose tissue, as a result of

an increased proliferation of ATMs and a polarization of ATMs toward

a proresolving activation state.19,60 While an expanding M2 ATM pool

may resolve adipose tissue inflammation, it also promotes fibrosis and

worsens adipose tissue function.61 Moreover, an excessive increase of

M2 ATM number is impeded by innate lymphoid cells,62 and by vari-

ous negative feedback mechanisms,63 including IL-4/STAT6 signaling

itself.64

In addition to its immunomodulatory role, IL-4 has direct effects

on adipocyte differentiation and lipid handling. IL-4 inhibits adipoge-

nesis and activates lipolysis by hormone sensitive lipase, eventually

decreasing lipid deposits.65 The signal transducer responsible for this

effect is the cyclic AMP/protein kinase A pathway, the major route

leading to lipolysis. Moreover, IL-4 stimulates uncoupling protein 1

(UCP1) expression in adipocytes. UCP1+ adipocytes have thermogenic

potential and dissipate energy as heat by uncoupledmitochondrial res-

piration. Unlike primates, rodents—due to their need of excess heat

production—have large interscapular thermogenic fat depots, often

described as classical brown adipose tissue. In cold-adapted adult

animals, the fat storing subcutaneous white adipose tissue depots

are enriched in thermogenic fat cells, resembling cells of the classi-

cal brown adipose tissue.66 The development of these thermogenic

fat cells is hence often termed as adipose tissue browning. Thermo-

genic fat within a white adipose tissue depot are described as beige

adipocytes, to distinguish them from the classical brown adipocytes.66
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Of note, the ontogeny of beige and brown adipocytes is distinct

in mouse, and it is still a subject of debate whether humans have

brown or beige adipocytes in their thermogenic fat depots. These

aspects of thermogenic adipose tissue development are discussed

elsewhere.55 Nevertheless, the classical brown adipose tissue and

the beige adipocyte-containing adipose tissue have lipolytic and fatty

acid oxidizing activity, along with the ability of producing heat in

uncoupled mitochondrial respiration. These metabolic traits of the

beige adipocytes allow burning off stored lipids as heat, hence sup-

porting both adaptive thermogenesis and reducing fat mass. The

latter effect is considered as a possible tool to reduce excessive fat

accumulation and obesity.67

Mast cells are resident immune cells in the adipose tissue.68 They

release IL-4 in response to cold stress, which in turn stimulates UCP1

expression in adipocytes, promoting adipose tissue browning and ulti-

mately reduces fat mass.5,69 IL-4 also increases the prevalence of

M2 ATMs in the adipose tissue, and M2 macrophages are thought to

increase adipose tissue browning.5,70 For instance, theMRL/lprmouse,

which is a genetic model of a generalized autoimmune disease, dis-

plays increased adipose tissue browning.71 This is plausibly due to their

increased systemic IL-4 levels.71 In addition to M2 polarization, cold

stress also increases M2macrophage content in the adipose tissue via

macrophage proliferation.70 Some inflammatory signals inhibit beige

adipogenesis; hence, an anti-inflammatory IL-4 effect may favor beige

adipogenesis secondarily.5,72–74

Since cold stress induces IL-4 synthesis in the adipose tissue and IL-

4 triggers M2 macrophage activation, it was initially thought that M2

macrophage activation was key for beige adipocyte development. It is

however plausible that M2 ATMs are not crucial for beige adipocyte

development (reviewed in Ref. 59). For instance, a recent study sug-

gests that IL-10, a Th2 cytokine associated with M2 macrophages,

acts against beige adipogenesis, and accordingly, mice deficient in

IL-10 signaling have increased adipose tissue thermogenesis.75 In

humanadipose tissue, IL-10 geneexpression andprotein secretion cor-

relate positively with body mass index and insulin resistance.76,77 The

expression of IL-10 and IL-10 receptor alpha is significantly enriched

in proinflammatoryM1macrophages. Recombinant IL-10 has no effect

on human adipocyte phenotype in vitro, albeit it induces an anti-

inflammatory profile in ATMs and fat-derived leukocytes.77 On the

other hand, beige adipocyte development in the MRL/lpr mouse is

thought to be mediated by IL-10, and IL-10 deficiency leads to new-

born cold intolerance and impaired UCP1-dependent brown adipose

tissue mitochondrial respiration in mice.78 It is plausible that IL-10

plays distinct—actually opposite—roles in classical brown adipocytes

and in beige adipocytes of the infant adipose tissue.

In newborns, there are prevalent thermogenic—plausibly beige—

adipocyte pools within the subcutaneous fat depots, allowing non-

shivering thermogenesis and supporting the core body temperature

of the infant in a hypothermic environment.55 In newborns, a Th2

immune response is more dominant than in adults. For instance, the

newborn thymus is abundant in IL-4+ thymocytes. These cells are

IL-4+/CD4+ T cells and are most likely originate from CD31+/CD4+

thymic naïve T cells.79 These cells are far more abundant in neonates

than in adults; however, IL-4 secretion from neonatal T cells requires a

so far unidentified trigger.79

A short and transient IL-4 exposure in neonate rats up-regulates

Ucp1mRNA expression and decreases fat cell size in the subcutaneous

white adipose tissue.80 Animals treated with IL-4 in their neonate life

have decreased adiponectin (Adipoq) expression in the adipose tissue.

Thus, neonatal IL-4 induces lipolysis and decreases adipogenic differ-

entiation capacity and may induce beige adipocyte development.80

However, mRNA transcription profiling of the infant (postnatal day 6)

subcutaneous adipose tissue in mouse shows the suppression of IL-4

signaling.43 ThemRNA level of Il4ra is lower in the infant adipose tissue

than in its adult counterpart. Conversely, the infant fat expresses high

levels of Rnf128, encoding a ubiquitin ligase that inactivates STAT6

signaling.43 Moreover, a study shows that abdominal circumference

of human newborns positively correlates with the plasma levels of

IL-10 and IL-4.76 Moreover, monocyte-derived macrophages from

obese newborns show a basal anti-inflammatory phenotype.81

Macrophages from obese newborns had increased levels of Tnfa, Il4ra,

and Il10mRNA levels and failed to express IL-10 properly in response

to anM2 stimulus.81

ATM progenitors are established before birth; therefore, intrauter-

ine signals may affect ATM number or ATM activation at birth (①). In

the early postnatal life, ATMs receive signals from the breast milk—

and from immune cells and apoptotic cell contents—and transmit these

signals to the developing preadipocytes (②). In the newborn and in

the infant, the key metabolic traits of adipocytes are lipolysis, fatty

acid oxidation, and thermogenesis: all of which have been shown to be

stimulated by ATM-derived signals, such as IL-4, IL-6 and various lipid

metabolites (③).

4 IL-6 AND STAT3 SIGNALING IN THE INFANT
ADIPOSE TISSUE

Both adult and pediatric obesity is associatedwith an increased plasma

level of IL-682 and there is an association between increased fetal adi-

posity and maternal systemic IL-6 levels.83 Albeit it is not studied,

it is plausible that intrauterine cytokine signals may affect prenatal

ATM development, hence might determine the ATM-dependent con-

trol of adipocyte functions after birth (Figure 3). In the obese adipose

tissue, IL-6 is associated with a proinflammatory state, which deterio-

rates insulin sensitivity and provokes obesity-associated morbidities.7

However, there is a lack of correlation between obesity parameters

and IL6polymorphisms inhuman,84 and the lackof Il6 increases obesity

development in mouse.85 Moreover, IL-6 stimulates adipocyte lipol-

ysis, fatty acid oxidation, and mitobiogenesis, hence promotes beige

adipocyte development.13,86,87

The prevailing view that anti-inflammatory ATM activation is ben-

eficial for adipose tissue function and supports thermogenic fat dif-

ferentiation is challenged by the role of inflammatory signals in the

early postnatal fat development.23,24 In the newborn, IL-6 and further

Th1-associated cytokines and proinflammatory IFNs are required for

physiologic adipose tissue development.23,24,88 Both immune cells and
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F IGURE 3 Signals potentially affecting ATM functions in the early postnatal life

preadipocytes are possible sources of IL-6 in the adipose tissue, and

obesity is associated with an increasing IL-6 secretion from the adi-

pose tissue. Notably however, preadipocytes secretemore IL-6 in vitro

than the fully differentiated adipocytes.89 This may be an indication of

a role of autocrine IL-6 signaling in the early adipocyte differentiation.

However, expression of Il6 mRNA is similar in the subcutaneous adi-

pose tissue of infant and adult mice,43 and proinflammatory cytokine

secretion is a trait of mature and obese adipocytes.90 This makes

plausible that the reduced IL-6 secretion from in vitro differentiated

adipocytes may be due to the inhibition of IL-6 production by rosiglita-

zone 91 and dexamethasone,92 which are routinely used compounds to

trigger adipocyte differentiation in vitro. Since these ligands activate

peroxisome proliferator activated receptor gamma (PPARγ)- and glu-

cocorticoid receptor-controlled gene expression, they potently inhibit

inflammatory cytokine expression. This makes challenging to discern

changes in cytokine expression associated specifically with adipocyte

maturation.

IL-6 signaling promotes thermogenic adipocyte development

through JAK2/STAT3 pathway,13,93 which is especially relevant in the

subcutaneous fat depots of infants.13 Breast milk-derived metabolites

stimulate IL-6 production by ATMs, which eventually activates beige

adipocyte development through STAT3 signaling.13 Gene expression

of the signal pathway necessary for the IL-6-mediated beige adipocyte

development is higher in the adipose tissue of newborn than in adult

mice.43 Human neonate monocytes are more prone to release IL-6

in response to stimuli than their adult counterparts.92 Spontaneous

IL-6 release is more potently inhibited in adult monocytes by gluco-

corticoids than in adult monocytes.92 The human neonatal cord blood

immune cells respond to multiple TLR agonists with a prominent IL-6

and TNFα burst. Similarly, serum collected from newborns during the

first week of life have IL-6 and TNFα ratios higher than does cord

blood, associated with increased levels of IL-6-inducible acute phase

molecules in the first days of life.94 This makes plausible that IL-6 is

a stimulus of lipolysis and thermogenic fat differentiation in the early

postnatal life (Figure 3).

5 LIPID SIGNALS AFFECTING ATMs IN THE
INFANT ADIPOSE TISSUE

Lipid species, which are mostly supplied by diet, effectively control

lipid metabolism and the immune functioning of ATMs.95–97 Lipid

metabolites, lipidmediators, and lipid soluble vitamins activate nuclear

receptors and may trigger inflammation or in turn, may help to

resolve inflammation.7,98–100 Apoptotic adipocytes contain various

metabolites, including lipid species, which shape macrophage activa-

tion (reviewed in Ref. 20). Some immune regulator lipid species are

accumulated in the last trimester within the subcutaneous adipose tis-

sue depots. Subcutaneous fat is sensitive to gestational age,101 hence

preterm infants have deficient development of these fat depots, and

eventually, have altered bioavailability of some lipid species.102 For

instance, arachidonic acid (AA) and docosahexaenoic acid (DHA) are

relevant determinants of adipocyte development, fat-derived ther-

mogenesis, and adipose tissue inflammation.102,103 Adipose tissue

pools of AA and DHA are built up in term infants during the third

trimester, stored as adipose tissue triglycerides and predominantly dis-

tributed via plasma phosphatidylcholine.102 After birth, there is an

increased lipolysis, accompanied by free fatty acid release and a con-

comitant re-esterification of fatty acids into triacylglycerols. Lipolysis

increasesmacrophage recruitment to the adipose tissue104 and fasting

increases cyclooxygenase 1 (COX1) expression, and eventually stimu-

lates prostaglandin E2 (PGE2) biosynthesis from AA.104 Dietary sup-

plementation of AA during the suckling period increases prostaglandin

levels in adipose tissue in guinea pigs.105 While AA blocks macrophage

proliferation by inducing an S-phase blockage,106 PGE2 stimulates

macrophage migration, and hence may be responsible for lipolysis-

associated enrichment of macrophages in the adipose tissue.104 AA

exerts proinflammatory effects, while PGE2 has an inflammation sup-

pressive effect in the adipose tissue.104,107 Accordingly, plasma level

of AA is an important determinant of metabolic diseases associated

with childhood obesity. Mean plasma levels of AA, dihomo-gamma-

linolenic acid andDHAare higher in overweight and obese children,108
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and AA level positively correlates with indicators of insulin resistance

and loss of bone mass.109 However, AA has sex-dependent metabolic

effects,110 and AA supplementation does not influence early fat mass

development in the guinea pig.105

Similarly, vitamin D, which is a ligand of the immune regulator

vitamin D receptor (VDR), is accumulated in the fat depots before

birth.111 Vitamin D deficiency is prevalent among obese children and

adolescents and is a risk factor for metabolic diseases,112 albeit over-

expression of VDR promotes weight gain in mouse.113 Insufficient

vitamin D supply in early postnatal life is associated with increased

risk of diabetes development in adulthood.111 Vitamin A, retinoids,

and carotenoids also accumulate in the adipose tissue of the infant,114

and vitamin A metabolites are important immune regulators, which

shapemacrophage functions andmitigate obesity (reviewed in 114,115).

Breast milk is a natural source of retinoids, and preparation for lac-

tation is associated with a temporal increase of maternal vitamin A

pools.116 A 6-month long breastfeeding is estimated to transfer the

amount of vitamin A that is in the range of causing acute vitamin A

toxicity in an adult.116 Breastfeeding thus provides sufficient vitamin

A to the infant and also reduces potentially toxic concentrations of

retinoid pools in the lactating mother.116 However, breast milk from

obese mothers have decreased concentrations of carotenoids along

with a proinflammatory fatty acid profile.117 In suckling rats, vitamin

A supplementation supports the development of thermogenic fat mass

and protects from excess adipose tissue expansion,118 and carotenoids

have protective effects against obesity and increase energy dissipation

by adipocytes.114

Moreover, early postnatal life is the peak of dietary fat intake,

and breast milk-derived lipid species accumulate in the adipose tis-

sue of the newborn. For instance, fatty acid composition of the brown

adipose tissue in suckling newborn rats correlates with the fatty

acid composition of the rat milk.49 There is a change from mainly

saturated to a greater proportion of unsaturated fatty acids in the

brown adipose tissue in newborn rats, which occurs just after the

first suckling.49 Similarly, maternal plasma lipid composition is mir-

rored by the adipose tissue lipid species in the human neonate.50,51

Effects of dietary lipids are mostly studied in the context of obesity in

adulthood, and we know much less about the signaling role of dietary

lipids after birth.55 Breast milk is rich in lipids, and beyond supply-

ing energy rich nutrients, breast milk lipids also function as mediators

and immunemodulators.119 We have shown recently that breast milk-

specific alkylglycerol (AKG)-type ether lipids aremetabolized by ATMs

in the infant adipose tissue to platelet-activating factor (PAF).13 ATMs

in the newborn mouse express lysophosphatidylcholine acyltrans-

ferase 2 (LPCAT2), which converts AKGs into PAF and lacks the AKG

degrading enzyme, AKG-monooxygenase (AGMO) (Table 1). Accord-

ingly, alkyldiacylglcyerols and alkenylphosphatidylethanolamine are

enriched in the adipose tissue of breastfed infants.120 After the

first year of age, the adipose tissue level of the AKG-related lipid

species does not correlate with the length of breastfeeding,120 and

the adult adipose tissue expresses AKGmonooxygenase, which breaks

down AKGs to free fatty acids.13 AKGs are lacking from cow milk-

based infant formula13,121 and the lack of AKG intake in the early

postnatal life may increase the risk obesity.13 PAF stimulates IL-6

release from adipocytes, and PAF is nonenzymatic converted into

a PPARγ activating ether lipid—both signals stimulate thermogenic

fat differentiation.13 Similarly, further breast milk-derived lipids, such

as the 12,13-dihydroxy-9Z-octadecenoic acid have the potential to

control early adipocyte development, albeit the underlying mecha-

nisms are still to be understood.122 Further metabolites—other than

lipids—may induce ATMactivation, as reviewed before.20 For instance,

hyperglycemia sustains a proinflammatory macrophage activation,123

increases sensitivity of macrophages to proinflammatory signals, and

reduces their phagocytic capacity.124 Intriguingly, newborn infants

may develop hyperglycemia without having diabetes or insulin resis-

tance, and hyperglycemic events may have their impact on ATMs as

well.Moreover, intrauterine hyperglycemia increases the development

of pediatric obesity,125 and obese children have an increased risk of

hyperglycemia.126 Nutritional status andwhole-bodymetabolismhave

their specific impact on immune cell functions (reviewed in Ref. 127).

It has been extensively studied how bioactive molecules of diet deter-

mine macrophage functions128,129 and eventually, diet may induce

epigenetic modifications, which affect metabolism in the offspring.130

In turn, macrophage breakdown and synthesis of lipids determines

inflammation.131,132 Early-life metabolic imprinting by lipid metabo-

lites and glucose thereby potentially affects ATM phenotype and may

account for the immune component of childhood obesity.

6 CONCLUDING REMARKS

Development of the adipose tissue in infancy has late-acting impact

on obesity status and metabolic health. This makes important to

understand signals that determine adipocyte development in the early

postnatal life, and the number and activation state of ATMs may

serve as early diagnostic or prognostic marker for pediatric obesity.

Molecular characteristics of ATMs in the newborn are however still

incompletely explored (Table 1). A more detailed characterization of

ATM activation state in infancy and childhood may help to understand

better the association of genetics, nutrition, and comorbidities with

pediatric obesity.

ATMs play key roles in obesity-associated immune disorders in

adults; however, the impact of ATMs in the early life determination of

adiposity is still largely unexplored. For instance, we lack studies on the

transcriptional landscape, expression ofM1/M2markers and lipidomic

profile of ATMs during infancy and childhood. We lack information on

the impact of prenatal factors (i.e., maternal obesity or diabetes) on

ATMnumber and activation state in the offspring.What is an upcoming

challenge in the field of pediatrics is to define early diagnostic and

prognosticmarkers for childhood obesity. Isolation and flow cytometry

or single cell sequencing of ATMs are established techniques today.

However, analysis of ATMs is still not a routine diagnostic approach,

despite the access to adipose tissue specimens is relatively simple dur-

ing awide range of elective surgeries in pediatric patients. For instance,
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approximately 2–8%ofmale infants are affected by cryptorchidism,133

1–6% of infants and children may develop inguinal hernia,134 and

infections in the first year of life often lead to the development of

anal abscesses and fistulas.135 When these conditions require surgical

repair, there is an inevitable removal of small volumes of adipose tissue

from the inguinal canal, the subcutaneous fat layer of the groin region,

or the fat pad of the ischiorectal fossa, respectively. Since these fat

depots are present at birth and remain persistent throughout life, they

offer the possibility of studying ATM ontogeny and describing changes

in ATM number or phenotype in course of postnatal development. In

infants and preschool children, these fat specimens may be used for

quantifying ATM number (routine histology), measuring mRNA levels

(single cell sequencing) or by assessing ATM activation state (flow

cytometry). Such analyses may catalyze basic research in ATM biology,

and eventually might emerge as diagnostic tools for the early identifi-

cation of obesity risk factors, and hence, increase obesity prevention

among children.

Signals that control ATM activation toward a proinflammatory or

a proresolving phenotype also determine the developmental program

and lipid metabolism of adipocytes. ATMs in the newborn express

mediators that promote a lipolytic and fatty acid oxidizing adipocyte

functioning. These effects of ATMs support the proper utilization of

stored lipids after birth and the catabolism of a lipid-rich diet to

provide energy and heat. Eventually, ATMs counteract the excessive

adipose tissue expansion in the early postnatal life. ATM functions in

the newborn adipose tissue thus may have a life-long impact by setting

adiposity status and metabolic health. Moreover, signals that control

ATMs in the newborn may be exploited as novel targets in the therapy

of obesity and support fat catabolism and energy expenditure.
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